
Lecture 3. First notions and facts of non-abelian homological algebra.

The preliminaries are dedicated to kernels of arrows of arbitrary categories with initial
objects. They are complemented by Appendix. In the treatment of non-abelian homo-
logical algebra, we adopt here an intermediate level of generality – right exact (instead of
fibred and cofibred) categories, which turns the main body of this text into an exercise on
satellites along the lines of [Gr], in which abelian categories are replaced by right (or left)
exact categories with initial (resp. final) objects. Finally, an analysis of obtained facts,
which leads to the notions of stable category of a left exact category and to the notions
of quasi-suspended and quasi-triangulated categories, is influenced by the philosophy of
[KeV] and [Ke1].

1. Preliminaries: kernels and cokernels of morphisms. Let CX be a category
with an initial object, x. For a morphism M

f−→ N we define the kernel of f as the upper
horizontal arrow in a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x −−−→ N

when the latter exists.
Cokernels of morphisms are defined dually, via a cocartesian square

N
c(f)
−−−→ Cok(f)

f
x cocart

x f ′

M −−−→ y

where y is a final object of CX .
If CX is a pointed category (i.e. its initial objects are final), then the notion of the

kernel is equivalent to the usual one: the diagram Ker(f)
k(f)
−−−→M

f

−−−→
−−−→

0

N is exact.

Dually, the cokernel of f makes the diagram M

f

−−−→
−−−→

0

N
c(f)
−−−→ Cok(f) exact.

1.1. Lemma. Let CX be a category with an initial object x.

(a) Let a morphism M
f−→ N of CX have a kernel. The canonical morphism

Ker(f)
k(f)
−−−→M is a monomorphism, if the unique arrow x

iN−→ N is a monomorphism.

(b) If M
f−→ N is a monomorphism, then x

iM−→M is the kernel of f .

Proof. The pull-backs of monomorphisms are monomorphisms.

1.2. Corollary. Let CX be a category with an initial object x. The following condi-
tions are equivalent:

1



(a) If M
f−→ N has a kernel, then the canonical arrow Ker(f)

k(f)
−−−→ M is a

monomorphism.
(b) The unique arrow x

iM−→M is a monomorphism for any M ∈ ObCX .

Proof. (a) ⇒ (b), because, by 1.1(b), the unique morphism x
iM−→ M is the kernel of

the identical morphism M −→M . The implication (b)⇒ (a) follows from 1.1(a).

1.3. Note. The converse assertion is not true in general: a morphism might have
a trivial kernel without being a monomorphism. It is easy to produce an example in the
category of pointed sets.

1.4. Examples.

1.4.1. Kernels of morphisms of unital k-algebras. Let CX be the category Algk
of associative unital k-algebras. The category CX has an initial object – the k-algebra k.
For any k-algebra morphism A

ϕ−→ B, we have a commutative square

A
ϕ

−−−→ B

k(ϕ)
x x

k ⊕K(ϕ)
ε(ϕ)
−−−→ k

where K(ϕ) denote the kernel of the morphism ϕ in the category of non-unital k-algebras
and the morphism k(ϕ) is determined by the inclusion K(ϕ) −→ A and the k-algebra
structure k −→ A. This square is cartesian. In fact, if

A
ϕ

−−−→ B

γ
x x
C

ψ
−−−→ k

is a commutative square of k-algebra morphisms, then C is an augmented algebra: C =
k⊕K(ψ). Since the restriction of ϕ ◦ γ to K(ψ) is zero, it factors uniquely through K(ϕ).

Therefore, there is a unique k-algebra morphism C = k ⊕K(ψ)
β−→ Ker(ϕ) = k ⊕K(ϕ)

such that γ = k(ϕ) ◦ β and ψ = ε(ϕ) ◦ β.
This shows that each (unital) k-algebra morphism A

ϕ−→ B has a canonical kernel
Ker(ϕ) equal to the augmented k-algebra corresponding to the ideal K(ϕ).

It follows from the description of the kernel Ker(ϕ)
k(ϕ)
−−−→ A that it is a monomor-

phism iff the k-algebra structure k −→ A is a monomorphism.

Notice that cokernels of morphisms are not defined in Algk, because this category
does not have final objects.

1.4.2. Kernels and cokernels of maps of sets. Since the only initial object of the
category Sets is the empty set ∅ and there are no morphisms from a non-empty set to ∅, the
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kernel of any map X −→ Y is ∅ −→ X. The cokernel of a map X
f−→ Y is the projection

Y
c(f)
−−−→ Y/f(X), where Y/f(X) is the set obtained from Y by the contraction of f(X)

into a point. So that c(f) is an isomorphism iff either X = ∅, or f(X) is a one-point set.

