

SMR/1840-19

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Mixed motives and triangulated categories of motives

Marc Levine Universitaet Duisburg-Essen, Germany

Recall from last time:

The category $\operatorname{Cor}_{fin_{\sim}}(k)_{F}$: objects h(X) for $X \in \operatorname{SmProj}/k$. Morphisms (for X irreducible) are

$$\operatorname{Hom}_{\operatorname{Cor}_{fin_{\sim}}(k)_{F}}(X,Y) := \mathcal{Z}_{\sim}^{d_{X}}(X \times Y)_{F}$$

with composition the composition of correspondences.

The category $\operatorname{Cor}_{fin_{\sim}^{*}}(k)_{F}$: objects are direct sums of h(X)(r), for $X \in \operatorname{SmProj}/k$, $r \in \mathbb{Z}$. Morphisms (for X irreducible)

 $\operatorname{Hom}_{\operatorname{Cor}_{fin_{\sim}^{*}}(k)_{F}}(h(X)(r), h(Y)(s)) := \mathcal{Z}_{\sim}^{d_{X}+s-r}(X \times Y)_{F}$ with composition as correspondences. The category of *pure effective motives* with *F*-coefficients is

$$M^{\text{eff}}_{\sim}(k)_F := \operatorname{Cor}_{fin_{\sim}}(k)_F^{\natural}$$

We have $\mathbb{L} := (\mathbb{P}^1, \mathbb{P}^1 \times 0) \in M^{\text{eff}}_{\sim}(k).$

The category of *pure motives* with *F*-coefficients is

$$M_{\sim}(k)_F := \operatorname{Cor}_{fin_{\sim}}^*(k)_F^{\natural} \cong M_{\sim}^{\mathsf{eff}}(k)_F[\mathbb{L}^{\otimes -1}].$$

These are all tensor categories (over *F*). $M^{\text{eff}}_{\sim}(k)_F$ and $M_{\sim}(k)_F$ are pseudo-abelian.

Sending h(X) to h(X)(0) extends to a faithful embedding

$$i: M^{\mathsf{eff}}_{\sim}(k)_F \to M_{\sim}(k)_F.$$

Example. $i(\mathbb{L}) = \mathbb{1}(-1) = h(\operatorname{Spec} k)(-1)$.

Sending X to h(X) or h(X)(0) gives symmetric monoidal functors

$$\mathfrak{h}_{\sim} : \mathbf{SmProj}/k^{\mathsf{op}} \to M^{\mathsf{eff}}_{\sim}(k)_F; \ \mathfrak{h}_{\sim} : \mathbf{SmProj}/k^{\mathsf{op}} \to M_{\sim}(k)_F$$

For a Weil cohomology theory H^* , the functor H^* : SmProj/ $k^{op} \rightarrow$ Gr^{≥ 0}Vec_K extends canonically to tensor functors

$$H^*: M_{\text{hom}}^{\text{eff}}(k)_K \to \text{Gr}^{\geq 0} \text{Vec}_K; \ H^*: M_{\text{hom}}(k)_K \to \text{GrVec}_K$$

In $M_{\sim}(k)_F$, each object $M = (h(X)(r), \alpha)$ has a dual:

$$(h(X)(r),\alpha)^{\vee} := (h(X)(d_X - r), {}^t\alpha)$$

The unit $1 \to M^{\vee} \otimes M$ and trace $M \otimes M^{\vee} \to 1$ (for $M = \mathfrak{h}(X)$) are given by the diagonal

$$\begin{aligned} [\Delta_X]_{\sim} \in \mathcal{Z}^{d_X}_{\sim}(X \times X) &= \operatorname{Hom}_{M_{\sim}(k)}(\mathbb{1}, \mathfrak{h}(X)(d_X) \otimes \mathfrak{h}(X)) \\ &= \operatorname{Hom}_{M_{\sim}(k)}(\mathfrak{h}(X) \otimes \mathfrak{h}(X)(d_X), \mathbb{1}). \end{aligned}$$

This makes $M_{\sim}(k)_F$ a rigid tensor category.

