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Recall from last time:

The category Corfin∼(k)F : objects h(X) for X ∈ SmProj/k.

Morphisms (for X irreducible) are

HomCorfin∼(k)F
(X, Y ) := ZdX∼ (X × Y )F

with composition the composition of correspondences.

The category Corfin
∗
∼(k)F : objects are direct sums of h(X)(r),

for X ∈ SmProj/k, r ∈ Z. Morphisms (for X irreducible)

HomCorfin
∗
∼(k)F

(h(X)(r), h(Y )(s)) := ZdX+s−r∼ (X × Y )F

with composition as correspondences.
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The category of pure effective motives with F -coefficients is

Meff∼ (k)F := Corfin∼(k)�
F

We have L := (P1, P1 × 0) ∈ Meff∼ (k).

The category of pure motives with F -coefficients is

M∼(k)F := Corfin
∗
∼(k)�

F
∼= Meff∼ (k)F [L⊗−1].

These are all tensor categories (over F ). Meff∼ (k)F and M∼(k)F

are pseudo-abelian.
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Sending h(X) to h(X)(0) extends to a faithful embedding

i : Meff∼ (k)F → M∼(k)F .

Example. i(L) = 1(−1) = h(Spec k)(−1).

Sending X to h(X) or h(X)(0) gives symmetric monoidal func-

tors

h∼ : SmProj/kop → Meff∼ (k)F ; h∼ : SmProj/kop → M∼(k)F

For a Weil cohomology theory H∗, the functor H∗ : SmProj/kop →
Gr≥0VecK extends canonically to tensor functors

H∗ : Meff
hom(k)K → Gr≥0VecK; H∗ : Mhom(k)K → GrVecK

3



In M∼(k)F , each object M = (h(X)(r), α) has a dual:

(h(X)(r), α)∨ := (h(X)(dX − r), tα)

The unit 1 → M∨ ⊗ M and trace M ⊗ M∨ → 1 (for M = h(X))

are given by the diagonal

[∆X]∼ ∈ ZdX∼ (X × X) = HomM∼(k)(1, h(X)(dX) ⊗ h(X))

= HomM∼(k)(h(X) ⊗ h(X)(dX),1).

This makes M∼(k)F a rigid tensor category.
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Chow motives and numerical motives

If ∼�≈, the surjection Z∼ → Z≈ yields functors Corfin∼(k) →
Corfin≈(k), Corfin

∗
∼(k) → Corfin

∗
≈(k) and thus

Meff∼ (k) → Meff≈ (k); M∼(k) → M≈(k).

Thus the category of pure motives with the most information is
for the finest equivalence relation ∼=∼rat.

Set CHM(k)F := Mrat(k)F .

For example HomCHM(k)(1(−r), h(X)) = CHr(X).

The coarsest equivalence is ∼num, so Mnum(k) should be the
most simple category of motives.

Set NM(k)F := Mnum(k)F .
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Jannsen’s semi-simplicity theorem

Theorem (Jannsen) Fix F a field, charF = 0. NM(k)F is a
semi-simple abelian category. If M∼(k)F is semi-simple abelian,
then ∼=∼num.

Proof. d := dX. We show EndNM(k)F
(h(X)) = Zd

num(X2)F is a
finite dimensional semi-simple F -algebra for all X ∈ SmProj/k.
We may extend F , so can assume F = K is the coefficient field
for a Weil cohomology on SmProj/k.

Consider the surjection π : Zd
hom(X2)F → Zd

num(X2)F . Zd
hom(X2)F

is finite dimensional, so Zd
num(X2)F is finite dimensional.

Also, the radical N of Zd
hom(X2)F is nilpotent and it suffices to

show that π(N) = 0.
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Take f ∈ N. Then f ◦ tg is in N for all g ∈ Zd
hom(X2)F , and thus

f ◦ tg is nilpotent. Therefore

Tr(H+(f ◦ tg)) = Tr(H−(f ◦ tg)) = 0.