1.4.3. Presheaves of sets. Let CX be a svelte category and C∧
X the category of

non-trivial presheaves of sets on CX (that is we exclude the trivial presheaf which assigns
to every object of CX the empty set). The category C∧

X has a final object which is the
constant presheaf with values in a one-element set. If CX has a final object, y, then
ŷ = CX(−, y) is a final object of the category C∧

X . Since C∧
X has small colimits, it has

cokernels of arbitrary morphisms which are computed object-wise, that is using 1.4.2.
If the category CX has an initial object, x, then the presheaf x̂ = CX(−, x) is an

initial object of the category C∧
X . In this case, the category C∧

X has kernels of all its

morphisms (because C∧
X has limits) and the Yoneda functor CX

h−→ C∧
X preserves kernels.

Notice that the initial object of C∧
X is not isomorphic to its final object unless the

category CX is pointed, i.e. initial objects of CX are its final objects.

1.5. Some properties of kernels. See Appendix.

2. Right exact categories and (right) ’exact’ functors. We define a right exact
category as a pair (CX ,EX), where CX is a category and EX is a pretopology on CX
whose covers are strict epimorphisms; that is for any element M −→ L of E (– a cover),
the diagram M ×LM −→−→ M −→ L is exact. This requirement means precisely that the
pretopology EX is subcanonical; i.e. every representable presheaf of sets on CX is a sheaf.
We call the elements of EX deflations and assume that all isomorphisms are deflations.

2.1. The coarsest and the finest right exact structures. The coarsest right ex-
act structure on a category CX is the discrete pretopology: the class of deflations coincides
with the class Iso(CX) of all isomorphisms of the category CX .

Let Es
X denote the class of all universally strict epimorphisms of CX ; i.e. elements of

Es
X are strict epimorphisms M e−→ N such that for any morphism Ñ

f−→ N , there exists
a cartesian square

M̃
f̃

−−−→ M

ẽ
y cart

y e

Ñ
f

−−−→ N

whose left vertical arrow is a strict epimorphism. It follows that Es
X is the finest right

exact structure on the category CX . We call this structure standard.
If CX is an abelian category or a topos, then Es

X consists of all epimorphisms.
If CX is a quasi-abelian category, then Es

X consists of all strict epimorphisms.

2.2. Right ’exact’ and ’exact’ functors. Let (CX ,EX) and (CY ,EY ) be right
exact categories. A functor CX

F−→ CY will be called right ’exact’ (resp. ’exact’) if it
maps deflations to deflations and for any deflation M

e−→ N of EX and any morphism
Ñ

f−→ N , the canonical arrow F (Ñ ×NM) −−−→ F (Ñ)×F (N)F (M) is a deflation (resp.
an isomorphism).
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In other words, the functor F is ’exact’ if it maps deflations to deflations and preserves
pull-backs of deflations.

2.3. Weakly right ’exact’ and weakly ’exact’ functors. A functor CX
F−→ CY

is called weakly right ’exact’ (resp. weakly ’exact’) if it maps deflations to deflations and for
any arrow M −→ N of EX , the canonical morphism F (M ×N M) −→ F (M)×F (N) F (M)
is a deflation (resp. an isomorphism). In particular, weakly ’exact’ functors are weakly
right ’exact’.

2.4. Note. Of cause, ’exact’ (resp. right ’exact’) functors are weakly ’exact’ (resp.
weakly right ’exact’). In the additive (actually a more general) case, weakly ’exact’ functors
are ’exact’ (see 2.7 and 2.7.2).

2.5. Interpretation: ’spaces’ represented by right exact categories. Weakly
right ’exact’ functors will be interpreted as inverse image functors of morphisms between
’spaces’ represented by right exact categories. We consider the category Espw

r whose
objects are pairs (X,EX), where (CX ,EX) is a svelte right exact category. A morphism
from (X,EX) to (Y,EY ) is a morphism of ’spaces’ X

ϕ−→ Y whose inverse image functor

CY
ϕ∗−→ CX is a weakly right ’exact’ functor from (CY ,EY ) to (CX ,EX). The map which

assigns to every ’space’ X the pair (X, Iso(CX)) is a full embedding of the category |Cat|o
of ’spaces’ into the category Espw

r . This full embedding is a right adjoint functor to the
forgetful functor

Espw
r −−−→ |Cat|o, (X,EX) 7−→ X.

2.5.1. Proposition. Let (CX ,EX) and (CY ,EY ) be additive right exact categories
and CX

F−→ CY an additive functor. Then
(a) The functor F is weakly right ’exact’ iff it maps deflations to deflations and the

sequence

F (Ker(e)) −−−→ F (M)
F (e)
−−−→ F (N) −−−→ 0

is exact for any deflation M
e−→ N .

(b) The functor F is weakly ’exact’ iff it maps deflations to deflations and the sequence

0 −−−→ F (Ker(e)) −−−→ F (M)
F (e)
−−−→ F (N) −−−→ 0

is ’exact’ for any deflation M
e−→ N .

Proof. See A.2(b).

2.6. Conflations and fully exact subcategories of a right exact category.
Fix a right exact category (CX ,EX) with an initial object x. We denote by EX the class
of all sequences of the form K

k−→M
e−→ N , where e ∈ EX and K k−→M is a kernel of e.