Chow motives and numerical motives

If $\sim \succ \approx$, the surjection $\mathcal{Z}_{\sim} \to \mathcal{Z}_{\approx}$ yields functors $\operatorname{Cor}_{fin_{\sim}}(k) \to \operatorname{Cor}_{fin_{\approx}^{*}}(k)$, $\operatorname{Cor}_{fin_{\sim}^{*}}(k) \to \operatorname{Cor}_{fin_{\approx}^{*}}(k)$ and thus $M_{\sim}^{\operatorname{eff}}(k) \to M_{\approx}^{\operatorname{eff}}(k); \ M_{\sim}(k) \to M_{\approx}(k).$

Thus the category of pure motives with the most information is for the finest equivalence relation $\sim = \sim_{rat}$.

Set $CHM(k)_F := M_{\mathsf{rat}}(k)_F$.

For example $\operatorname{Hom}_{CHM(k)}(\mathbb{1}(-r),\mathfrak{h}(X)) = \operatorname{CH}^{r}(X).$

The coarsest equivalence is \sim_{num} , so $M_{num}(k)$ should be the most simple category of motives.

Set $NM(k)_F := M_{num}(k)_F$.

Jannsen's semi-simplicity theorem

Theorem (Jannsen) Fix F a field, char F = 0. $NM(k)_F$ is a semi-simple abelian category. If $M_{\sim}(k)_F$ is semi-simple abelian, then $\sim = \sim_{\text{num}}$.

Proof. $d := d_X$. We show $\operatorname{End}_{NM(k)_F}(\mathfrak{h}(X)) = \mathbb{Z}_{\operatorname{num}}^d(X^2)_F$ is a finite dimensional semi-simple *F*-algebra for all $X \in \operatorname{SmProj}/k$. We may extend *F*, so can assume F = K is the coefficient field for a Weil cohomology on SmProj/k .

Consider the surjection $\pi : \mathcal{Z}^d_{\text{hom}}(X^2)_F \to \mathcal{Z}^d_{\text{num}}(X^2)_F$. $\mathcal{Z}^d_{\text{hom}}(X^2)_F$ is finite dimensional, so $\mathcal{Z}^d_{\text{num}}(X^2)_F$ is finite dimensional.

Also, the radical \mathcal{N} of $\mathcal{Z}^d_{\text{hom}}(X^2)_F$ is nilpotent and it suffices to show that $\pi(\mathcal{N}) = 0$.

Take $f \in \mathcal{N}$. Then $f \circ {}^tg$ is in \mathcal{N} for all $g \in \mathbb{Z}^d_{hom}(X^2)_F$, and thus $f \circ {}^tg$ is nilpotent. Therefore

$$Tr(H^+(f \circ {}^tg)) = Tr(H^-(f \circ {}^tg)) = 0.$$

By the LTF

$$\deg(f \cdot g) = Tr(H^+(f \circ {}^tg)) - Tr(H^-(f \circ {}^tg)) = 0$$

hence $f \sim_{\text{num}} 0$, i.e., $\pi(f) = 0$.

Chow motives $CHM(k)_F$ has a nice universal property extending the one we have already described:

Theorem Giving a Weil cohomology theory H^* on SmProj/k with coefficient field $K \supset F$ is equivalent to giving a tensor functor

 $H^*: CHM(k)_F \to \operatorname{GrVec}_K$

with $H^{i}(1(-1)) = 0$ for $i \neq 2$.

"Weil cohomology" $\rightsquigarrow H^*$ because $\sim_{\mathsf{rat}} \succ \sim_H$.

 $H^* \rightsquigarrow$ Weil cohomology: 1(-1) is invertible and $H^i(1(-1)) = 0$ for $i \neq 2 \implies H^2(\mathbb{P}^1) \cong K$.

 $\mathfrak{h}(X)^{\vee} = \mathfrak{h}(X)(d_X) \rightsquigarrow H^*(\mathfrak{h}(X))$ is supported in degrees $[0, 2d_X]$

Rigidity of $CHM(k)_F \rightsquigarrow$ Poincaré duality.

