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AN INTRODUCTION TO K-THEORY

ERIC M. FRIEDLANDER∗

1. K0(−), K1(−), and K2(−)

Perhaps the first new concept that arises in the study of K-theory, and one which
recurs frequently, is that of the group completion of an abelian monoid.

The basic example to keep in mind is that the abelian group of integers Z is
the group completion of the monoid N of natural numbers. Recall that an abelian
monoid M is a set together with a binary, associative, commutative operation + :
M ×M → M and a distinguished element 0 ∈ M which serves as an identify (i.e.,
0 +m = m for all m ∈ M). Then we define the group completion γ : M → M+ by
setting M+ equal to the quotient of the free abelian group with generators [m],m ∈
M modulo the subgroup generated by elements of the form [m] + [n]− [m+ n] and
define γ : M → M+ by sending m ∈ M to [m]. We frequently refer to M+ as the
Grothendieck group of M .

The group completion map γ : M →M+ satisfies the following universal property.
For any homomorphism φ : M → A from M to a group A, there exists a unique
homomorphism φ+ : M+ → A such that φ+ ◦ γ = φ : M → A.

1.1. Algebraic K0 of rings. This leads almost immediately to K-theory. Let R
be a ring (always assumed associative with unit, but not necessarily commutative).
Recall that an (always assumed left) R-module P is said to be projective if there
exists another R-module Q such that P ⊕Q is a free R-module.

Definition 1.1. Let P(R) denote the abelian monoid (with respect to ⊕) of iso-
morphism classes of finitely generated projective R-modules. Then we define K0(R)
to be P(R)+.

Warning: The group completion map γ : P(R) → K0(R) is frequently not injective.

Exercise 1.2. Verify that if j : R → S is a ring homomorphism and if P is a
finitely generated projective R-module, then S⊗R P is a finitely generated projective
S-module. Using the universal property of the Grothendieck group, you should also
check that this construction determines j∗ : K0(R) → K0(S).

Indeed, we see that K0(−) is a (covariant) functor from rings to abelian groups.
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Example 1.3. If R = F is a field, then a finitely generated F -module is just a finite
dimensional F -vector space. Two such vector spaces are isomorphic if and only if
they have the same dimension. Thus, P(F ) � N and K0(F ) = Z.

Example 1.4. Let K/Q be a finite field extension of the rational numbers (K is
said to be a number field) and let OK ⊂ K be the ring of algebraic integers in K.
Thus, O is the subring of those elements α ∈ K which satisfy a monic polynomial
pα(x) ∈ Z[x]. Recall that OK is a Dedekind domain. The theory of Dedekind
domains permits us to conclude that

K0(OK) = Z ⊕ Cl(K)

where Cl(K) is the ideal class group of K.

A well known theorem of Minkowski asserts that Cl(K) is finite for any number
field K (cf. [Rosenberg]). Computing class groups is devilishly difficult. We do know
that there only finitely many cyclotomic fields (i.e., of the form Q(ζn) obtained by
adjoining a primitive n-th root of unity to Q) with class group {1}. The smallest
n with non-trivial class group is n = 23 for which Cl(Q(ζ23)) = Z/3. A check of
tables shows, for example, that Cl(Q(ζ100)) = Z/65.

The reader is referred to the book by [3] for an accessible introduction to this
important topic.

The K-theory of integral group rings has several important applications in topol-
ogy. For a group π, the integral group ring Z[π] is defined to be the ring whose
underlying abelian group is the free group on the set [g], g ∈ π and whose ring
structure is defined by setting [g] · [h] = [g · h]. Thus, if π is not abelian, then Z[π]
is not a commutative ring.

Application 1.5. Let X be a path-connected space with the homotopy type of a
C.W. complex and with fundamental group π. Suppose that X is a retract of a finite
C.W. complex. Then the Wall finiteness obstruction is an element of K0(Z[π]) which
vanishes if and only if X is homotopy equivalent to a finite C.W. complex.

1.2. Topological K0. We now consider topologicalK-theory for a topological space
X. This is also constructed as a Grothendieck group and is typically easier to
compute than algebraic K-theory of a ring R. Moreover, results first proved for
topological K-theory have both motivated and helped to prove important theorems
in algebraic K-theory.

