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Lecture 1. Noncommutative locally affine ’spaces’ and schemes.

1. Noncommutative ’spaces’ represented by categories and morphisms
between them. Continuous, affine and locally affine morphisms.

1.1. Categories and ’spaces’. As usual, Cat, or CatU, denotes the bicategory of
categories which belong to a fixed universum U. We call objects of Catop ’spaces’. For any
’space’ X , the corresponding category CX is regarded as the category of quasi-coherent
sheaves on X . For any U-category A, we denote by |A| the corresponding object of Catop

(the underlying ’space’) defined by C|A| = A.
We denote by |Cat|o the category having same objects as Catop. Morphisms from

X to Y are isomorphism classes of functors CY −→ CX . For a morphism X
f

−→ Y , we
denote by f∗ any functor CY −→ CX representing f and call it an inverse image functor
of the morphism f . We shall write f = [F ] to indicate that f is a morphism having an

inverse image functor F . The composition of morphisms X
f

−→ Y and Y
g

−→ Z is defined
by g ◦ f = [f∗ ◦ g∗].

1.2. Localizations and conservative morphisms. Let Y be an object of |Cat|o

and Σ a class of arrows of the category CY . We denote by Σ−1Y the object of |Cat|o such
that the corresponding category coincides with (the standard realization of) the quotient of
the category CY by Σ (cf. [GZ, 1.1]): CΣ−1Y = Σ−1CY . The canonical localization functor

CY

p∗
Σ−→ Σ−1CY is regarded as an inverse image functor of a morphism, Σ−1Y

p
Σ−→ Y .

For any morphism X
f

−→ Y in |Cat|o, we denote by Σf the family of all arrows s
of the category CY such that f∗(s) is invertible (notice that Σf does not depend on the
choice of an inverse image functor f∗). Thanks to the universal property of localizations,
f∗ is represented as the composition of the localization functor p∗f = p∗

Σf
: CY −→ Σ−1

f CY

and a uniquely determined functor Σ−1CY

f∗
c−→ CX . In other words, f = pf ◦ fc for a

uniquely determined morphism X
fc−→ Σ−1

f Y .

A morphism X
f

−→ Y is called conservative if Σf consists of isomorphisms only, or,
equivalently, pf is an isomorphism.

A morphism X
f

−→ Y is called a localization if fc is an isomorphism, i.e. the functor
f∗

c is an equivalence of categories.
Thus, f = pf ◦ fc is a unique decomposition of a morphism f into a localization and

a conservative morphism.

1.3. Continuous, flat, and affine morphisms. A morphism is called continuous
if its inverse image functor has a right adjoint (called a direct image functor), and flat
if, in addition, the inverse image functor is left exact (i.e. preserves finite limits). A
continuous morphism is called ’affine’ if its direct image functor is conservative (i.e. reflects
isomorphisms) and has a right adjoint.

1.4. Categoric spectrum of a unital ring. For an associative unital ring R,
we define the categoric spectrum of R as the object Sp(R) of |Cat|o such that CSp(R) =
R −mod.
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Let R
φ

−→ S be a unital ring morphism and R−mod
φ̄∗

−→ S−mod the functor S⊗R−.
The canonical right adjoint to φ̄∗ is the pull-back functor by the ring morphism φ. A right
adjoint to φ∗ is given by

φ! : S −mod −→ R−mod, L �−→ HomR(φ∗(S), L).

The map (
R

φ
−→ S

)
�−→

(
Sp(S)

φ̄
−→ Sp(R)

)

is a functor
Sp : Ringsop −→ |Cat|o

which takes values in the subcategory formed by affine morphisms.

The image Sp(R)
φ̄

−→ Sp(T ) of a ring morphism T
φ

−→ R is flat (resp. faithful) iff φ
turns R into a flat (resp. faithful) right T -module.