By the LTF

deg(f · g) = Tr(H+(f ◦ tg)) − Tr(H−(f ◦ tg)) = 0

hence f ∼num 0, i.e., π(f) = 0.
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Chow motives CHM(k)F has a nice universal property extend-
ing the one we have already described:

Theorem Giving a Weil cohomology theory H∗ on SmProj/k
with coefficient field K ⊃ F is equivalent to giving a tensor func-
tor

H∗ : CHM(k)F → GrVecK

with Hi(1(−1)) = 0 for i �= 2.

“Weil cohomology” � H∗ because ∼rat�∼H.

H∗ � Weil cohomology: 1(−1) is invertible and Hi(1(−1)) = 0
for i �= 2 =⇒ H2(P1) ∼= K.

h(X)∨ = h(X)(dX)� H∗(h(X)) is supported in degrees [0,2dX]

Rigidity of CHM(k)F � Poincaré duality.
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Adequate equivalence relations revisited

Definition Let C be an additive category. The Kelly radical R

is the collection

R(X, Y ) := {f ∈ HomC(X, Y ) | ∀g ∈ HomC(Y, X),1−gf is invertible}
R forms an ideal in C (subgroups I(X, Y ) ⊂ HomC(X, Y ) closed

under − ◦ g, g ◦ −).

Lemma C → C/R is conservative, and R is the largest such

ideal.

Note. If I ⊂ C is an ideal such that I(X, X) is a nil-ideal in

End(X) for all X, then I ⊂ R.
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Definition (C,⊗) a tensor category. A ideal I in C is a ⊗ ideal

if f ∈ I, g ∈ C ⇒ f ⊗ g ∈ I.

⊗ descends to C/I iff I is a tensor ideal. R is not in general a ⊗
ideal.

Theorem There is a 1-1 correspondence between adequate

equivalence relations on SmProj/k and proper ⊗ ideals in CHM(k)F :

M∼(k)F := (CHM(k)F/I∼)�.

In particular: Let N ⊂ CHM(k)Q be the tensor ideal defined by

numerical equivalence. Then N is the largest proper ⊗ ideal in

CHM(k)Q.
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Why mixed motives?

Pure motives describe the cohomology of smooth projective va-

rieties

Mixed motives should describe the cohomology of arbitrary vari-

eties.

Weil cohomology is replaced by Bloch-Ogus cohomology: Mayer-

Vietoris for open covers and a purity isomorphism for cohomology

with supports.
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An analog: Hodge structures

The cohomology Hn of a smooth projective variety over C has
a natural pure Hodge structure.

Deligne gave the cohomology of an arbitrary variety over C a
natural mixed Hodge structure.

The category of (polarizable) pure Hodge structures is a semi-
simple abelian rigid tensor category. The category of (polariz-
able) mixed Hodge structures is an abelian rigid tensor category,
but has non-trivial extensions. The semi-simple objects in MHS
are the pure Hodge structures.

MHS has a natural exact finite weight filtration on W∗M on each
object M , with graded pieces grWn M pure Hodge structures.
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There is a functor

RHdg : Schop
C → Db(MHS)

with RnHdg(X) = Hn(X) with its MHS, lifting the singular

cochain complex functor

C∗(−, Z) : Schop
C → Db(Ab).

In addition, all natural maps involving the cohomology of X: pull-

back, proper pushforward, boundary maps in local cohomology

or Mayer-Vietoris sequences, are maps of MHS.
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Beilinson’s conjectures

Beilinson conjectured that the semi-simple abelian category of
pure motives Mhom(k)Q should admit a full embedding as the
semi-simple objects in an abelian rigid tensor category of mixed
motives MM(k).

MM(k) should have the following structures and properties:

• a natural finite exact weight filtration W∗M on each M with
graded pieces grWn M pure motives.

• For σ : k → C a realization functor �σ : MM(k) → MHS
compatible with all the structures.