Definition 1.6. Let F denote either the real numbers R or the complex numbers C.
An F-vector bundle on a topological space X is a continuous open surjective map
p : E → X satisfying

• (a) For all x ∈ X, p−1(x) is a finite dimensional F-vector space.
• (b) There are continuous maps E × E → E,F × E → E which provide the

vector space structure on p−1(x), all x ∈ X.
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• (c) For all x ∈ X, there exists an open neighborhood Ux ⊂ X, an F-vector
space V , and a homeomorphism ψx : V × Ux → p−1(Ux) over Ux (i.e., pr2 =
p ◦ ψx : V × Ux → Ux) compatible with the structure in (b.).

Example 1.7. Let X = S1, the circle. The projection of the Möbius band M to
its equator p : M → S1 is a rank 1, real vector bundle over S1.

Let X = S2, the 2-sphere. Then the projection p : TS2 → S2 of the tangent
bundle is a non-trivial vector bundle.

Let X = S2, but now view X as the complex projective line, so that points of X
can be viewed as complex lines through the origin in C2 (i.e., complex subspaces of
C2 of dimension 1). Then there is a natural rank 1, complex line bundle E → X
whose fibre above x ∈ X is the complex line parametrized by x; if E − o(X) → X
denotes the result of removing the origin of each fibre, then we can identify E−o(X)
with C2 − {0}.
Definition 1.8. Let V ectF(X) denote the abelian monoid (with respect to ⊕) of
isomorphism classes of F-vector bundles of X. We define

K0
top(X) = V ectC(X)+, KO0

top(X) = V ectR(X)+.

(This definition will agree with our more sophisticated definition of topological
K-theory given in a later lecture provided that the X has the homotopy type of a
finite dimensional C.W. complex.)

The reason we use a superscript 0 rather than a subscript 0 for topological K-
theory is that it determines a contravariant functor. Namely, if f : X → Y is a
continuous map of topological spaces and if p : E → Y is an F-vector bundle on Y ,
then pr2 : E ×Y X → X is an F-vector bundle on X. This determines

f ∗ : K0
top(Y ) → K0

top(X).

Example 1.9. Let nS2 denote the “trivial” rank n, real vector bundle over S2

(i.e., pr2 : Rn × S2 → S2) and let TS2 denote the tangent bundle of S2. Then
TS2 ⊕ 1S2 � 3S2 . We conclude that V ectR(S2) → KO0

top(S
2) is not injective in this

case.

Here is one of the early theorems of K-theory, a theorem proved by Richard Swan.
You can find a full proof, for example, in [4].

Theorem 1.10. (Swan) Let F = R (respectively, = C), let X be a compact Haus-
dorff space, and let C(X,F) denote the ring of continuous functions X → F. For
any E ∈ V ectF(X), define the F-vector space of global sections Γ(X,E) to be

Γ(X,E) = {s : X → E continuous; p ◦ s = idX}.
Then sending E to Γ(X,E) determines isomorphisms

KO0
top(X) → K0(C(X,R)), K0

top(X) → K0(C(X,C)).
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1.3. Quasi-projective Varieties. We briefly recall a few basic notions of classical
algebraic geometry. Let us assume our ground field k is algebraically closed, so that
we need only consider k-rational points. For more general fields k, we could have to
consider “points with values in some finite field extension L/k.”

Recollection 1.11. Recall projective space PN , whose k-rational points are equiv-
alence classes of N + 1-tuple, 〈a0, . . . , aN〉, some entry of which is non-zero. Two
N + 1-tuples (a0, . . . , aN), (b0, . . . , bN) are equivalent if there exists some 0 
= c ∈ k
such that (a0, . . . , aN) = (cb0, . . . , cbN).

If F (X0, . . . , XN) is a homogeneous polynomial, then the zero locus Z(F ) ⊂ PN

is well defined.
Recall that PN is covered by standard affine opens Ui = PN\Z(Xi).
Recall the Zariski topology on PN , a base of open sets for which are the subsets

of the form UG = PN\Z(G).

Recollection 1.12. Recall the notion of a presheaf on a topological space T : a
contravariant functor from the category whose objects are open subsets of T and
whose morphisms are inclusions.