Expanding the terminology of exact additive categories, we call such sequences conflations.

2.6.1. Fully exact subcategories of a right exact category. We call a full
subcategory B of CX a fully exact subcategory of the right exact category (CX ,EX), if B
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contains the initial object x and is closed under extensions; i.e. if objects K and N in a
conflation K k−→M

e−→ N belong to B, then M is an object of B.
In particular, fully exact subcategories of (CX ,EX) are strictly full subcategories.

2.6.2. Proposition. Let (CX ,EX) be a right exact category with an initial object x
and B its fully exact subcategory. Then the class EX,B of all deflations M

e−→ N such
that M, N, and Ker(e) are objects of B is a structure of a right exact category on B such
that the inclusion functor B −→ CX is an ’exact’ functor (B,EX,B) −→ (CX ,EX).

Proof. The argument is an application of facts of Appendix.

2.6.3. Remark. Let (CX ,EX) be a right exact category with an initial object x and
B its strictly full subcategory containing x. Let E be a right exact structure on B such
that the inclusion functor B J−→ CX maps deflations to deflations and preserves kernels
of deflations. Then E is contained in EX,B. In particular, E is contained in EX,B if the
inclusion functor is an ’exact’ functor from (B,E) to (CX ,EX). This shows that if B is
a fully exact subcategory of (CX ,EX), then EX,B is the finest right exact structure on B
such that the inclusion functor B −→ CX is an exact functor from (B,EX,B) to (CX ,EX).

2.7. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories and F a
functor CX −→ CY which maps conflations to conflations. Suppose that the category CY
is additive. Then the functor F is ’exact’.

2.7.1. Corollary. Let (CX ,EX) and (CY ,EY ) be additive k-linear right exact cate-
gories and F an additive functor CX −→ CY . Then the functor F is weakly ’exact’ iff it
is ’exact’.

Proof. By 2.5.1, a k-linear functor CX
F−→ CY is a weakly ’exact’ iff it maps conflations

to conflations. The assertion follows now from 2.7.

2.7.2. The property (†). In Proposition 2.7, the assumption that the category CY
is additive is used only at the end of the proof (part (b)). Moreover, additivity appears
there only because it garantees the following property:

(†) if the rows of a commutative diagram

L̃ −−−→ M̃ −−−→ Ñy y y
L −−−→ M −−−→ N

are conflations and its right and left vertical arrows are isomorphisms, then the middle
arrow is an isomorphism.

So that the additivity of CY in 2.7 can be replaced by the property (†) for (CY ,EY ).

2.7.3. An observation. The following obvious observation helps to establish the
property (†) for many non-additive right exact categories:

If (CX ,EX) and (CY ,EY ) are right exact categories and CX
F−→ CY is a conservative

functor which maps conflations to conflations, then the property (†) holds in (CX ,EX)
provided it holds in (CY ,EY ).

5



2.7.3.1. Example. Let (CY ,EY ) are right exact k-linear category, (CX ,EX) a
right exact category, and CX

F−→ CY is a conservative functor which maps conflations to
conflations. Then the property (†) holds in (CX ,EX).

For instance, the property (†) holds for the right exact category (Algk,Es) of associa-
tive unital k-algebras with strict epimorphisms as deflations, because the forgetful functor
Algk

f∗−→ k −mod is conservative, maps deflations to deflations (that is to epimorphisms)
and is left exact. Therefore, it maps conflations to conflations.

2.8. Proposition. (a) Let (CX ,EX) be a svelte right exact category. The Yoneda

embedding induces an ’exact’ fully faithful functor (CX ,EX)
j∗X
−−−→ (CXE

,Es
XE

), where
CXE

is the category of sheaves of sets on the presite (CX ,EX) and Es
XE

the family of all
universally strict epimorphisms of CXE

(– the standard structure of a right exact category).

(b) Let (CX ,EX) and (CY ,EY ) be right exact categories and (CX ,EX)
ϕ∗

−−−→ (CY ,EY )

a weakly right ’exact’ functor. There exists a functor CXE

ϕ̃∗

−−−→ CYE
such that the diagram

CX
ϕ∗

−−−→ CY
j∗X

y y j∗Y

CXE

ϕ̃∗

−−−→ CYE

(1)

quasi commutes, i.e. ϕ̃∗j∗X ' j∗Y ϕ
∗. The functor ϕ̃∗ is defined uniquely up to isomorphism

and has a right adjoint, ϕ̃∗.

Proof. (a) Since the right exact structure EX of CX is a subcanonical pretopology,
the Yoneda embedding takes values in the category CXE

of sheaves on (CX ,EX), hence
it induces a full embedding of CX into CXE

which preserves all small limits and maps
deflations to deflations. In particular it is an ’exact’ functor from (CX ,EX) to (CXE

,Es
XE

).
(b) Every weakly right exact functor (CX ,EX) −→ (CY ,EY ) determines a continuous

(i.e. having a right adjoint) functor between the categories of presheaves of sets, which is
compatible with the sheafification functor, hence determines uniquely a continuous functor
between the corresponding categories of sheaves making commute the diagram (1).

