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3 Lecture 3: Rost Motives

The material in this lecture is based on [W-ax], which is based on [MC/l].

We begin by giving the definition of a Rost variety. By a νn−1-variety over k we mean

a smooth projective variety X of dimension d = �n−1 − 1, with the degree of sd(X) being

�≡ 0 (mod �2); see [9, 1.20]. Here sd(X) is the characteristic class of the tangent bundle of

X corresponding to the symmetric polynomial Σ tdj in the Chern roots tj, see [RPO, 14.3].

Definition 3.1. A Rost variety for a sequence a = (a1, . . . , an) of units of k is a νn−1-variety

X satisfying:

(a) X splits a, i.e., a vanishes in KM
n (k(X))/�;

(b) For each i < n there is a νi-variety mapping to X;

(c) The following motivic homology sequence is exact (for R = Z):

H−1,−1(X ×X)
π∗
0
−π∗

1−→ H−1,−1(X) −→ H−1,−1(k) = k×

is exact. See 2.3.1 for the definition of H−1,−1 and the calculation that H−1,−1(k) = k×.

As mentioned in Lecture 1, Rost varieties exist for all n, � and a. When n = 1, Spec(L) is

a Rost variety for a when L = k ( �
√

a ). When n = 2, the Severi-Brauer variety corresponding

to the degree � division algebra with symbol a is a Rost variety for a.

In this lecture we write X for the simplicial Čech scheme Č(X) of Lecture 1, and ΣX for

its suspension i.e., the cone of X → Spec(k). Note that Hp,q(X, Z) ∼= Hp+1,q(ΣX, Z) when

p > q, as Hpq(k, Z) = 0 in this range. A transfer argument [W-ax, 2.3] shows that the

motivic cohomology groups H∗∗(ΣX, Z) have exponent �. Hence we have exact sequences

0→ Hp,q(ΣX, Z)→ Hp,q(ΣX, Z/�)
β̃−→Hp+1,q(ΣX, Z)→ 0.

By 3.1(b), Theorem 3.2 of [MC/2] translates to:
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Theorem 3.2. If i < n, the sequences
Qi−→H∗∗ (ΣX, Z/�)

Qi−→ are exact.

Proposition 3.3. (Voevodsky) The cohomology operations Q0 = β, Q = Qn−2 · · ·Q0 and

Qn−1Q are injections on Hn,n−1(X, Z/�), and restrict to injections

Hn,n−1(X, Z/�)
β−→Hn+1,n−1(X, Z)

Qn−2···Q1−−−−−−→ H2b+1,b(X, Z)
Qn−1−−−→ H2b�+2,b�+1(X, Z),

where b = b/�− 1 = 1 + � + · · ·+ �n−2. In particular, µ = Q(δ) ∈ H2b+1,b(X, Z) is nonzero.

Proof. It suffices to show that each Qi . . . Q0 is injective on the group Hn+1,n−1 (ΣX, Z/�) ∼=
Hn,n−1(X, Z/�). This follows from Theorem 3.2 and the observation in [MC/2, 6.9] that

Hp,q (ΣX, Z/�) = 0 when (p, q) is in the region q < n, p ≤ 1 + q.

Indeed, each Qi is injective on the group H∗∗ (ΣX) containing Qi−1 . . . Q1H
n+2,n (ΣX), be-

cause the preceeding term in Theorem 3.2 is zero. Figure 1 shows the case i = 2.
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Figure 1: The composition Q2Q1Q0 is an injection on Hn+1,n(ΣX)

The goal of Lectures 4-6 is to use µ ∈ H2b+1,b(X, Z) to construct a summand M of the motive

of the Rost variety X satisfying the following axioms.
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Rost motives 3.4. A Rost motive for a is a motive M with coefficients Z(�) satisfying:

(a) M is a direct summand of a Rost variety X, i.e., a Chow motive (X, e).

(b) The transpose M ′ = (X, et) is isomorphic to M via M ′ → X
p−→M , p being the

projection. Here M ′ → X is defined as M ′ = M∗ ⊗ L
d p∗⊗L

d

−→ X∗ ⊗ L
d ∼= X.

(c) There is a motive D related to the evident map y : M → X → X by two distinguished

triangles

D ⊗ L
b → M

y−→ X→ ,(3.4.1)

X⊗ L
d Dy−→ M → D → .(3.4.2)

Here Dy is the dual map X⊗L
d → L

d y∗

−→ M∗⊗L
d ∼= M , where the final isomorphism

comes from axiom (b).

In the rest of this lecture, we will assume that a Rost motive M exists for a, and use it

to verify the Bloch-Kato Conjecture. We will use without comment the standard fact that

if p > q then HomDM(Z, Rtr(Y )(q)[p]) = 0 for every smooth Y .

Lemma 3.5. The structure map H−1,−1(X)→ H−1,1(k) = k× is injective.

Proof. (Voevodsky) For all p and n ≥ 2, HomDM(Z, Xp(1)[n]) = 0 (as n > 1). Therefore

every row in the fourth quadrant spectral sequence

E1
pq = Hom(Z[q], Xp+1(1)) =⇒ Hom(Z, X(1)[p− q]) = Hq−p,−1(X)

is zero except for q = 0,−1. The homology at (p, q) = (0,−1) yields the exact sequence

0 ←−−− H−1,−1(X) ←−−− H−1,−1(X) ←−−− H−1,−1(X ×X).