• A functor Rh : Schop
k → Db(MM(k)) such that �σ(Rnh(X)) is

Hn(X) as a MHS.
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• A natural isomorphism (Q(n)[2n] ∼= 1(n))

HomDb(MM(k))(Q, Rh(X)(q)[p]) ∼= K
(q)
2q−p(X),

in particular Extp
MM(k)(Q, Q(q)) ∼= K

(q)
2q−p(k).

• All “universal properties” of the cohomology of algebraic va-

rieties should be reflected by identities in Db(MM(k)) of the

objects Rh(X).
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Motivic sheaves

In fact, Beilinson views the above picture as only the story over

the generic point Spec k.

He conjectured further that there should be a system of cate-

gories of “motivic sheaves”

S �→ MM(S)

together with functors Rf∗, f∗, f ! and Rf!, as well as Hom and

⊗, all satisfying the yoga of Grothendieck’s six operations for the

categories of sheaves for the étale topology.

19



A partial success

The categories MM(k), MM(S) have not been constructed.

However, there are now a number of (equivalent) constructions
of triangulated tensor categories that satisfy all the structural
properties expected of the derived categories Db(MM(k)) and
Db(MM(S)), except those which exhibit these as a derived cat-
egory of an abelian category (t-structure).

There are at present various attempts to extend this to the tri-
angulated version of Beilinson’s vision of motivic sheaves over a
base S.

We give a discussion of the construction of various versions of
triangulated categories of mixed motives over k due to Voevod-
sky.
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Triangulated categories
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Translations and triangles

A translation on an additive category A is an equivalence T :
A → A. We write X[1] := T (X).

Let A be an additive category with translation. A triangle
(X, Y, Z, a, b, c) in A is the sequence of maps

X
a−→ Y

b−→ Z
c−→ X[1].

A morphism of triangles

(f, g, h) : (X, Y, Z, a, b, c) → (X ′, Y ′, Z′, a′, b′, c′)
is a commutative diagram

X
a−→ Y

b−→ Z
c−→ X[1]

f

⏐⏐⏐� g

⏐⏐⏐� h

⏐⏐⏐� f [1]

⏐⏐⏐�

X ′ −→
a′

Y ′ −→
b′

Z′ −→
c′

X ′[1].

22



Verdier has defined a triangulated category as an additive cate-

gory A with translation, together with a collection E of triangles,

called the distinguished triangles of A, which satisfy

TR1

E is closed under isomorphism of triangles.

A
id−→ A → 0 → A[1] is distinguished.

Each X
u−→ Y extends to a distinguished triangle

X
u−→ Y → Z → X[1]

TR2

X
u−→ Y

v−→ Z
w−→ X[1] is distinguished

⇔ Y
v−→ Z

w−→ X[1]
−u[1]−−−−→ Y [1] is distinguished
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TR3

Given a commutative diagram with distinguished rows

X
u−→ Y

v−→ Z
w−→ X[1]

f

⏐⏐⏐� g

⏐⏐⏐�

X ′ −→
u′ Y ′ −→

v′
Z′ −→

w′ X ′[1]

there exists a morphism h : Z → Z′ such that (f, g, h) is a mor-

phism of triangles:

X
u−→ Y

v−→ Z
w−→ X[1]

f

⏐⏐⏐� g

⏐⏐⏐� h

⏐⏐⏐�

⏐⏐⏐�f [1]

X ′ −→
u′ Y ′ −→

v′
Z′ −→

w′ X ′[1]
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TR4

If we have three distinguished triangles (X, Y, Z′, u, i, ∗), (Y, Z, X ′, v, ∗, j),
and (X, Z, Y ′, w, ∗, ∗), with w = v ◦ u, then there are morphisms

f : Z′ → Y ′, g : Y ′ → X ′ such that

• (idX, v, f) is a morphism of triangles

• (u, idZ, g) is a morphism of triangles

• (Z′, Y ′, X ′, f, g, i[1] ◦ j) is a distinguished triangle.
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A graded functor F : A → B of triangulated categories is called

exact if F takes distinguished triangles in A to distinguished tri-

angles in B.