1.4.1. Continuous, flat, and affine morphisms from Sp(S) to Sp(R). Let R
and S be associative unital rings. A morphism f : Sp(S) −→ Sp(R) with an inverse image
functor f∗ is continuous iff

f∗ � M⊗R : L �−→ M⊗R L (1)

for an (S,R)-bimodule M defined uniquely up to isomorphism. The functor

f∗ = HomS(M,−) : N �−→ HomS(M, N) (2)

is a direct image of f .
The morphism f with an inverse image functor (1) is conservative iff M is faithful as

a right R-module, i.e. the functor M⊗R − is faithful.
The direct image functor (2) is conservative iff M is a cogenerator in the category

of left S-modules, i.e. for any nonzero S-module N , there exists a nonzero S-module
morphism M −→ N .

The morphism f is flat iff M is flat as a right R-module.
The functor (2) has a right adjoint, f !, iff f∗ is isomorphic to the tensoring (over S)

by a bimodule. This happens iff M is a projective S-module of finite type. The latter is
equivalent to the condition: the natural functor morphism M∗

S ⊗S − −→ HomS(M,−) is
an isomorphism. Here M∗

S = HomS(M,S). In this case, f ! � HomR(M∗
S,−).

1.5. Example. Let G be a monoid and R a G-graded unital ring. We define the
’space’ SpG(R) by taking as CSpG(R) the category grGR−mod of left G-graded R-modules.

There is a natural functor grGR − mod
φ∗−→ R0 − mod which assigns to each graded R-

module its zero component (’zero’ is the unit element of the monoid G). The functor φ∗
has a left adjoint, φ∗, which maps every R0-module M to the graded R-module R⊗R0

M .
The adjunction arrow IdR0−mod −→ φ∗φ

∗ is an isomorphism. This means that the functor
φ∗ is fully faithful, or, equivalently, the functor φ∗ is a localization.
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The functors φ∗ and φ∗ are regarded as respectively a direct and an inverse image

functor of a morphism SpG(R)
φ

−→ Sp(R0). It follows from the above that the morphism
φ is affine iff φ is an isomorphism (i.e. φ∗ is an equivalence of categories).

In fact, if φ is affine, the functor φ∗ should be conservative. Since φ∗ is a localization,
this means, precisely, that φ∗ is an equivalence of categories.

1.6. The cone of a non-unital ring. Let R0 be a unital associative ring, and let
R+ be an associative ring, non-unital in general, in the category of R0-bimodules; i.e. R+

is endowed with an R0-bimodule morphism R+⊗R0
R+

m
−→ R+ satisfying the associativity

condition. Let R = R0 ⊕R+ denote the augmented ring described by this data. Let TR+

denote the full subcategory of the category R − mod whose objects are all R-modules
annihilated by R+. Let T −

R+
be the Serre subcategory (that is a full subcategory closed

by taking subquotients, extensions, and arbitrary direct sums) of the category R −mod
spanned by TR+

.
We define the ’space’ cone of R+ by taking as CCone(R+) the quotient category R −

mod/T −
R+

. The localization functor R−mod
u∗

−→ R−mod/T −
R+

is an inverse image functor

of a morphism of ’spaces’ Cone(R+)
u

−→ Sp(R). The functor u∗ has a (necessarily fully
faithful) right adjoint, i.e. the morphism u is continuous. If R+ is a unital ring, then u
is an isomorphism (see C3.2.1). The composition of the morphism u with the canonical
affine morphism Sp(R) −→ Sp(R0) is a continuous morphism Cone(R+) −→ Sp(R0). Its
direct image functor is (regarded as) the global sections functor.

1.7. The graded version: ProjG. Let G be a monoid and R = R0⊕R+ a G-graded
ring with zero component R0. Then we have the category grGR − mod of G-graded R-
modules and its full subcategory grGTR+

= TR+
∩ grGR −mod whose objects are graded

modules annihilated by the ideal R+. We define the ’space’ ProjG(R) by setting

CProjG(R) = grGR−mod/grGT
−

R+
.