Recall that a sheaf is a presheaf satisfying the sheaf axiom: for T compact, this
axiom can be simply expressed as requiring for each pair of open subsets U, V that

F (U ∪ V ) = F (U) ×F (U∩V ) F (V ).

Recall the structure sheaf of “regular functions” OPN on PN , sections of OPN (U)

on any open U are given by quotients P (X0,...,XN )
Q(X0,...,XN )

of homogeneous polynomilas of the

same degree satisfying the condition that Q has no zeros in U . In particular,

OPN (UG) = {F (X)/Gj, j ≥ 0;F homgeneous of deg = j · deg(G)}.
Definition 1.13. A projective variety X is a space with a sheaf of commutative
rings OX which admits a closed embedding into some PN , i : X ⊂ PN , so that OX

is the quotient of the sheaf OPN by the ideal sheaf of those regular functions which
vanish on X.

A quasi-projective variety U is once again a space with a sheaf of commutative
rings OU which admits a locally a closed embedding into some PN , j : U ⊂ PN , so
that the closure U ⊂ PN of U admits the structure of a projective variety and so
that OU equals the restriction of OU to U ⊂ U .

A quasi-projective variety U is said to be affine if U admits a closed embedding
into some AN = PN\Z(X0) so that OU is the quotient of OAN by the sheaf of ideals
which vanish on U .

Remark 1.14. Any quasi-projective variety U has a base of (Zariski) open subsets
which are affine.

Most quasi-projective varieties are neither projective nor affine.
There is a bijective correspondence between affine varieties and finitely generated

commutative k-algebras. If U is an affine variety, then Γ(OU) is the corresponding
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finitely generated k-algebra. Conversely, if A is written as a quotient k[x1, . . . , xN ] →
A, then SpecA → Speck[x1, . . . , xN ] = AN is the corresponding closed embedding
of the affine variety SpecA.

Example 1.15. Let F be a polynomial in variables X0, . . . , XN homogeneous of
degree d (i.e., F (ca0, . . . , caN) = cdF (a0, . . . , aN). Then the zero locus Z(F ) ⊂ PN is
called a hypersurface of degree d. For example if N = 2, then Z(F ) is 1-dimensional
(i.e., a curve). If k = C and if the Jacobian of F does not vanish anywhere on
C = Z(F ) (i.e., if C is smooth), then C is a projective, smooth, algebraic curve of

genus (d−1)(d−2)
2

.

1.4. Algebraic vector bundles.

Definition 1.16. Let X be a quasi-projective variety. A quasi-coherent sheaf F
on X is a sheaf of OX-modules (i.e., an abelian sheaf equipped with a pairing
OX ⊗ F → F of sheaves satisfying the condition that for each open U ⊂ X this
pairing gives F(U) the structure of an OX(U)-module) with the property that there
exists an open covering {Ui ⊂ X; i ∈ I} by affine open subsets so that F|Ui

is the
sheaf associated to an OX(Ui)-module Mi for each i.

If each of the Mi can be chosen to be finitely generated as an OX(Ui)-module,
then such a quasi-coherent sheaf is called coherent.

Definition 1.17. Let X be a quasi-projective variety. A coherent sheaf E on X is
said to be an algebraic vector bundle if E is locally free. In other words, if there
exists a (Zariski) open covering {Ui; i ∈ I} of X such that E|Ui

� Oei

X|Ui
for each i.

Remark 1.18. If quasi-projective variety is affine, then an algebraic vector bundle
on X is equivalent to a projective Γ(OX)-module.

Construction 1. If M is a free A-module of rank r, then the symmetric algebra
Sym•

A(M) is a polynomial algebra of r generators over A and the structure map
π : SpecSym•

A(M) → SpecA is just the projection Ar × SpecA → SpecA. This
construction readily globalizes: if E is an algebraic vector bundle over X, then

πE : V(E) ≡ SpecSym•
OX

(E)∗ → X

is locally in the Zariski topology a product projection: if {Ui ⊂ X; i ∈} is an open
covering restricted to which E is trivial, then the restriction of πE above each Ui is
isomorphic to the product projection Ar × Ui → Ui. In the above definition of πE
we consider the symmetric algebra on the dual E∗ = HomOX

(E ,OX), so that the
association E �→ V(E∗) is covariantly functorial.