The result follows from the homology exact sequence 3.1(c) of a Rost variety X.

Corollary 3.6. The structure map H−1,−1(M)
y−→H−1,−1(k) = k∗ is injective.
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Proof. By axiom 3.4(c), it suffices to observe that Hom(Z, D(b+1)[2b+1]) = 0. This follows

from the vanishing of both Hom(Z, M(b + 1)[2b + 1]) and Hom(Z, X⊗ L
b+d+1).

Lemma 3.7. H2d+1,d+1(D, Z) = 0.

Proof. Set (p, q) = (2d + 1, d + 1). From (3.4.2) we get an exact sequence

H0,1(X)→ Hp,q(D)→ Hp,q(M)
Dy−→ Hp,q(X⊗ L

d).

The first group is 0 because it equals H0,1(k, Z) = H−1
Zar(k,O×

X) = 0. Hence Hp,q(D) is the

kernel of Dy. But by axiom 3.4(b), for any u in H−1,−1(M) = Hom(Z, M(1)[1]) the dual of

Z(−1)[−1]
u−→ M

y−→ Z is an element of Hp,q(X⊗ L
d) represented by:

X⊗ L
d −−−→ L

d y∗

−−−→ M∗ ⊗ L
d u∗−−−→ Z(1)[1]⊗ L

d = Z(d + 1)[2d + 1].

Hence Dy : Hp,q(M) → Hp,q(X ⊗ L
d) may be identified with the given structural map

H−1,−1(M)
y−→ H−1,−1(k), and is an injection by 3.6. Hence Hp,q(D) = ker(Dy) = 0.

Proposition 3.8. Hn+1,n(X, Z) = 0.

Proof. In the cohomology sequence arising from (3.4.1),

H2b�+1,b�+1(D ⊗ L
b)→ H2b�+2,b�+1(X)→ H2b�+2,b�+1(M),

the first term is H2d+1,d+1(D) because b� = d + b, and it vanishes by 3.7. The third term is

a summand of H2b�+2,b�+1(X), which is zero because Hp,q(X) = 0 whenever p > d + q by the

Vanishing Theorem [4, 3.6]. Hence H2b�+2,b�+1(X, Z) = 0. By Proposition 3.3, ths implies

that Hn+1,n(X, Z) = 0.

Theorem 3.9. Hn+1
ét

(k, Z(n))→ Hn+1
ét

(k(X), Z(n)) is an injection.

As pointed out in Lecture 1 (Prop. 1.3), this establishes the Bloch-Kato conjecture for n.
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Proof. Set E = Spec k(X), and let L(n) denote the truncation τ ≤ n+1
Z

ét(n) of the complex

in DM representing étale motivic cohomology. Then Hn+1(E, L(n)) ∼= Hn+1
ét (E, Z(n)) and

Hn+1(X, L(n)) ∼= Hn+1
ét (X, Z(n)) ∼= Hn+1

ét (k, Z(n)).

Write K(n) for the cofiber of Z(n) → L(n). Then Spec(E) → X induces a commutative

diagram with exact rows:

0
3.8
= Hn+1,n(X, Z) −−−→ Hn+1(X, L(n)) −−−→ Hn+1(X, K(n))

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 = Hn+1,n(E, Z) −−−→ Hn+1(E, L(n)) −−−→ Hn+1(E, K(n)).

We have to prove that that the middle vertical is an injection. This will follow once we show

that the right vertical is an injection. Now Hn+1(X, K(n))→ Hn+1(E, K(n)) is an injection

by [4, 11.1, 13.8, 13.10], and Hn+1(M, K(n)) is a summand of the former group. It suffices

to show that y : M → X induces an injection on Hn+1(−, K(n)). By (3.4.1) it suffices to

show that Hn(D ⊗ L
b, K(n)) vanishes. By (3.4.2) we have an exact sequence

(3.9.1) Hn−1(X⊗ L
b+d, K(n))→ Hn(D ⊗ L

b, K(n))→ Hn(M ⊗ L
b, K(n)).

We are deduced to showing the outside terms vanish in (3.9.1). For this we invoke the

fact (proven in [MC/2, 6.12]) that H∗(Y (1), K(n)) = 0 for every smooth Y . Since M is

a summand of X by 3.4(a), this fact implies that Hn(M ⊗ L
b, K(n)) = 0 in (3.9.1). It

also implies that (for any m > 1) the spectral sequence E1
pq = Hq(Xp ⊗ L

m, K(n)) ⇒
Hp+1(X ⊗ L

m, K(n)) collapses, yielding Hn−1(X ⊗ L
m, K(n)) = 0. Thus the left term in

(3.9.1) also vanishes.

Remark 3.10. Markus Rost has proposed a construction of M in [R-BC]. He shows that

the element µ of Proposition 3.3 determines an equivalence class of summands (X, e) of the

Chow motive of X. By construction M = (X, e) satisfies axioms 3.4(a,b). I do not know if

it satisfies axiom 3.4(c).
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