Remark Suppose (A, T, E) satisfies (TR1), (TR2) and (TR3). If

(X, Y, Z, a, b, c) is in E, and A is an object of A, then the sequences

. . .
c[−1]∗−−−−→ HomA(A, X)

a∗−→ HomA(A, Y )
b∗−→

HomA(A, Z)
c∗−→ HomA(A, X[1])

a[1]∗−−−→ . . .

and

. . .
a[1]∗−−−→ HomA(X[1], A)

c∗−→ HomA(Z, A)
b∗−→

HomA(Y, A)
a∗−→ HomA(X, A)

c[−1]∗−−−−→ . . .

are exact.
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This yields:

• (five-lemma): If (f, g, h) is a morphism of triangles in E, and if

two of f, g, h are isomorphisms, then so is the third.

• If (X, Y, Z, a, b, c) and (X, Y, Z′, a, b′, c′) are two triangles in E,

there is an isomorphism h : Z → Z′ such that

(idX, idY , h) : (X, Y, Z, a, b, c) → (X, Y, Z′, a, b′, c′)

is an isomorphism of triangles.

If (TR4) holds as well, then E is closed under taking finite direct

sums.
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The main point

A triangulated category is a machine for generating natural long

exact sequences.
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An example Let A be an additive category, C?(A) the category
of cohomological complexes (with boundedness condition ? =
∅,+,−, b), and K?(A) the homotopy category.

For a complex (A, dA), let A[1] be the complex

A[1]n := An+1; dn
A[1] := −dn+1

A .

For a map of complexes f : A → B, we have the cone sequence

A
f−→ B

i−→ Cone(f)
p−→ A[1]

where Cone(f) := An+1 ⊕ Bn with differential

d(a, b) := (−dA(a), f(a) + dB(b))

i and p are the evident inclusions and projections.

We make K?(A) a triangulated category by declaring a triangle
to be exact if it is isomorphic to the image of a cone sequence.
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Tensor structure

Definition Suppose A is both a triangulated category and a

tensor category (with tensor operation ⊗) such that (X⊗Y )[1] =

X[1] ⊗ Y .

Suppose that, for each distinguished triangle (X, Y, Z, a, b, c), and

each W ∈ A, the sequence

X⊗W
a⊗idW−−−−→ Y ⊗W

b⊗idW−−−−→ Z⊗W
c⊗idW−−−−→ X[1]⊗W = (X⊗W )[1]

is a distinguished triangle. Then A is a triangulated tensor cat-

egory.
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Example If A is a tensor category, then K?(A) inherits a tensor

structure, by the usual tensor product of complexes, and be-

comes a triangulated tensor category. (For ? = ∅, A must admit

infinite direct sums).
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Thick subcategories

Definition A full triangulated subcategory B of a triangulated

category A is thick if B is closed under taking direct summands.

If B is a thick subcategory of A, the set of morphisms s : X → Y in

A which fit into a distinguished triangle X
s−→ Y −→ Z −→ X[1] with

Z in B forms a saturated multiplicative system of morphisms.

The intersection of thick subcategories of A is a thick subcate-

gory of A, So, for each set T of objects of A, there is a smallest

thick subcategory B containing T, called the thick subcategory

generated by T.
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Remark The original definition (Verdier) of a thick subcategory

had the condition:

Let X
f−→ Y −→ Z −→ X[1] be a distinguished triangle in A, with Z

in B. If f factors as X
f1−→ B′ f2−→ Y with B′ in B, then X and Y

are in B.

This is equivalent to the condition given above, that B is closed

under direct summands in A (cf. Rickard).
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Localization of triangulated categories

Let B be a thick subcategory of a triangulated category A. Let
S be the saturated multiplicative system of map A

s−→ B with
“cone” in B.

Form the category A[S−1] = A/B with the same objects as A,
with

HomA[S−1](X, Y ) = lim→
s:X ′→X∈S

HomA(X ′, Y ).