Here grGT
−

R+
is the Serre subcategory of the category grGR−modspanned by grGTR+

. One

can show that grGT
−

R+
= grGR−mod ∩ T −

R+
. Therefore, we have a canonical projection

Cone(R+)
p

−→ ProjG(R).

The localization functor grGR−mod −→ CProjG(R+) is an inverse image functor of a

continuous morphism ProjG(R)
v

−→ SpG(R). The composition ProjG(R)
v

−→ Sp(R0) of

the morphism v with the canonical morphism SpG(R)
φ

−→ Sp(R0) defines ProjG(R) as a
’space’ over Sp(R0). Its direct image functor is called the global sections functor.

1.7.1. Example: cone and Proj of a Z+-graded ring. Let R = ⊕n≥0Rn be a Z+-
graded ring, R+ = ⊕n≥1Rn its ’irrelevant’ ideal. Thus, we have the cone ofR+, Cone(R+),
and Proj(R) = Proj

Z
(R), and a canonical morphism Cone(R+) −→ Proj(R).
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2. Noncommutative schemes and locally affine ’spaces’. Descent.

2.1. Locally affine morphisms of ’spaces’. We call a morphism X
f

−→ S of
’spaces’ locally affine if there exists a family {Ui

ui−→ X | i ∈ J} of morphisms such that
– all inverse image functors u∗i are exact (i.e. the functors u∗i preserve finite limits and

colimits),
– the family {u∗i | i ∈ J} is conservative (i.e. if u∗i (s) is an isomorphism for all i ∈ J ,

then s is an isomorphism),
– all the compositions f ◦ ui are affine.

2.2. Weak locally affine schemes over S. These are locally affine morphisms
which have a cover {Ui

ui−→ X | i ∈ J} formed by localizatios. The latter means that

each inverse image functor u∗i is the composition of a localization functor (at Σu∗
i

def
= {s ∈

HomCX | u∗i (s) is invertible }) and an equivalence of categories.

2.3. Descent.

2.3.1. The Beck’s Theorem. Let X
f

−→ Y be a continuous morphism in with
inverse image functor f∗, direct image functor f∗, and adjunction morphisms

IdCY

ηf
−→ f∗f

∗ and f∗f∗
εf
−→ IdCX .

Let Ff denote the monad (Ff , µf ) on Y , where Ff = f∗f
∗ and µf = f∗εff

∗. There is a
commutative diagram

CX

f̃∗

−−−→ (Ff/Y ) −mod

f∗
↘ ↙f∗

CX

(3)

Here f̃∗ is the canonical functor

CX −→ (Ff/Y ) −mod, M �−→ (f∗(M), f∗εf (M)),

and f∗ is the forgetful functor (Ff/Y ) −mod −→ CY .
The following assertion is one of the versions of Beck’s theorem.

2.3.1.1. Theorem. Let X
f

−→ Y be a continuous morphism.
(a) If the category CY has cokernels of reflexive pairs of arrows, then the functor

f̄∗ has a left adjoint, f̄∗; hence f̄∗ is a direct image functor of a continuous morphism

X̄
f

−→ Sp(Ff/Y ).
(b) If, in addition, the functor f∗ preserves cokernels of reflexive pairs, then the ad-

junction arrow f̄∗f̄∗ −→ IdCX is an isomorphism, i.e. f̄∗ is a localization.
(c) If, in addition to (a) and (b), the functor f∗ is conservative, then f̄∗ is a category

equivalence.

Proof. See [MLM], IV.4.2, or [ML], VI.7.
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2.3.1.2. Corollary. Let X
f

−→ Y be an affine morphism (cf. 1.5). If the category
CY has cokernels of reflexive pairs of arrows (e.g. CY is an abelian category), then the

canonical morphism X
f

−→ Sp(Ff/Y ) is an isomorphism.

2.3.1.3. Monadic morphisms. A continuous morphism X
f

−→ Y such that the
functor

CX

f̃∗

−−−→ Ff −mod, M �−→ (f∗(M), f∗εf (M)),

is an equivalence of categories.