2.9. Application: right exact additive categories and exact categories.

2.9.1. Proposition. Let (CX ,EX) be an additive k-linear right exact category.
Then there exists an exact category (CXe ,EXe) and a fully faithful k-linear ’exact’ functor

(CX ,EX)
γ∗X
−−−→ (CXe ,EXe) which is universal; that is any ’exact’ k-linear functor from

(CX , EX) to an exact k-linear category factorizes uniquely through γ∗X .

Proof. We take as CXe the smallest fully exact subcategory of the category CXE
of

sheaves of k-modules on (CX ,EX) containing all representable sheaves. Objects of the
category CXe are sheaves F such that there exists a finite filtration

0 = F0 −→ F1 −→ . . . −→ Fn = F
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such that Fm/Fm−1 is representable for 1 ≤ m ≤ n. The subcategory CXe , being a fully
exact subcategory of an abelian category, is exact. The remaining details are left as an
exercise.

3. Satellites in right exact categories.

3.1. Preliminaries: trivial morphisms, pointed objects, and complexes. Let
CX be a category with initial objects. We call a morphism of CX trivial if it factors through
an initial object. It follows that an object M is initial iff id

M
is a trivial morphism. If CX

is a pointed category, then the trivial morphisms are usually called zero morphisms.

3.1.1. Trivial compositions and pointed objects. If the composition of arrows
L

f−→M
g−→ N is trivial, i.e. there is a commutative square

L
f

−−−→ M

ξ
y y g

x
iN
−−−→ N

where x is an initial object, and the morphism g has a kernel, then f is the composition of

the canonical arrow Ker(g)
k(g)−→ M and a morphism L

fg−→ Ker(g) uniquely determined
by f and ξ. If the arrow x

iN−→ N is a monomorphism, then the morphism ξ is uniquely
determined by f and g ; therefore in this case, the arrow fg does not depend on ξ.

3.1.1.1. Pointed objects. In particular, fg does not depend on ξ, if N is a pointed
object. The latter means that therre exists an arrow N −→ x.

3.1.2. Complexes. A sequence of arrows

. . .
fn+1

−−−→Mn+1

fn

−−−→Mn

fn−1

−−−→Mn−1

fn−2

−−−→ . . . (1)

is called a complex if each its arrow has a kernel and the next arrow factors uniquely
through this kernel.

3.1.3. Lemma. Let each arrow in the sequence

. . .
f3
−−−→M3

f2
−−−→M2

f1
−−−→M1

f0
−−−→M0 (2)

of arrows have a kernel and the composition of any two consecutive arrows is trivial. Then

. . .
f4
−−−→M4

f3
−−−→M3

f2
−−−→M2 (3)

is a complex. If M0 is a pointed object, then (2) is a complex.

Proof. The objects Mi are pointed for i ≥ 2, which implies that (Ker(fi)
k(fi)−→ Mi+1

are monomorphisms for all i ≥ 2, hence) (3) is a complex (see 3.1.1).
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3.1.4. Corollary. A sequence of morphisms

. . .
fn+1

−−−→Mn+1

fn

−−−→Mn

fn−1

−−−→Mn−1

fn−2

−−−→ . . .

unbounded on the right is a complex iff the composition of any pair of its consecutive arrows
is trivial and for every i, there exists a kernel of the morphism fi.

3.1.5. Example. Let CX be the category Algk of unital associative k-algebras. The
algebra k is its initial object, and every morphism of k-algebras has a kernel. Pointed
objects of CX which have a morphism to initial object are precisely augmented k-algebras.
If the composition of pairs of consecutive arrows in the sequence

. . .
f3
−−−→ A3

f2
−−−→ A2

f1
−−−→ A1

f0
−−−→ A0

is trivial, then it follows from the argument of 3.1.2 that Ai is an augmented k-algebra for
all i ≥ 2. And any unbounded on the right sequence of algebras with trivial compositions
of pairs of consecutive arrows is formed by augmented algebras.

3.1.6. ’Exact’ complexes. Let (CX , EX) be a right exact category with an initial

object. We call a sequence of two arrows L
f−→ M

g−→ N in CX ’exact’ if the arrow g

has a kernel, and f is the composition of Ker(g)
k(g)−→M and a deflation L

fg−→ Ker(g). A
complex is called ’exact’ if any pair of its consecutive arrows forms an ’exact’ sequence.

3.2. ∂∗-functors. Fix a right exact category (CX ,EX) with an initial object x and
a category CY with an initial object. A ∂∗-functor from (CX , EX) to CY is a system of
functors CX

Ti−→ CY , i ≥ 0, together with a functorial assignment to every conflation

E = (N j−→ M
e−→ L) and every i ≥ 0 a morphism Ti+1(L)

di(E)
−−−→ Ti(N) which depends

functorially on the conflation E and such that the sequence of arrows

. . .
T2(e)
−−−→ T2(L)

d1(E)
−−−→ T1(N)

T1(j)
−−−→ T1(M)

T1(e)
−−−→ T1(L)

d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

is a complex. Taking the trivial conflation x −→ x −→ x, we obtain that Ti(x)
idTi(x)

−−−→ Ti(x)
is a trivial morphism, or, equivalently, Ti(x) is an initial object, for every i ≥ 1.