Composition of diagrams

Y ′ g
��

t
��

Z

X ′
f

��

s
��

Y

X
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is defined by filling in the middle

X ′′ f ′
��

s′ ��

Y ′ g
��

t
��

Z

X ′
f

��

s
��

Y

X.

One can describe HomA[S−1](X, Y ) by a calculus of left fractions

as well, i.e.,

HomA[S−1](X, Y ) = lim→
s:Y →Y ′∈S

HomA(X, Y ′).



Let QB : A → A/B be the canonical functor.

Theorem (Verdier) (i) A/B is a triangulated category, where

a triangle T in A/B is distinguished if T is isomorphic to the

image under QB of a distinguished triangle in A.

(ii) The functor QB is universal for exact functors F : A → C such

that F (B) is isomorphic to 0 for all B in B.

(iii) S is equal to the collection of maps in A which become

isomorphisms in A/B and B is the subcategory of objects of A

which becomes isomorphic to zero in A/B.
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Remark If A admits some infinite direct sums, it is sometimes

better to preserve this property. A subscategory B of A is called

localizing if B is thick and is closed under direct sums which exist

in A.

For instance, if A admits arbitrary direct sums and B is a local-

izing subcategory, then A/B also admits arbitrary direct sums.

Localization with respect to localizing subcategories has been

studied by Thomason and by Ne’eman.
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Localization of triangulated tensor categories If A is a tri-

angulated tensor category, and B a thick subcategory, call B a

thick tensor subcategory if A in A and B in B implies that A⊗B

and B ⊗ A are in B.

The quotient QB : A → A/B of A by a thick tensor subcategory

inherits the tensor structure, and the distinguished triangles are

preserved by tensor product with an object.
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Example The classical example is the derived category D?(A)
of an abelian category A. D?(A) is the localization of K?(A)
with respect to the multiplicative system of quasi-isomorphisms
f : A → B, i.e., f which induce isomorphisms Hn(f) : Hn(A) →
Hn(B) for all n.

If A is an abelian tensor category, then D−(A) inherits a tensor
structure ⊗L if each object A of A admits a surjection P → A

where P is flat, i.e. M �→ M ⊗ P is an exact functor on A. If
each A admits a finite flat (right) resolution, then Db(A) has a
tensor structure ⊗L as well. The tensor structure ⊗L is given by
forming for each A ∈ K?(A) a quasi-isomorphism P → A with P

a complex of flat objects in A, and defining

A ⊗L B := Tot(P ⊗ B).
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Geometric motives

Voevodsky constructs a number of categories: the category

of geometric motives DMgm(k) with its effective subcategory

DMeff
gm(k), as well as a sheaf-theoretic construction DMeff− , con-

taining DMeff
gm(k) as a full dense subcategory. In contrast to al-

most all other constructions, these are based on homology rather

than cohomology as the starting point, in particular, the motives

functor from Sm/k to these categories is covariant.
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Finite correspondences To solve the problem of the partially
defined composition of correspondences, Voevodsky introduces
the notion of finite correspondences, for which all compositions
are defined.

Definition Let X and Y be in Schk. The group c(X, Y ) is the
subgroup of z(X ×k Y ) generated by integral closed subschemes
W ⊂ X ×k Y such that

1. the projection p1 : W → X is finite

2. the image p1(W ) ⊂ X is an irreducible component of X.

The elements of c(X, Y ) are called the finite correspondences
from X to Y .
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The following basic lemma is easy to prove:

Lemma Let X, Y and Z be in Schk, W ∈ c(X, Y ), W ′ ∈ c(Y, Z).

Suppose that X and Y are irreducible. Then each irreducible

component C of |W |×Z∩X×|W ′| is finite over X and pX(C) = X.