2.3.2. Continuous monads and affine morphisms. A functor F is called con-
tinuous if it has a right adjoint. A monad F = (F, µ) on Y (i.e. on the category CY ) is
called continuous if the functor F is continuous.

2.3.2.1. Proposition. A monad F = (F, µ) on Y is continuous iff the canonical

morphism Sp(F/Y )
f̂

−→ Y is affine.

Proof. A proof in the case of a continuous monad can be found in [KR2, 6.2], or in
[R3, 4.4.1] (see also [R4, 2.2]).

2.3.2.2. Corollary. Suppose that the category CY has cokernels of reflexive pairs of

arrows. A continuous morphism X
f

−→ Y is affine iff its direct image functor CX
f∗

−→ CY

is the composition of a category equivalence

CX −→ (Ff/Y ) −mod

for a continuous monad Ff on Y and the forgetful functor (Ff/Y ) −mod −→ CY . The
monad Ff is determined by f uniquely up to isomorphism.

Proof. The conditions of the Beck’s theorem are fullfiled if f is affine, hence f∗ is the
composition of an equivalence CX −→ (Ff/Y )−mod for a monad Ff = (f∗f

∗, µf ) in CY

and the forgetful functor (Ff/Y ) −mod −→ CY (see (1)). The functor Ff = f∗f
∗ has a

right adjoint f∗f
!, where f ! is a right adjoint to f∗. The rest follows from 2.3.2.1.

2.4. The category of affine schemes over a ’space’ and the category of
monads on this ’space’.

2.4.1. Proposition. Let

X
h

−−−→ Y
f ↘ ↙ g

S

be a commutative diagram in |Cat|o. Suppose CZ has colimits of reflexive pairs of arrows.
If f and g are affine, then h is affine.

Let AffS denote the full subcategory of the category |Cat|o/S of ’spaces’ over S

whose objects are pairs (X,X
f
→ S), where f is an affine morphism. On the other hand,
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we have the category Monc(S) of continuous monads on the ’space’ S (i.e. on the category
CS) and the functor

Monc(S)op −−−→ AffS (1)

which assigns to every continuous monad F the object (Sp(F/S, f), where Sp(F/S) is the
’space’ represented by the category F −mod and the morphism f has the forgetful functor
F − mod −→ CS as a direct image functor. It follows from 2.4.1 and 2.3.2.2 that this
functor is essentially full (that is its image is equivalent to the category AffS).

For every endofunctor CS
G
−→ CS , let |G| denote the set Hom(IdCS , G) of elements of

G. If F = (F, µ) is a monad, then the set of elements of F has a natural monoid structure;
we denote this monoid by |F|. And we denote by |F|∗ the group of the invertible elements

of the monoid |F|. We say that two monad morphisms F
φ

−→
−→
ψ

G are conjugate to each

other of φ = t · ψ · t−1 for some t ∈ |G|∗.
Let Monr

c(S) denote the category whose objects are continuous monads on CS and
morphisms are conjugacy classes of morphisms of monads.

2.4.2. Proposition The functor (1) induces an equivalence between the category
Monr

c(S) and the category AffS of affine schemes over S.

2.4.3. Example. Let S = Sp(R) for an associative ring R. Then the category
Monc(S) of monads on CS = R −mod is naturally equivalent to the category R\Rings
of associative rings over R. The conjugacy classes of monad morphisms correspond to
conjugacy classes of ring morphisms. Let Ass denote the category whose objects are
associative rings and morphisms the conjugacy classes of ring morphisms.

One deduces from 2.4.2 the following assertion:

2.4.3.1. Proposition. The category AffS of affine schemes over S = Sp(R) is
naturally equivalent to the category (R\Ass)op.

2.5. Descent: “covers”, comonads, and glueing.

2.5.1. Comonads associated with “covers”. Let {Ui
ui−→ X | i ∈ J} be a family

of continuous morphisms and u the corresponding morphism U =
∐
i∈J

Ui
u

−→ X with the

inverse image functor

CX

u∗

−−−→
∏
i∈J

CUi = CU , M �−→ (u∗i (M)|i ∈ J).