Thus, we may alternatively think of an algebraic vector bundle on X as a map of
varieties

πE : V(E∗) → X

satisfying properties which arethe algebraic analogues of the properties of the struc-
ture map of a topological vector bundle over a topological space.
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Remark 1.19. We should be looking at the maximal ideal spectrum of a variety over
a field k, rather than simply the k rational points, whenever k is not algebraically
closed. We suppress this point, for we will soon switch to prime ideal spectra (i.e.,
work with schemes of finite type over k). However, we do point out that the reason
it suffices to consider the maximal ideal spectrum rather the spectrum of all prime
ideals is the validity of the Hilbert Nullstellensatz. One form of this important
theorem is that the subset of maximal ideals constitute a dense subset of the space
of prime ideals (with the Zariski topology) of a finitely generated commutative k-
algebra.

1.5. Examples of Algebraic Vector Bundles.

Example 1.20. Rank 1 vector bundles OPN (k), k ∈ Z on PN . The sections of
OPN (j) on the basic open subset UG = PN Z(G) are given by the formula

OPN (k)(UG) = k[X0, . . . , XN , 1/G](j)

(i.e., ratios of homogeneous polynomials of total degree j).
In terms of the trivialization on the open covering Ui, 0 ≤ i ≤ N , the patching

functions are given by Xj
i /X

j
i′ .

Γ(OPN (j)) has dimension
(

N+j
j

)
if j > 0, dimension 1 if j = 0, and 0 otherwise.

Thus, using the fact that OPN (j) ⊗OX
OPN (j′) = OPN (j + j′), we conclude that

Γ(OPN (j)) is not isomorphic to Γ(OPN (j′)) provided that j′ 
= j.

Proposition 1.21. (Grothendieck) Each vector bundle on P1 has a unique decom-
position as a finite direct sum of copies of OP1(k), k ∈ Z.

Example 1.22. Serre’s conjecture (proved by Quillen and Suslin) asserts that every
algebraic vector bundle on AN (or any affine open subset of AN) is trivial. In more
algebraic terms, every finitely generated projective k[x1, . . . , xn]-module is free.

Example 1.23. Let X = Grassn,N , the Grassmann variety of n − 1-planes in PN

(i.e., n-dimensional subspaces of kN+1). We can embed Grassn,N as a Zariski closed

subset of PM−1, where M =
(

N+1
n

)
, by sending the subspace V ⊂ kN+1 to its n-th

exterior power ΛnV ⊂ Λn(KN+1). There is a natural rank n algebraic vector bundle
E on X provided with an embedding in the trivial rank N + 1 dimensional vector
bundle ON+1

X (in the special case n = 1, this is OPN (−1) ⊂ ON+1
PN ) whose fibre above

a point in X is the corresponding subspace. Of equal importance is the natural rank
N − n-dimensional quotient bundle Q = ON+1

PN /E .
This example readily generalizes to flag varieties.

Example 1.24. Let A be a commutative k-algebra and recall the module ΩA/k

of Kaḧler differentals. These globalize to a quasi-coherent sheaf ΩX on a quasi-
projective variety X over k. If X is smooth of dimension r, then ΩX is an algebraic
vector bundle over X of rank r.
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1.6. Picard Group Pic(X).

Definition 1.25. Let X be a quasi-projective variety. We define Pic(X) to be
the abelian group whose elments are isomorphism classes of rank 1 algebraic vector
bundles on X (also called “invertible sheaves”). The group structure on Pic(X) is
given by tensor product.

So defined, Pic(X) is a generalization of the construction of the Class Group (of
fractional ideals modulo principal ideal) for X = SpecA with A a Dedekind domain.

Example 1.26. By examing patching data, we readily verify that

H1(X,O∗
X) = Pic(X)

where O∗
X is the sheaf of abelian groups on X with sections Γ(U,O∗

X) defined to be
the invertible elements of Γ(U,OX) (with group structure given by multiplication).

If k = C, then we have a short exact sequence of analytic sheaves of abelian
sheaves on the analytic space X(C)an,

0 → Z → OX
exp→ O∗

X → 0.