Thus: for W ∈ c(X, Y ), W ′ ∈ c(Y, Z), we have the composition:

W ′ ◦ W := pXZ∗(p∗XY (W ) · p∗Y Z(W ′)),

This operation yields an associative bilinear composition law

◦ : c(Y, Z) × c(X, Y ) → c(X, Z).
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The category of finite correspondences

Definition The category Corfin(k) is the category with the
same objects as Sm/k, with

HomCorfin(k)
(X, Y ) := c(X, Y ),

and with the composition as defined above.

Remarks (1) We have the functor Sm/k → Corfin(k) sending
a morphism f : X → Y in Sm/k to the graph Γf ⊂ X ×k Y .

(2) We write the morphism corresponding to Γf as f∗, and the
object corresonding to X ∈ Sm/k as [X].

(3) The operation ×k (on smooth k-schemes and on cycles)
makes Corfin(k) a tensor category. Thus, the bounded homo-
topy category Kb(Corfin(k)) is a triangulated tensor category.
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The category of effective geometric motives

Definition The category D̂M
eff
gm(k) is the localization of Kb(Corfin(k)),

as a triangulated tensor category, by

• Homotopy. For X ∈ Sm/k, invert p∗ : [X × A1] → [X]

• Mayer-Vietoris. Let X be in Sm/k. Write X as a union of
Zariski open subschemes U, V : X = U ∪ V .

We have the canonical map

Cone([U ∩ V ]
(jU,U∩V ∗,−jV,U∩V ∗)−−−−−−−−−−−−−→ [U ] ⊕ [V ])

(jU∗+jV ∗)−−−−−−−→ [X]

since (jU∗ + jV ∗) ◦ (jU,U∩V ∗,−jV,U∩V ∗) = 0. Invert this map.

The category DMeff
gm(k) of effective geometric motives is the

pseudo-abelian hull of D̂M
eff
gm(k) (Balmer-Schlichting).
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The motive of a smooth variety

Let Mgm(X) be the image of [X] in DMeff
gm(k). Sending f : X →

Y to Mgm(f) := [Γf ] = f∗ defines

Meff
gm : Sm/k → DMeff

gm(k).

Note. DMeff
gm(k) is modeled on homology, so Meff

gm is a covariant

functor. In fact, Meff
gm is a symmetric monoidal functor.
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The category of geometric motives

To define the category of geometric motives we invert the Lef-

schetz motive.

For X ∈ Smk, the reduced motive (in Cb(Corfin(k))) is

[̃X] := Cone(p∗ : [X] → [Spec k])[−1].

If X has a k-point 0 ∈ X(k), then p∗i0∗ = id[Spec k] so

[X] = [̃X] ⊕ [Spec k]

and

[̃X] ∼= Cone(i0∗ : [Spec k] → [X])

in Kb(Corfin(k)).
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Write ˜Meff
gm(X) for the image of [̃X] in Meff

gm(k).

Set Z(1) := ˜Meff
gm(P1)[−2], and set Z(n) := Z(1)⊗n for n ≥ 0.

Thus Meff
gm(P1) = Z ⊕ Z(1)[2], Z := Mgm(Spec k) = Z(0). So

Z(1)[2] is like the Lefschetz motive.

Definition The category of geometric motives, DMgm(k), is

defined by inverting the functor ⊗Z(1) on DMeff
gm(k), i.e., for

r, s ∈ Z, M, N ∈ DMeff
gm(k),

HomDMgm(k)(M(r), N(s))

:= lim→
n

Hom
DMeff

gm(k)(M ⊗ Z(n + r), N ⊗ Z(n + s)).
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Remark In order that DMgm(k) be again a triangulated cate-

gory, it suffices that the commutativity involution Z(1)⊗Z(1) →
Z(1) ⊗ Z(1) be the identity, which is in fact the case.

Of course, there arises the question of the behavior of the evident

functor DMeff
gm(k) → DMgm(k). Here we have

Theorem (Cancellation) The functor i : DMeff
gm(k) → DMgm(k)

is a fully faithful embedding.

Let Mgm : Sm/k → DMgm(k) be i ◦ Meff
gm. Mgm(X) is the motive

of X.
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