It follows that the family of inverse image functors {CX

u∗
i−→ CUi | i ∈ J} is conserva-

tive iff the functor u∗ is conservative.
Suppose that the category CX has products of |J | objects. Then the morphism

U =
∐
i∈J

Ui
u

−→ X is continuous: its direct image functor assigns to every object (Li|i ∈ J)

of the category CU =
∏
i∈J

CUi the product
∏
i∈J

u
i∗(Li).
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The adjunction morphism IdCX

ηu−→ u∗u
∗ assigns to each object M of CX the mor-

phism M −→
∏
i∈J

u
i∗u

∗
i (M) determined by adjunction arrows IdCX

ηui−→ u
i∗u

∗
i .

The adjunction morphism u∗u∗
εu−→ IdCU

assigns to each object L = (Li|i ∈ J) of CU

the morphism (εu,i(L)|i ∈ J), where

u∗i (
∏
j∈J

u
j∗(Lj))

εu,i(L)

−−−→ Li

is the composition of the image

u∗i (
∏
j∈J

u
j∗(Lj))

u∗
i (pi)

−−−→ u∗i ui∗(Li)

of the image of the projection pi and the adjunction arrow u∗iui∗(Li)
εui (Li)

−−−→ Li.

2.5.2. Beck’s theorem and glueing. Suppose that for each i ∈ J , the category
CUi has kernels of coreflexive pairs of arrows and the functor u∗i preserves them. Then the
inverse and direct image functors of the morphism u satisfy the conditions of Beck’s theo-
rem, hence the category CX is equivalent to the category of comodules over the comonad
Gu = (Gu, δu) = (u∗u∗, u

∗ηuu∗) associated with the choice of inverse and direct image

functors of u together with an adjunction morphism IdCX

ηu−→ u∗u
∗.

Recall that Gu-comodule is a pair (L, ζ), where L is an object of CU and ζ a morphism
L −→ Gu(L) such that εu(L)◦ ζ = idL and Gu(ζ)◦ ζ = δu(L)◦ ζ. Beck’s theorem says that
if the category CU has kernels of coreflexive pairs of arrows and the functor u∗ preserves

and reflects them, then the functor CX
ũ∗

−→ (U\Gu) − comod which assigns to each object
M of CX the Gu-comodule (u∗(M), δu(M)) is an equivalence of categories.

In terms of our local data – the “cover” {Ui
ui−→ X | i ∈ J}, a Gu-comodule (L, ζ) is

the data (Li, ζi|i ∈ J), where (Li|i ∈ J) = L and ζi is a morphism

Li −→ u∗i u∗(L) = u∗i (
∏
j∈J

u
j∗(Lj))

which equalizes the pair of arrows

u∗i u∗(L) = u∗i (
∏
j

u
j∗(Lj))

u∗
i
ηuu∗(L)

−−−−−−−→
−−−−−−−→
u∗
i
(u
j∗
ζj)

u∗i (
∏
m

u
m∗u

∗
m(

∏
j

u
j∗(Lj))) = u∗i u∗u

∗u∗(L)

and such that εu,i(L) ◦ ζi = idLi , i ∈ J.
The exactness of the diagram

L
ζ

−−−→ Gu(L)

δu(L)

−−−→
−−−→
Gu(ζ)

G2
u(L)
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is equivalent to the exactness of the diagram

Li

ζi
−−−→ u∗i (

∏
j∈J

u
j∗(Lj))

u∗
i
ηuu∗(L)

−−−−−−−→
−−−−−−−→
u∗
i
(u
j∗
ζj)

u∗i (
∏

m∈J

u
m∗u

∗
m(

∏
j∈J

u
j∗(Lj))) (1)

for every i ∈ J . If the functors u∗k preserve products of J objects (or just the products
involved into (1)), then the diagram (1) is isomorphic to the diagram

Li

ζi
−−−→

∏
j∈J

u∗iuj∗(Lj)

u∗
i
ηuu∗(L)