Let T = (Ti, di| i ≥ 0) and T ′ = (T ′i , d
′
i| i ≥ 0) be a pair of ∂∗-functors from (CX , EX)

to CY . A morphism from T to T ′ is a family f = (Ti
fi−→ T ′i | i ≥ 0) of functor morphisms

such that for any conflation E = (N j−→ M
e−→ L) of the exact category CX and every

i ≥ 0, the diagram

Ti+1(L)
di(E)
−−−→ Ti(N)

fi+1(L)
y y fi(N)

T ′i+1(L)
d′i(E)

−−−→ T ′i (N)
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commutes. The composition of morphisms is naturally defined. Thus, we have the category
Hom∗((CX ,EX), CY ) of ∂∗-functors from (CX , EX) to CY .

3.2.1. Trivial ∂∗-functors. We call a ∂∗-functor T = (Ti, di| i ≥ 0) trivial if all
Ti are functors with values in initial objects. One can see that trivial ∂∗-functors are
precisely initial objects of the category Hom∗((CX ,EX), CY ). Once an initial object y of
the category CY is fixed, we have a canonical trivial functor whose components equal to
the constant functor with value in y – it maps all arrows of CX to idy.

3.2.2. Some natural functorialities. Let (CX ,EX) be a right exact category with
an initial object and CY a category with initial object. If CZ is another category with an
initial object and CY

F−→ CZ a functor which maps initial objects to initial objects, then
for any ∂∗-functor T = (Ti, di| i ≥ 0), the composition F ◦ T = (F ◦ Ti, Fdi| i ≥ 0) of T
with F is a ∂∗-functor. The map (F, T ) 7−→ F ◦ T is functorial in both variables; i.e. it
extends to a functor

Cat∗(CY , CZ)×Hom∗((CX ,EX), CY ) −−−→ Hom∗((CX ,EX), CZ). (1)

Here Cat∗ denotes the subcategory of Cat whose objects are categories with initial objects
and morphisms are functors which map initial objects to initial objects.

On the other hand, let (CX,EX) be another right exact category with an initial object
and Φ a functor CX −→ CX which maps conflations to conflations. In particular, it maps

initial objects to initial objects (because if x is an initial object of CX, then x −→M
id

M−→M

is a conflation; and Φ(x −→ M
id

M−→ M) being a conflation implies that Φ(x) is an initial
object). For any ∂∗-functor T = (Ti, di| i ≥ 0) from (CX ,EX) to CY , the composition
T ◦Φ = (Ti ◦Φ, diΦ| i ≥ 0) is a ∂∗-functor from (CX,EX) to CY . The map (T,Φ) 7−→ T ◦Φ
extends to a functor

Hom∗((CX ,EX), CY )× Ex∗((CX,EX), (CX ,EX)) −−−→ Hom∗((CX,EX), CY ), (2)

where Ex∗((CX,EX), (CX ,EX)) denotes the full subcategory of Hom(CX, CX) whose ob-
jects are preserving conflations functors CX −→ CX .

3.3. Universal ∂∗-functors. Fix a right exact category (CX ,EX) with an initial
object x and a category CY with an initial object y.

A ∂∗-functor T = (Ti, di| i ≥ 0) from (CX , EX) to CY is called universal if for every ∂∗-
functor T ′ = (T ′i , d

′
i| i ≥ 0) from (CX , EX) to CY and every functor morphism T ′0

g−→ T0,

there exists a unique morphism f = (T ′i
fi−→ Ti | i ≥ 0) from T ′ to T such that f0 = g.

3.3.1. Interpretation. Consider the functor

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY ) (3)

which assigns to every ∂∗-functor (resp. every morphism of ∂∗-functors) its zero compo-
nent. For any functor CX

F−→ CY , we have a presheaf of sets Hom(Ψ∗(−), F ) on the
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category Hom∗((CX ,EX), CY ). Suppose that this presheaf is representable by an object
(i.e. a ∂∗-functor) Ψ∗(F ). Then Ψ∗(F ) is a universal ∂∗-functor.

Conversely, if T = (Ti, di| i ≥ 0) is a universal ∂∗-functor, then T ' Ψ∗(T0).

3.3.2. Proposition. Let (CX ,EX) be a right exact category with an initial object x;
and let CY be a category with initial objects, kernels of morphisms, and limits of filtered
systems. Then, for any functor CX

F−→ CY , there exists a unique up to isomorphism
universal ∂∗-functor T = (Ti, di| i ≥ 0) such that T0 = F .

In other words, the functor

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY ) (3)

which assigns to each morphism of ∂∗-functors its zero component has a right adjoint, Ψ∗.