Adequate equivalence relations revisited

Definition Let \mathcal{C} be an additive category. The *Kelly radical* \mathcal{R} is the collection

 $\Re(X,Y) := \{ f \in \operatorname{Hom}_{\mathcal{C}}(X,Y) \mid \forall g \in \operatorname{Hom}_{\mathcal{C}}(Y,X), 1-gf \text{ is invertible} \}$

 \mathcal{R} forms an *ideal* in \mathcal{C} (subgroups $\mathcal{I}(X, Y) \subset \text{Hom}_{\mathcal{C}}(X, Y)$ closed under $- \circ g, g \circ -$).

Lemma $\mathcal{C} \to \mathcal{C}/\mathcal{R}$ is conservative, and \mathcal{R} is the largest such ideal.

Note. If $\mathcal{I} \subset \mathcal{C}$ is an ideal such that $\mathcal{I}(X, X)$ is a nil-ideal in End(X) for all X, then $\mathcal{I} \subset \mathcal{R}$.

Definition (\mathcal{C}, \otimes) a tensor category. A ideal \mathcal{I} in \mathcal{C} is a \otimes *ideal* if $f \in \mathcal{I}, g \in \mathcal{C} \Rightarrow f \otimes g \in \mathcal{I}$.

 \otimes descends to \mathcal{C}/\mathcal{I} iff \mathcal{I} is a tensor ideal. \mathcal{R} is *not* in general a \otimes ideal.

Theorem There is a 1-1 correspondence between adequate equivalence relations on SmProj/k and proper \otimes ideals in $CHM(k)_F$: $M_{\sim}(k)_F := (CHM(k)_F/\mathbb{J}_{\sim})^{\natural}.$

In particular: Let $\mathcal{N} \subset CHM(k)_{\mathbb{Q}}$ be the tensor ideal defined by numerical equivalence. Then \mathcal{N} is the largest proper \otimes ideal in $CHM(k)_{\mathbb{Q}}$.

Mixed motives and triangulated categories of motives

School on Algebraic *K*-theory and its applications ICTP-May 14-26, 2007

Marc Levine

Outline:

- Mixed motives
- Triangulated categories
- Geometric motives

Mixed motives

Why mixed motives?

Pure motives describe the cohomology of smooth projective varieties

Mixed motives should describe the cohomology of *arbitrary* varieties.

Weil cohomology is replaced by *Bloch-Ogus* cohomology: Mayer-Vietoris for open covers and a purity isomorphism for cohomology with supports.

An analog: Hodge structures

The cohomology H^n of a smooth projective variety over \mathbb{C} has a natural pure Hodge structure.

Deligne gave the cohomology of an arbitrary variety over \mathbb{C} a natural *mixed* Hodge structure.

The category of (polarizable) pure Hodge structures is a semisimple abelian rigid tensor category. The category of (polarizable) mixed Hodge structures is an abelian rigid tensor category, but has non-trivial extensions. The semi-simple objects in MHS are the pure Hodge structures.

MHS has a natural exact finite *weight filtration* on W_*M on each object M, with graded pieces gr_n^WM pure Hodge structures.

There is a functor

$$RHdg: \mathbf{Sch}^{\mathsf{op}}_{\mathbb{C}} \to D^b(MHS)$$

with $R^n H dg(X) = H^n(X)$ with its MHS, lifting the singular cochain complex functor

$$C^*(-,\mathbb{Z}) : \operatorname{Sch}^{\operatorname{op}}_{\mathbb{C}} \to D^b(\operatorname{Ab}).$$

In addition, all natural maps involving the cohomology of X: pullback, proper pushforward, boundary maps in local cohomology or Mayer-Vietoris sequences, are maps of MHS.

Beilinson's conjectures

Beilinson conjectured that the semi-simple abelian category of pure motives $M_{\text{hom}}(k)_{\mathbb{Q}}$ should admit a full embedding as the semi-simple objects in an abelian rigid tensor category of *mixed* motives MM(k).

MM(k) should have the following structures and properties:

• a natural finite exact weight filtration W_*M on each M with graded pieces $gr_n^W M$ pure motives.

• For $\sigma : k \to \mathbb{C}$ a *realization functor* $\Re_{\sigma} : MM(k) \to MHS$ compatible with all the structures.