We use identification due to Serre of analytic and algebraic vector bundles on a
projective variety. If X = C is a smooth curve, this identification enables us to
conclude the short exact sequence

0 → Cg/Z2g → Pic(C) → H2(C,Z)

since H1(C,OC) � H0(C,ΩC) = Cg (where g is the genus of C). In particular, we
conclude that for a curve of positive genus, Pic(C) is very large, having a “continuous
part” (which is an abelian variety).

Example 1.27. A K3 surface S over the complex numbers is characterized by the
conditions that H0(S,Λ2(ΩS)) = 0 = H1

sing(S,Q). Even though the homotopy type
of a smooth K3 surface does not depend upon the choice of such a surface S, the
rank of Pic(S) can vary from 1 to 20. [The dimension of H2

sing(S,Q) is 22.]

1.7. K0 of Quasi-projective Varieties.

Definition 1.28. Let X be a quasi-projective variety. We define K0(X) to be the
quotient of the free abelian group generated by isomorphism classes [E ] of (algebraic)
vector bundles E on X modulo the equivalence relation generated pairs ([E ], [E1] +
[E2]) for each short exact sequence 0 → E1 → E → E2 → 0 of vector bundles.

Remark 1.29. Let A be a finitely generated k-algebra. Observe that every short
exact sequence of projective A-modules splits. Thus, the equivalence relation defin-
ing K0(A) is generated by pairs ([E1⊕E2], [E1]+[E2]). Every element of K0(A) can be
written as [P ]− [m] for some non-negative integer m; moreover, projective modules
P,Q determine the same class in K0(A) if and only if there exists some non-negative
integer m such that P ⊕ Am � Q⊕ Am.
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Proposition 1.30. K0(P
N) is a free abelian group of rank N + 1. Moreover, for

any k ∈ Z, the invertible sheaves OPN (k), . . . ,OPN (k +N) generate K0(P
N).

Proof. One obtains a relation among N +2 invertible sheaves from the Koszul com-
plex on N + 1 dimensional vector space V :

0 → ΛN+1V ⊗ S∗−N−1(V ) → · · · → V ⊗ S∗−1(V ) → S∗(V ) → k → 0.

One shows that the invertible sheaves OPN (j), j ∈ Z generateK0(P
N) using Serre’s

theorem that for any coherent sheaf F on PN there exist integers m,n > 0 and a
surjective map of OPN -modules OPN (m)n → F .

One way to show that the rank of K0(P
N) equals N+1 is to use Chern classes. �

1.8. K1 of rings. So far, we have only considered degree 0 algebraic and topological
K-theory. Before we consider Kn(R), n ∈ N, Kn

top(X), n ∈ Z, we look explicitly at
K1(R).

Definition 1.31. Let R be a ring (assumed associative, as always and with unit).
We define K1(R) by the formula

K1(R) ≡ GL(R)/[GL(R), GL(R)],

where GL(R) = lim−→n
GL(n,R) and where [GL(r), GL(R)] is the commutator sub-

group of the group GL(R). Thus, K1(R) is the maximal abelian quotient of GL(R),

K1(R) = H1(GL(R),Z).

The commutator subgroup [GL(R), GL(R)] equals the subgroup E(R) ⊂ GL(R)
defined as the subgroup generated by elementary matrices Ei,j,(r), r ∈ R, i 
= j
(i.e., matrices which differ by the identity matrix by having r in the (i, j) position).
This group is readily seen to be perfect (i.e., E(R) = [E(r), E(R)]); indeed, it is an
elementary exercise to verify that E(n,R) = E(R) ∩GL(n,R) is perfect for n ≥ 3.

Proposition 1.32. If R is a commutative ring, then the determinant map

det : K1(R) → R×

from K1(R) to the mulitplicative group of units of R provides a natural splitting of
R× = GL(1, R) → GL(R) → K1(R). Thus, we can write

K1(R) = R× × SL(R)

where SL(R) = ker{det}.
If R is a field or more generally a local ring, then SK1(R) = 0.

The following theorem is not at all easy, but it does tell us that nothing surprising
happens for rings of integers in number fields.