Proof. For an arbitrary functor CX
F−→ CY , we set

S−(F )(L) = limKer(F (k(e))),

where the limit is taken by the (filtered) system of all deflations M e−→ L. Since deflations

form a pretopology, the map L 7−→ S−(F )(L) extends naturally to a functor CX
S−(F )

−−−→ CY .
By the definition of S−(F ), for any conflation E = (N j−→M

e−→ L), there exists a unique

morphism S−(F )(L)
∂̃0

F
(E)

−−−→ Ker(F (j)). We denote by ∂0
F (E) the composition of ∂̃0

F (E)
and the canonical morphism Ker(F (j)) −→ F (N).

Notice that the correspondence F 7−→ S−(F ) is functorial. Applying the iterations of
the functor S− to F , we obtain a ∂∗-functor S•−(F ) = (Si−(F )|i ≥ 0). This ∂∗-functor is
universal.

3.3.3. Remark. Let the assumptions of 3.3.2 hold. Then we have a pair of adjoint
functors

Hom∗((CX ,EX), CY )
Ψ∗

−−−→ Hom(CX , CY )
Ψ∗
−−−→ Hom∗((CX ,EX), CY )

By 3.3.2, the adjunction morphism Ψ∗Ψ∗ −→ Id is an isomorphism which means that Ψ∗
is a fully faithful functor and Ψ∗ is a localization functor at a left multiplicative system.

3.3.4. Proposition. Let (CX ,EX) be a right exact category with an initial object and
T = (Ti, di | i ≥ 0) a ∂∗-functor from (CX , EX) to CY . Let CZ be another category with
an initial object and F a functor from CY to CZ which preserves initial objects, kernels of
morphisms and limits of filtered systems. Then

(a) If T is a universal ∂∗-functor, then F ◦ T = (F ◦ Ti, Fdi| i ≥ 0) is universal.
(b) If, in addition, the functor F is fully faithful, then the ∂∗-functor F ◦T is universal

iff T is universal.

Proof. (a) Since the functor F preserves kernels of morphisms and filtered limits (that
is all types of limits which appear in the construction of S−(G)(L)), the natural morphism

F ◦ S−(G)(L) −→ S−(F ◦G)(L)
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is an isomorphism for any functor CX
G−→ CY such that S−(G)(L) = limKer(G(k(e))) ex-

ists. Therefore, the natural morphism F ◦Si−(T0)(L) −→ Si−(F ◦T0)(L) is an isomorphism
for all i ≥ 0 and all L ∈ ObCX .

(b) By (a), we have a functor isomorphism F ◦Ti+1
∼−→ F ◦S−(Ti) for all i ≥ 0. Since

the functor F is fully faithful, this isomorphism is the image of a uniquely determined
isomorphism Ti+1

∼−→ S−(Ti). The assertion follows now from (the argument of) 3.3.2.
Details are left as an exercise.

3.3.5. An application. Let (CX ,EX) be a right exact category and CY a category.
We assume that both categories, CX and CY have initial objects. Consider the Yoneda
embedding

CY
hY

−−−→ C∧
Y , M 7−→ M̂ = CY (−,M).

of the category CY into the category C∧
Y of presheaves of sets on CY . The functor hY is

fully faithful and preserves all limits. In particular, it satisfies the conditions of 3.3.4(b).
Therefore, a ∂∗-functor T = (Ti, di | i ≥ 0) from (CX , EX) to CY is universal iff the
∂∗-functor T̂ def= hY ◦ T = (T̂i, d̂i | i ≥ 0) from (CX , EX) to C∧

Y is universal.
Since the category C∧

Y has all limits (and colimits), it follows from 3.3.2 that, for
any functor CX

G−→ C∧
Y , there exists a unique up to isomorphism universal ∂∗-functor

T = (Ti, di| i ≥ 0) = Ψ∗(G) whose zero component coincides with G. In particular, for
every functor CX

F−→ CY , there exists a unique up to isomorphism universal ∂∗-functor
T = (Ti, di | i ≥ 0) from (CX ,EX) such that T0 = hY ◦ F = F̃ . It follows from 3.3.4(b)
that a universal ∂∗-functor whose zero component coincides with F exists if and only if
for all L ∈ ObCX and all i ≥ 1, the presheaves of sets Ti(L) are representable.

3.3.6. Remark. Let (CX ,EX) be a svelte right exact category with an initial object
x and CY a category with an initial object y and limits. Then, by the argument of 3.3.2,
we have an endofunctor S− of the category Hom(CX , CY ) of functors from CX to CY ,
together with a cone S−

λ−→ y, where y is the constant functor with the values in the
initial object y of the category CY . For any conflation E = (N j−→M

e−→ L) of (CX ,EX)
and any functor CX

F−→ CY , we have a commutative diagram

S−F (L)
λ(L)
−−−→ y

d0(E)
y y

F (N)
F j
−−−→ F (M)

F e
−−−→ F (L)

3.4. The dual picture: ∂-functors and universal ∂-functors. Let (CX , IX) be
a left exact category, which means by definition that (CopX , I

op
X ) is a right exact category.