• A functor $R\mathfrak{h} : \operatorname{Sch}_k^{\operatorname{op}} \to D^b(MM(k))$ such that $\Re_{\sigma}(R^n\mathfrak{h}(X))$ is $H^n(X)$ as a MHS.

• A natural isomorphism $(\mathbb{Q}(n)[2n] \cong \mathbb{1}(n))$

 $\operatorname{Hom}_{D^{b}(MM(k))}(\mathbb{Q}, R\mathfrak{h}(X)(q)[p]) \cong K^{(q)}_{2q-p}(X),$ in particular $\operatorname{Ext}^{p}_{MM(k)}(\mathbb{Q}, \mathbb{Q}(q)) \cong K^{(q)}_{2q-p}(k).$

• All "universal properties" of the cohomology of algebraic varieties should be reflected by identities in $D^b(MM(k))$ of the objects $R\mathfrak{h}(X)$.

Motivic sheaves

In fact, Beilinson views the above picture as only the story over the generic point $\operatorname{Spec} k$.

He conjectured further that there should be a system of categories of "motivic sheaves"

$$S \mapsto MM(S)$$

together with functors Rf_* , f^* , $f^!$ and $Rf_!$, as well as $\mathcal{H}om$ and \otimes , all satisfying the yoga of Grothendieck's six operations for the categories of sheaves for the étale topology.

A partial success

The categories MM(k), MM(S) have not been constructed.

However, there are now a number of (equivalent) constructions of *triangulated tensor categories* that satisfy all the structural properties expected of the derived categories $D^b(MM(k))$ and $D^b(MM(S))$, except those which exhibit these as a derived category of an abelian category (*t*-structure).

There are at present various attempts to extend this to the triangulated version of Beilinson's vision of motivic sheaves over a base S.

We give a discussion of the construction of various versions of triangulated categories of mixed motives over k due to Voevodsky.

Triangulated categories

Translations and triangles

A *translation* on an additive category \mathcal{A} is an equivalence T: $\mathcal{A} \to \mathcal{A}$. We write X[1] := T(X).

Let \mathcal{A} be an additive category with translation. A *triangle* (X, Y, Z, a, b, c) in \mathcal{A} is the sequence of maps

$$X \xrightarrow{a} Y \xrightarrow{b} Z \xrightarrow{c} X[1].$$

A morphism of triangles

$$(f,g,h): (X,Y,Z,a,b,c) \to (X',Y',Z',a',b',c')$$

is a commutative diagram

22

Verdier has defined a *triangulated category* as an additive category \mathcal{A} with translation, together with a collection \mathcal{E} of triangles, called the *distinguished triangles* of \mathcal{A} , which satisfy

TR1

 $\boldsymbol{\mathcal{E}}$ is closed under isomorphism of triangles.

 $A \xrightarrow{id} A \rightarrow 0 \rightarrow A[1]$ is distinguished.

Each $X \xrightarrow{u} Y$ extends to a distinguished triangle

$$X \xrightarrow{u} Y \to Z \to X[1]$$

TR2

 $\begin{array}{l} X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1] \text{ is distinguished} \\ \Leftrightarrow Y \xrightarrow{v} Z \xrightarrow{w} X[1] \xrightarrow{-u[1]} Y[1] \text{ is distinguished} \end{array}$

TR3

Given a commutative diagram with distinguished rows

there exists a morphism $h: Z \to Z'$ such that (f, g, h) is a morphism of triangles:

TR4

If we have three distinguished triangles (X, Y, Z', u, i, *), (Y, Z, X', v, *, j), and (X, Z, Y', w, *, *), with $w = v \circ u$, then there are morphisms $f : Z' \to Y'$, $g : Y' \to X'$ such that

- (id_X, v, f) is a morphism of triangles
- (u, id_Z, g) is a morphism of triangles
- $(Z', Y', X', f, g, i[1] \circ j)$ is a distinguished triangle.

A graded functor $F : \mathcal{A} \to \mathcal{B}$ of triangulated categories is called *exact* if F takes distinguished triangles in \mathcal{A} to distinguished triangles in \mathcal{B} .