Theorem 1.33. (Bass-Milnor-Serre) If OK is the ring of integers in a number field
K, then SK1(OK) = 0.
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Application 1.34. The work of Bass-Milnor-Serre was dedicated to solving the
following question: is every subgroup H ⊂ SL(OK) of finite index a “congruent
subgroup” (i.e., of the form ker{SL(OK) → SL(OK/p

n)} for some prime ideal
p ⊂ OK. The answer is yes if the number field F admits a real embedding, and no
otherwise.

The Bass-Milnor-Serre theorem is complemented by the following classical result
due to Dirichlet (cf. [4]).

Theorem 1.35. (Dirichlet’s Theorem) Let OK be the ring of integers in a number
field K. Then

O∗
K = µ(K) ⊕ Zr1+r2−1

where µ(K) ⊂ K denotes the finite subgroup of roots of unity and where r1 (respec-
tively, r2) denotes the number of embeddings of K into R (resp., number of conjugate
pairs of embeddings of K into C).

We conclude this brief commentary on K1 with the following early application to
topology.

Application 1.36. Let π be a finitely generated group and consider the Whitehead
group

Wh(π) = K1(R)/{±g; g ∈ π}.
A homotopy equivalence of finite complexes with fundamental group π has an in-
variant (its “Whitehead torsion”) in Wh(π) which determines whether or not this
is a simple homotopy equivalence (given by a chain of “elementary expansions” and
“elementary collapses”).

1.9. K2 of rings. One can think of K0(R) as the “stable group” of projective mod-
ules “modulo trivial projective modules” and of K1(R) of the stabilized group of
automorphisms of the trivial projective module modulo “trivial automorphisms”
(i.e., the elementary matrices up to isomorphism. This philosophy can be extended
to the definition of K2, but has not been extended to Ki, i > 2. Namely, K2(R)
can be viewed as the relations among the trivial automorphisms (i.e., elementary
matrices) modulo those relations which hold universally.

Definition 1.37. Let St(R), the Steinberg group of R, denote the group generated
by elements Xi,j(r), i 
= j, r ∈ R subject to the following commutator relations:

[Xi,j(r), Xk,�(s)] =

⎧⎪⎨
⎪⎩

1 if j 
= k, i 
= �

Xi,�(rs) if j = k, i 
= �

Xk,j(−rs) if j 
= k, i = �

We define K2(R) to be the kernel of the map St(R) → E(R), given by sending
Xi,j(r) to the elementary matrix Ei,j(r), so that we have a short exact sequence

1 → K2(R) → St(R) → E(R) → 1.
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Proposition 1.38. The short exact sequence

1 → K2(R) → St(R) → E(R) → 1

is the universal central extension of the perfect group E(R). Thus, K2(R) = H2(E(R),Z),
the Schur multiplier of E(r).

Proof. Once can show that a universal central extension of a group E exists if and
only E is perfect. In this case, a group S mapping onto E is the universal central
extension if and only if S is also perfect and H2(S,Z) = 0. �
Example 1.39. If R is a field, then K1(F ) = F×, the non-zero elements of the
field viewed as an abelian group under multiplication. By a theorem of Matsumoto,
K2(F ) is characterized as the target of the “universal Steinberg symbol”. Namely,
K2(F ) is isomorphic to the free abelian group with generators “Steinberg symbols”
{a, b}, a, b ∈ F× and relations

• i. {ac,b} = {a,b} {c,b},
• ii. {a,bd} = {a,b} {a,d},
• iii. {a, 1 − a} = 1, a 
= 1 
= 1 − a. (Steinberg relation)

Observe that for a ∈ F×, −a = 1−a
1−a−1 , so that

{a,−a} = {a, 1 − a}{a, 1 − a−1}−1 = {a, 1 − a−1}−1 = {a−1, 1 − a−1} = 1.

Then we conclude the skew symmetry of these symbols:

{a, b}{b, a} = {a,−a}{a, b}{b, a}{b,−b} = {a,−ab}{b,−ab} = {ab,−ab} = 1.

Milnor used this of K2(F ) as the starting point of his definition of the Milnor
K-theory KMilnor

∗ of a field F , discussed briefly in Lecture 5.
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