−−−−−−−→
−−−−−−−→
u∗
i
(u
j∗
ζj)

∏
j,m∈J

u∗i um∗u
∗
muj∗(Lj) (2)

2.5.3. Remark. The exactness of the diagram (1) might be viewed as a sort of sheaf
property. This interpretation looks more plausible (or less streched) when the diagram
(1) is isomorphic to the diagram (2), because u∗i uj∗(Lj) can be regarded as the section of
Lj over the ’intersection’ of Ui and Uj and u∗i um∗u

∗
muj∗(Lj) as the section of Lj over the

intersection of the elements Uj , Um, and Ui of the “cover”.

2.5.4. The condition of the continuity of the comonad associated with a

“cover”. Suppose that each direct image functor CUi

u
i∗−→ CX , i ∈ J, has a right adjoint,

u!
i; and let u! denote the functor CX −→ CU =

∏
i∈J

CUi which maps every object M to

(u!
i(M)|i ∈ J). If the category CX has coproducts of |J | objects, then the functor u! has

a left adjoint which maps every object (Li|i ∈ J) of CU to the coproduct
∐
i∈J

u
i∗(Li).

Therefore, if the canonical morphism
∐
i∈J

u
i∗(Li) −−−→

∏
i∈J

u
i∗(Li) is an isomorphism

for every object (Li|i ∈ J) of the category CU , then (and only then) the functor u! is a
right adjoint to the functor u∗.

In particular, u! is a right adjoint to u∗, if the category CX is additive and J is finite.

2.5.5. Note. If, in addition, the functors u
i∗ are conservative for all i ∈ J , then the

functor u∗ is conservative, and the category CU is equivalent to the category of modules
over the continuous monad Fu = (Fu, µh), where Fu = u∗u

∗ and µu = u∗εuu∗ for an

adjunction morphism u∗u∗
εu−→ IdCU

.

3. Some motivating examples.

3.1. Noncommutative schemes related with quantized enveloping algebras:
quantum flag variety and associated quantum D-scheme.

3.1.1. The base affine ’space’ and the flag variety of a reductive Lie algebra
from the point of view of noncommutative algebraic geometry. Let g be a reduc-
tive Lie algebra over C and U(g) the enveloping algebra of g. Let G be the group of integral
weights of g and G+ the semigroup of nonnegative integral weights. Let R = ⊕λ∈G+

Rλ,
where Rλ is the vector space of the (canonical) irreducible finite dimensional representation

8



with the highest weight λ. The module R is a G-graded algebra with the multiplication
determined by the projections Rλ ⊗Rν −→ Rλ+ν , for all λ, ν ∈ G+. It is well known that
the algebra R is isomorphic to the algebra of regular functions on the base affine space of
g. Recall that G/U , where G is a connected simply connected algebraic group with the
Lie algebra g, and U is its maximal unipotent subgroup.

The category CCone(R) is equivalent to the category of quasi-coherent sheaves on the
base affine space Y of the Lie algebra g. The category ProjG(R) is equivalent to the
category of quasi-coherent sheaves on the flag variety of g.

3.1.2. The quantized base affine ’space’ and quantized flag variety of a
semisimple Lie algebra. Let now g be a semisimple Lie algebra over a field k of zero
characteristic, and let Uq(g) be the quantized enveloping algebra of g. Define the G-graded
algebra R = ⊕λ∈G+

Rλ the same way as above. This time, however, the algebra R is not
commutative. Following the classical example (and identifying spaces with categories of
quasi-coherent sheaves on them), we call Cone(R) the quantum base affine ’space’ and
ProjG(R) the quantum flag variety of g.

3.1.2.1. Canonical affine covers of the base affine ’space’ and the flag va-
riety. Let W be the Weyl group of the Lie algebra g. Fix a w ∈ W . For any λ ∈ G+,
choose a nonzero w-extremal vector eλ

wλ generating the one dimensional vector subspace
of Rλ formed by the vectors of the weight wλ. Set Sw = {k∗eλ

wλ|λ ∈ G+}. It follows from

the Weyl character formula that eλ
wλe

µ
wµ ∈ k∗eλ+µ

w(λ+µ). Hence Sw is a multiplicative set.