Remark Suppose (A, T, \mathcal{E}) satisfies (TR1), (TR2) and (TR3). If (X, Y, Z, a, b, c) is in \mathcal{E} , and A is an object of \mathcal{A} , then the sequences

$$\cdots \xrightarrow{c[-1]_*} \operatorname{Hom}_{\mathcal{A}}(A, X) \xrightarrow{a_*} \operatorname{Hom}_{\mathcal{A}}(A, Y) \xrightarrow{b_*}$$
$$\operatorname{Hom}_{\mathcal{A}}(A, Z) \xrightarrow{c_*} \operatorname{Hom}_{\mathcal{A}}(A, X[1]) \xrightarrow{a[1]_*} \cdots$$

and

$$\cdots \xrightarrow{a[1]^*} \operatorname{Hom}_{\mathcal{A}}(X[1], A) \xrightarrow{c^*} \operatorname{Hom}_{\mathcal{A}}(Z, A) \xrightarrow{b^*}$$
$$\operatorname{Hom}_{\mathcal{A}}(Y, A) \xrightarrow{a^*} \operatorname{Hom}_{\mathcal{A}}(X, A) \xrightarrow{c[-1]^*} \cdots$$

are exact.

This yields:

- (five-lemma): If (f, g, h) is a morphism of triangles in \mathcal{E} , and if two of f, g, h are isomorphisms, then so is the third.
- If (X, Y, Z, a, b, c) and (X, Y, Z', a, b', c') are two triangles in \mathcal{E} , there is an isomorphism $h: Z \to Z'$ such that

$$(\mathrm{id}_X,\mathrm{id}_Y,h):(X,Y,Z,a,b,c)\to(X,Y,Z',a,b',c')$$

is an isomorphism of triangles.

If (TR4) holds as well, then \mathcal{E} is closed under taking finite direct sums.

The main point

A triangulated category is a machine for generating natural long exact sequences.

An example Let \mathcal{A} be an additive category, $C^{?}(\mathcal{A})$ the category of cohomological complexes (with boundedness condition ? = $\emptyset, +, -, b$), and $K^{?}(\mathcal{A})$ the homotopy category.

For a complex (A, d_A) , let A[1] be the complex

$$A[1]^n := A^{n+1}; \quad d^n_{A[1]} := -d^{n+1}_A.$$

For a map of complexes $f : A \rightarrow B$, we have the *cone sequence*

$$A \xrightarrow{f} B \xrightarrow{i} \text{Cone}(f) \xrightarrow{p} A[1]$$

where $Cone(f) := A^{n+1} \oplus B^n$ with differential

$$d(a,b) := (-d_A(a), f(a) + d_B(b))$$

i and p are the evident inclusions and projections.

We make $K^{?}(\mathcal{A})$ a triangulated category by declaring a triangle to be exact if it is isomorphic to the image of a cone sequence.

Tensor structure

Definition Suppose \mathcal{A} is both a triangulated category and a tensor category (with tensor operation \otimes) such that $(X \otimes Y)[1] = X[1] \otimes Y$.

Suppose that, for each distinguished triangle (X, Y, Z, a, b, c), and each $W \in A$, the sequence

 $X \otimes W \xrightarrow{a \otimes \mathrm{id}_W} Y \otimes W \xrightarrow{b \otimes \mathrm{id}_W} Z \otimes W \xrightarrow{c \otimes \mathrm{id}_W} X[1] \otimes W = (X \otimes W)[1]$ is a distinguished triangle. Then \mathcal{A} is a *triangulated tensor cat-egory*. **Example** If \mathcal{A} is a tensor category, then $K^{?}(\mathcal{A})$ inherits a tensor structure, by the usual tensor product of complexes, and becomes a triangulated tensor category. (For $? = \emptyset$, \mathcal{A} must admit infinite direct sums).

Thick subcategories

Definition A full triangulated subcategory \mathcal{B} of a triangulated category \mathcal{A} is *thick* if \mathcal{B} is closed under taking direct summands.