A ∂-functor on (CX , IX) is the data which becomes a ∂∗-functor in the dual right exact
category. A ∂-functor on (CX , IX) is universal if its dualization is a universal ∂∗-functor.
We leave to the reader the reformulation in the context of ∂-functors of all notions and
facts about ∂∗-functors.
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3.5. Universal ∂∗-functors and ’exactness’.

3.5.1. The properties (CE5) and (CE5∗). Let (CX ,EX) be a right exact category.
We say that it satisfies (CE5∗) (resp. (CE5)) if the limit of a filtered system (resp. the
colimit of a cofiltered system) of conflations in (CY ,EY ) exists and is a conflation.

In particular, if (CX ,EX) satisfies (CE5∗) (resp. (CE5)), then the limit of any filtered
system (resp. the colimit of any cofiltered system) of deflations is a deflation.

The properties (CE5) and (CE5∗) make sense for left exact categories as well. Notice
that a right exact category satisfies (CE5∗) (resp. (CE5)) iff the dual left exact category
satisfies (CE5) (resp. (CE5∗)).

3.5.2. Note. If (CX ,EX) is an abelian category with the standard exact structure,
then the property (CE5) for (CX ,EX) is equivalent to the Grothendieck’s property (AB5)
and, therefore, the property (CE5∗) is equivalent to (AB5∗) (see [Gr, 1.5]).

The property (CE5) holds for Grothendieck toposes.

In what follows, we use (CE5∗) for right exact categories and the dual property (CE5)
for left exact categories.

3.5.3. Proposition. Let (CX ,EX), (CY ,EY ) be right exact categories, and (CY ,EY )
satisfy (CE5∗). Let F be a weakly right ’exact’ functor (CX ,EX) −→ (CY ,EY ) such that
S−(F ) exists. Then for any conflation E = (N j−→M

e−→ L) in (CX ,EX), the sequence

S−(F )(N)
S−(F )(j)

−−−→ S−(F )(M)
S−(F )(e)

−−−→ S−(F )(L)
d0(E)
−−−→ F (N)

F (j)
−−−→ F (M) (1)

is ’exact’. The functor S−(F ) is a weakly right ’exact’ functor from (CX ,EX) to (CY ,EY ).

3.5.4. ’Exact’ ∂∗-functors and universal ∂∗-functors. Fix right exact categories
(CX ,EX) and (CY ,EY ), both with initial objects. A ∂∗-functor T = (Ti, di| i ≥ 0) from
(CX ,EX) to CY is called ’exact’ if for every conflation E = (N j−→M

e−→ L) in (CX ,EX),
the complex

. . .
T2(e)
−−−→ T2(L)

d1(E)
−−−→ T1(N)

T1(j)
−−−→ Ti(M)

T1(e)
−−−→ T1(L)

d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

is ’exact’.

3.5.4.1. Proposition. Let (CX ,EX), (CY ,EY ) be right exact categories. Suppose
that (CY ,EY ) satisfies (CE5∗). Let T = (Ti| i ≥ 0) be a universal ∂∗-functor from
(CX ,EX) to (CY ,EY ). If the functor T0 is right ’exact’, then the universal ∂∗-functor T
is ’exact’.

Proof. If T0 is right ’exact’, then, by 3.5.3, the functor T1 ' S−(T0) is right ’exact’
and for any conflation E = (N j−→M

e−→ L), the sequence

T1(N)
T1(j)
−−−→ T1(M)

T1(e)
−−−→ T1(L)

d0(E)
−−−→ T0(N)

T0(j)
−−−→ T0(M)

is ’exact’. Since Tn+1 = S−(Tn), the assertion follows from 3.5.3 by induction.
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3.5.4.2. Corollary. Let (CX ,EX) be a right exact category. For each object L of
CX , the ∂-functor Ext•X(L) = (ExtiX(L) | i ≥ 0) is ’exact’.

Suppose that the category CX is k-linear. Then for each L ∈ ObCX , the ∂-functor
Ext•X(L) = (ExtiX(L) | i ≥ 0) is ’exact’.

Proof. In fact, the ∂-functor Ext•X(L) is universal by definition (see 3.4.1), and the
functor Ext0X(L) = CX(−, L) is left exact. In particular, it is left ’exact’.

If CX is a k-linear category, then the universal ∂-functors Ext•X(L), L ∈ ObCX , with
the values in the category of k-modules (defined in 3.4.2) are ’exact’ by a similar reason.

4. Coeffaceable functors, universal ∂∗-functors, and pointed projectives.

4.1. Projectives and projective deflations. Fix a right exact category (CX ,EX).
We call an object P of CX projective if every deflation M −→ P splits. Equivalently, any
morphism P

f−→ N factors through any deflation M e−→ N .
We denote by PEX

the full subcategory of CX generated by projective objects.

4.1.1. Example. Let (CX ,EX) be a right exact category whose deflations split.
Then every object of CX is a projective object of (CX ,EX).