It was proved by Joseph [Jo] that Sw is a left and right Ore subset in R. The Ore sets
{Sw|w ∈W} determine a conservative family of affine localizations

Sp(S−1
w R) −−−→ Cone(R), w ∈W, (4)

of the quantum base affine ’space’ and a conservative family of affine localizations

SpG(S−1
w R) −−−→ ProjG(R), w ∈W,

of the quantum flag variety. We claim that the category grGS
−1
w R − mod is naturally

equivalent to (S−1
w R)0 − mod. By 1.5, it suffices to verify that the canonical functor

grGS
−1
w R −mod −→ S−1

w R)0 −mod which assigns to every graded S−1
w R-module its zero

component is faithful; i.e. the zero component of every nonzero G-graded S−1
w R-module is

nonzero. This is, really, the case, because if z is a nonzero element of λ-component of a
G-graded S−1

w R-module, then (eλ
wλ)−1z is a nonzero element of the zero component of this

module.

3.2. Noncommutative Grassmannians. Fix an associative unital k-algebra R.
Let R\Algk be the category of associative k-algebras over R (i.e. pairs (S,R→ S), where
S is a k-algebra and R→ S a k-algebra morphism). We call them for convenience R-rings.
We denote by Re the k-algebra R ⊗k R

o. Here Ro is the algebra opposite to R.

3.2.1. The functor Gr
M,V

. Let M, V be left R-modules. Consider the functor,

Gr
M,V

: R\Algk −→ Sets, which assigns to any R-ring (S,R
s
→ S) the set of isomorphism

classes of epimorphisms s∗(M) −→ s∗(V ) (here s∗(M) = S ⊗R M) and to any R-ring
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morphism (S,R
s
→ S)

φ
−→ (T,R

t
→ T ) the map Gr

M,V
(S, s) −→ Gr

M,V
(T, t) induced by

the inverse image functor S −mod
φ∗

−→ T −mod, N �−→ T ⊗S N .

3.2.2. The functor G
M,V

. Denote by G
M,V

the functor R\Algk −→ Sets which

assigns to any R-ring (S,R
s
→ S) the set of pairs of morphisms s∗(V )

v
→ s∗(M)

u
→ s∗(V )

such that u◦v = ids∗(V ) and acts naturally on morphisms. Since V is a projective module,
the map

π = π
M,V

: G
M,V

−→ Gr
M,V

, (v, u) �−→ [u], (1)

is a (strict) functor epimorphism.

3.2.3. Relations. Denote by R
M,V

the ”functor of relations” G
M,V

×
Gr
M,V

G
M,V

. By

definition, R
M,V

is a subfunctor of G
M,V

×G
M,V

which assigns to each R-ring, (S,R
s
→ S),

the set of all 4-tuples (u1, v1; u2, v2) ∈ G
M,V

× G
M,V

such that the epimorphisms u1, u2

are equivalent. The latter means that there exists an isomorphism s∗(V )
ϕ

−→ s∗(V ) such
that u2 = ϕ ◦ u1, or, equivalently, ϕ−1 ◦ u2 = u1. Since ui ◦ vi = id, i = 1, 2, these
equalities imply that ϕ = u2 ◦ v1 and ϕ−1 = u1 ◦ v2. Thus, R

M,V
(S, s) is a subset of all

(u1, v1; u2, v2) ∈ G
M,V

(S, s) ×G
M,V

(S, s) satisfying the following relations:

u2 = (u2 ◦ v1) ◦ u1, u1 = (u1 ◦ v2) ◦ u2 (2)

in addition to the relations describing G
M,V

(S, s) ×G
M,V

(S, s):

u1 ◦ v1 = idS⊗RV = u2 ◦ v2 (3)

Denote by p1, p2 the canonical projections R
M,V

−−−→
−−−→ G

M,V
. It follows from the

surjectivity of G
M,V

−→ Gr
M,V

that the diagram

R
M,V

p1

−−−→
−−−→
p2

G
M,V

π
−−−→ Gr

M,V
(4)

is exact.