If \mathcal{B} is a thick subcategory of \mathcal{A} , the set of morphisms $s : X \to Y$ in \mathcal{A} which fit into a distinguished triangle $X \xrightarrow{s} Y \to Z \to X[1]$ with Z in \mathcal{B} forms a *saturated multiplicative system* of morphisms.

The intersection of thick subcategories of \mathcal{A} is a thick subcategory of \mathcal{A} , So, for each set \mathcal{T} of objects of \mathcal{A} , there is a smallest thick subcategory \mathcal{B} containing \mathcal{T} , called the thick subcategory *generated* by \mathcal{T} .

Remark The original definition (Verdier) of a thick subcategory had the condition:

Let $X \xrightarrow{f} Y \to Z \to X[1]$ be a distinguished triangle in \mathcal{A} , with Z in \mathcal{B} . If f factors as $X \xrightarrow{f_1} B' \xrightarrow{f_2} Y$ with B' in \mathcal{B} , then X and Y are in \mathcal{B} .

This is equivalent to the condition given above, that \mathcal{B} is closed under direct summands in \mathcal{A} (*cf.* Rickard).

Localization of triangulated categories

Let \mathcal{B} be a thick subcategory of a triangulated category \mathcal{A} . Let \mathcal{S} be the saturated multiplicative system of map $A \xrightarrow{s} B$ with "cone" in \mathcal{B} .

Form the category $\mathcal{A}[S^{-1}] = \mathcal{A}/\mathcal{B}$ with the same objects as \mathcal{A} , with

$$\operatorname{Hom}_{\mathcal{A}[\mathbb{S}^{-1}]}(X,Y) = \lim_{s:X'\to X\in\mathbb{S}}\operatorname{Hom}_{\mathcal{A}}(X',Y).$$

Composition of diagrams

$$\begin{array}{c} Y' \xrightarrow{g} Z \\ \downarrow t \\ X' \xrightarrow{f} Y \\ S \downarrow \\ X \end{array}$$

is defined by filling in the middle

One can describe $\text{Hom}_{\mathcal{A}[S^{-1}]}(X, Y)$ by a calculus of left fractions as well, i.e.,

$$\operatorname{Hom}_{\mathcal{A}[\mathbb{S}^{-1}]}(X,Y) = \lim_{s:Y \to Y' \in \mathbb{S}} \operatorname{Hom}_{\mathcal{A}}(X,Y').$$

Let $Q_{\mathcal{B}}: \mathcal{A} \to \mathcal{A}/\mathcal{B}$ be the canonical functor.

Theorem (Verdier) (i) \mathcal{A}/\mathcal{B} is a triangulated category, where a triangle T in \mathcal{A}/\mathcal{B} is distinguished if T is isomorphic to the image under $Q_{\mathcal{B}}$ of a distinguished triangle in \mathcal{A} .

(ii) The functor $Q_{\mathcal{B}}$ is universal for exact functors $F : \mathcal{A} \to \mathcal{C}$ such that F(B) is isomorphic to 0 for all B in \mathcal{B} .

(iii) \$ is equal to the collection of maps in A which become isomorphisms in A/B and B is the subcategory of objects of A which becomes isomorphic to zero in A/B.

Remark If \mathcal{A} admits some infinite direct sums, it is sometimes better to preserve this property. A subscategory \mathcal{B} of \mathcal{A} is called *localizing* if \mathcal{B} is thick and is closed under direct sums which exist in \mathcal{A} .

For instance, if A admits arbitrary direct sums and B is a localizing subcategory, then A/B also admits arbitrary direct sums.

Localization with respect to localizing subcategories has been studied by Thomason and by Ne'eman.

Localization of triangulated tensor categories If \mathcal{A} is a triangulated tensor category, and \mathcal{B} a thick subcategory, call \mathcal{B} a *thick tensor subcategory* if A in \mathcal{A} and B in \mathcal{B} implies that $A \otimes B$ and $B \otimes A$ are in \mathcal{B} .

The quotient $Q_{\mathcal{B}} : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ of \mathcal{A} by a thick tensor subcategory inherits the tensor structure, and the distinguished triangles are preserved by tensor product with an object.

Example The classical example is the *derived category* $D^?(\mathcal{A})$ of an abelian category \mathcal{A} . $\mathcal{D}^?(\mathcal{A})$ is the localization of $K^?(\mathcal{A})$ with respect to the multiplicative system of *quasi-isomorphisms* $f : A \to B$, i.e., f which induce isomorphisms $H^n(f) : H^n(\mathcal{A}) \to H^n(\mathcal{B})$ for all n.

If \mathcal{A} is an abelian tensor category, then $D^{-}(\mathcal{A})$ inherits a tensor structure \otimes^{L} if each object A of \mathcal{A} admits a surjection $P \to A$ where P is *flat*, i.e. $M \mapsto M \otimes P$ is an exact functor on \mathcal{A} . If each A admits a finite flat (right) resolution, then $D^{b}(\mathcal{A})$ has a tensor structure \otimes^{L} as well. The tensor structure \otimes^{L} is given by forming for each $A \in K^{?}(\mathcal{A})$ a quasi-isomorphism $P \to A$ with Pa complex of flat objects in \mathcal{A} , and defining

$$A \otimes^L B := \operatorname{Tot}(P \otimes B).$$

Geometric motives

Voevodsky constructs a number of categories: the category of geometric motives $DM_{gm}(k)$ with its effective subcategory $DM_{gm}^{eff}(k)$, as well as a sheaf-theoretic construction DM_{-}^{eff} , containing $DM_{gm}^{eff}(k)$ as a full dense subcategory. In contrast to almost all other constructions, these are based on *homology* rather than cohomology as the starting point, in particular, the motives functor from Sm/k to these categories is covariant.

Finite correspondences To solve the problem of the partially defined composition of correspondences, Voevodsky introduces the notion of *finite* correspondences, for which all compositions are defined.

Definition Let X and Y be in Sch_k . The group c(X, Y) is the subgroup of $z(X \times_k Y)$ generated by integral closed subschemes $W \subset X \times_k Y$ such that

1. the projection $p_1: W \to X$ is finite

2. the image $p_1(W) \subset X$ is an irreducible component of X.

The elements of c(X, Y) are called the *finite* correspondences from X to Y.

The following basic lemma is easy to prove:

Lemma Let X, Y and Z be in Sch_k , $W \in c(X, Y)$, $W' \in c(Y, Z)$. Suppose that X and Y are irreducible. Then each irreducible component C of $|W| \times Z \cap X \times |W'|$ is finite over X and $p_X(C) = X$.

Thus: for $W \in c(X, Y)$, $W' \in c(Y, Z)$, we have the composition:

$$W' \circ W := p_{XZ*}(p_{XY}^*(W) \cdot p_{YZ}^*(W')),$$

This operation yields an associative bilinear composition law

 \circ : $c(Y,Z) \times c(X,Y) \rightarrow c(X,Z)$.

The category of finite correspondences

Definition The category $Cor_{fin}(k)$ is the category with the same objects as Sm/k, with

$$\operatorname{Hom}_{\operatorname{Cor}_{fin}(k)}(X,Y) := c(X,Y),$$

and with the composition as defined above.

Remarks (1) We have the functor $\operatorname{Sm}/k \to \operatorname{Cor}_{fin}(k)$ sending a morphism $f: X \to Y$ in Sm/k to the graph $\Gamma_f \subset X \times_k Y$.

(2) We write the morphism corresponding to Γ_f as f_* , and the object corresonding to $X \in \text{Sm}/k$ as [X].

(3) The operation \times_k (on smooth *k*-schemes and on cycles) makes $\operatorname{Cor}_{fin}(k)$ a tensor category. Thus, the bounded homotopy category $K^b(\operatorname{Cor}_{fin}(k))$ is a triangulated tensor category.

The category of effective geometric motives

Definition The category $\widehat{DM}_{gm}^{eff}(k)$ is the localization of $K^b(Cor_{fin}(k))$, as a triangulated tensor category, by

- *Homotopy.* For $X \in \mathbf{Sm}/k$, invert $p_* : [X \times \mathbb{A}^1] \to [X]$
- *Mayer-Vietoris.* Let X be in Sm/k. Write X as a union of Zariski open subschemes U, V: $X = U \cup V$.