3.2.4. Proposition. If both M and V are projective modules of a finite type, then
the functors G

M,V
and R

M,V
are corepresentable.

Proof. See [KR2, 10.4.3].

3.2.5. Quasi-coherent presheaves on Gr
M,V

. Suppose that M and V are projec-
tive modules of a finite type, hence the functors G

M,V
and R

M,V
are corepresentable by

R-rings resp. (G
M,V

, R→ G
M,V

) and (R
M,V

, R→ R
M,V

). Then the category Qcoh(G
M,V

)
(resp. Qcoh(R

M,V
)) is equivalent to G

M,V
−mod (resp. R

M,V
−mod), and the category

Qcoh(Gr
M,V

) of quasi-coherent presheaves on Gr
M,V

is equivalent to the kernel of the
diagram

Qcoh(G
M,V

)

p∗
1

−−−→
−−−→
p∗
2

Qcoh(R
M,V

) (5)
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This means that, after identifying categories of quasi-coherent presheaves in (5) with cor-
responding categories of modules, quasi-coherent presheaves on Gr

M,V
can be realized as

pairs (L, φ), where L is a G
M,V

-module and φ is an isomorphism p∗1(L) ∼−→ p∗2(L). Mor-

phisms (L, φ) −→ (N,ψ) are given by morphisms L
g

−→ N such that the diagram

p∗1(L)
p∗
1(g)

−−−→ p∗1(N)

φ
⏐⏐�� �

⏐⏐� ψ

p∗2(L)
p∗
2(g)

−−−→ p∗2(N)

commutes. The functor

Qcoh(Gr
M,V

)
π∗

−−−→ Qcoh(G
M,V

), (L, φ) �−→ L,

is an inverse image functor of the projection G
M,V

π
−→ Gr

M,V
(see 3.2.3(4)).

3.2.6. Quasi-coherent presheaves on presheaves and sheaves of sets. Con-
sider the category Affk of affine k-schemes which we identify with the category of rep-
resentable functors on the category Algk of k-algebras, and the fibered category with the
base Affk whose fibers are categories of left modules over corresponding algebras. Let X

be a presheaf of sets on Affk. Then we have a fibered category Ãffk/X with the base
Affk/X induced by the forgetful functor Affk/X −→ Affk. The category Qcoh(X) of
quasi-coherent presheaves on X is the opposite to the category of cartesian sections of

Ãffk/X . Given a (pre)topology τ on Affk/X , we define the subcategory Qcoh(X, τ) of
quasi-coherent sheaves on (X, τ) [KR4].

3.2.7. Theorem ([KR4]). (a) A topology τ on Affk is subcanonical (i.e. all
representable presheaves are sheaves) iff Qcoh(X) = Qcoh(X, τ) for every presheaf of
sets X on Affk (in other words, ’descent’ topologies on Affk are precisely subcanonical
topologies). In this case, Qcoh(X) = Qcoh(X, τ) ↪→ Qcoh(Xτ ) = Qcoh(Xτ , τ), where Xτ

is the sheaf associated to X and ↪→ is a natural full embedding.
(b) If τ is a topology of effective descent [KR4] (e.g. the fpqc or smooth topology

[KR2]), then the categories Qcoh(X, τ) and Qcoh(Xτ ) are naturally equivalent.

This theorem says, roughly speaking, that the category Qcoh(X) of quasi-coherent
presheaves knows which topologies to choose. A topology that seems to be the most
plausible for Grassmannians, in particular, for NPn

k , is the smooth topology introduced
in [KR2]. It is of effective descent, and the category of quasi-coherent sheaves on NPn

k

defined in [KR1] is naturally equivalent to the category of quasi-coherent sheaves of the
projective space defined via smooth topology on Affk.
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