We have the canonical map

 $\operatorname{Cone}([U \cap V] \xrightarrow{(j_{U,U} \cap V^*, -j_{V,U} \cap V^*)} [U] \oplus [V]) \xrightarrow{(j_{U^*} + j_{V^*})} [X]$ since $(j_{U^*} + j_{V^*}) \circ (j_{U,U} \cap V^*, -j_{V,U} \cap V^*) = 0$. Invert this map.

The category $DM_{gm}^{eff}(k)$ of *effective geometric motives* is the pseudo-abelian hull of $\widehat{DM}_{gm}^{eff}(k)$ (Balmer-Schlichting).

The motive of a smooth variety

Let $M_{gm}(X)$ be the image of [X] in $DM_{gm}^{eff}(k)$. Sending $f: X \to Y$ to $M_{gm}(f) := [\Gamma_f] = f_*$ defines

$$M_{gm}^{\text{eff}}$$
 : $\mathbf{Sm}/k \to DM_{gm}^{\text{eff}}(k)$.

Note. $DM_{gm}^{eff}(k)$ is modeled on *homology*, so M_{gm}^{eff} is a covariant functor. In fact, M_{gm}^{eff} is a symmetric monoidal functor.

The category of geometric motives

To define the category of geometric motives we invert the Lefschetz motive.

For $X \in \mathbf{Sm}_k$, the *reduced motive* (in $C^b(\text{Cor}_{fin}(k))$) is

$$[X] := \operatorname{Cone}(p_* : [X] \to [\operatorname{Spec} k])[-1].$$

If X has a k-point $0 \in X(k)$, then $p_*i_{0*} = id_{[Spec k]}$ so

 $[X] = \widetilde{[X]} \oplus [\operatorname{Spec} k]$

and

$$\widetilde{[X]} \cong \operatorname{Cone}(i_{0*} : [\operatorname{Spec} k] \to [X])$$

in $K^b(\operatorname{Cor}_{fin}(k))$.

Write $M_{gm}^{eff}(X)$ for the image of $[\widetilde{X}]$ in $M_{gm}^{eff}(k)$.

Set
$$\mathbb{Z}(1) := M_{gm}^{eff}(\mathbb{P}^1)[-2]$$
, and set $\mathbb{Z}(n) := \mathbb{Z}(1)^{\otimes n}$ for $n \ge 0$.

Thus $M_{gm}^{eff}(\mathbb{P}^1) = \mathbb{Z} \oplus \mathbb{Z}(1)[2], \mathbb{Z} := M_{gm}(\operatorname{Spec} k) = \mathbb{Z}(0)$. So $\mathbb{Z}(1)[2]$ is like the Lefschetz motive.

Definition The category of *geometric motives*, $DM_{gm}(k)$, is defined by inverting the functor $\otimes \mathbb{Z}(1)$ on $DM_{gm}^{eff}(k)$, i.e., for $r, s \in \mathbb{Z}, M, N \in DM_{gm}^{eff}(k)$,

$$\operatorname{Hom}_{DM_{gm}(k)}(M(r), N(s))$$

:=
$$\lim_{n} \operatorname{Hom}_{DM_{gm}^{eff}(k)}(M \otimes \mathbb{Z}(n+r), N \otimes \mathbb{Z}(n+s)).$$

Remark In order that $DM_{gm}(k)$ be again a triangulated category, it suffices that the commutativity involution $\mathbb{Z}(1) \otimes \mathbb{Z}(1) \rightarrow \mathbb{Z}(1) \otimes \mathbb{Z}(1)$ be the identity, which is in fact the case.

Of course, there arises the question of the behavior of the evident functor $DM_{qm}^{\text{eff}}(k) \rightarrow DM_{qm}(k)$. Here we have

Theorem (Cancellation) The functor $i : DM_{gm}^{eff}(k) \to DM_{gm}(k)$ is a fully faithful embedding.

Let M_{gm} : $\mathbf{Sm}/k \to DM_{gm}(k)$ be $i \circ M_{gm}^{\text{eff}}$. $M_{gm}(X)$ is the *motive* of X.