A deflation M −→ L is called projective if it factors through any deflation of L.
Any deflation P −→ L with P projective is a projective deflation. On the other hand,

an object P is projective iff the identical morphism P −→ P is a projective deflation.

4.2. Coeffaceble functors and projectives. Let (CX ,EX) be a right exact cate-
gory and CY a category with an initial object. We call a functor CX

F−→ CY coeffaceable,
or EX-coeffaceable, if for any object L of CX , there exists a deflation M

t−→ L such that
F (t) is a trivial morphism.

It follows that if a functor CX
F−→ CY is EX -coeffaceable, then it maps all projectives

to initial objects and all projective deflations to trivial arrows.
So that if the right exact category (CX ,EX) has enough projective deflations (resp.

enough projectives), then a functor CX
F−→ CY is EX -coeffaceable iff F (e) is trivial for

any projective deflation e (resp. F (M) is an initial object for every projective object M).

4.3. Proposition. Let (CX ,EX) be a right exact category with initial objects and
T = (Ti, di | i ≥ 0) a universal ∂∗-functor from (CX ,EX) to CY . Then Ti(P ) is an initial
object for any pointed projective object P and for all i ≥ 1.

4.3.1. Corollary. Let (CX ,EX) be a right exact category with initial objects and
T = (Ti, di | i ≥ 0) a universal ∂∗-functor from (CX ,EX) to CY . Suppose that (CX ,EX)
has enough projectives and projectives of (CX ,EX) are pointed objects. Then the functors
Ti are coeffaceable for all i ≥ 1.

Proof. The assertion follows from 4.3 and 4.2.

4.4. Proposition. Let (CX ,EX) and (CY ,EY ) be right exact categories with initial
objects; and let T = (Ti, di| i ≥ 0) be an ’exact’ ∂∗-functor from (CX , EX) to (CY ,EY ).

If the functors Ti are EX-coeffaceable for i ≥ 1, then T is a universal ∂∗-functor.
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Proof. The argument is similar to the proof in [Gr] of the corresponding assertion for
abelian categories.

4.5. Proposition. Let (CX ,EX), (CY ,EY ), and (CZ ,EZ) be right exact categories.
Suppose that (CX ,EX) has enough projectives and CY has kernels of all morphisms. If
T = (Ti| i ≥ 0) is a universal, ’exact’ ∂∗-functor from (CX ,EX) to (CY ,EY ) and F a
functor from (CY ,EY ) to (CZ ,EZ) which respects conflations, then the composition F ◦T =
(F ◦ Ti| i ≥ 0) is a universal ’exact’ ∂∗-functor.

Proof. Under the conditions of the proposition, the composition F ◦ T is an ’exact’
functor such that the functors F ◦Ti, i ≥ 1, map pointed projectives of (CX ,EX) to trivial
objects (because Ti map pointed projectives to trivial objects by 4.3 and F maps trivial
objects to trivial objects). Since there are enough pointed projectives (hence all projectives
are pointed), this implies that the functors F ◦ Ti are coeffaceable for i ≥ 1. Therefore, by
4.4, F ◦ T is a universal ∂∗-functor.

4.6. Sufficient conditions for having enough pointed projectives.

4.6.1. Proposition. Let (CX ,EX) and (CZ ,EZ) be right exact categories and

CZ
f∗−→ CX a functor having a right adjoint f∗. Suppose that f∗ maps deflations of

the form N −→ f∗(M) to deflations and the adjunction arrow f∗f∗(M)
ε(M)
−−−→ M is a

deflation for all M (which is the case if any morphism t of CX such that f∗(t) is a split
epimorphism belongs to EX). Let (CZ ,EZ) have enough projectives, and all projectives are
pointed objects. Then each projective of (CX ,EX) is a pointed object.

If, in addition, f∗ maps deflations to deflations, then (CX ,EX) has enough projectives.

4.6.2. Note. The conditions of 4.6.1 can be replaced by the requirement that if
N −→ f∗(M) is a deflation, then the corresponding morphism f∗(N) −→M is a deflation.
This requirement follows from the conditions of 4.6.1, because the morphism f∗(N) −→M

corresponding to N
t−→ f∗(M) is the composition of f∗(t) and the adjunction arrow

f∗f∗(M)
ε(M)
−−−→M .

4.6.3. Example. Let (CX ,EX) be the category Algk of associative k-algebras en-
dowed with the standard (that is the finest) right exact structure. This means that class
EX of deflations coincides with the class of all are strict epimorphisms of k-algebras. Let
(CY ,EY ) be the category of k-modules with the standard exact structure, and f∗ the for-
getful functor Algk −→ k −mod. Its left adjoint, f∗ preserves strict epimorphisms, and
the functor f∗ preserves and reflects deflations; i.e. a k-algebra morphism t is a strict epi-
morphism iff f∗(t) is an epimorphism. In particular, the adjunction arrow f∗f∗(A) −→ A
is a strict epimorphism for all A. By 4.6.1, (CX ,EX) has enough projectives and each
projective has a morphism to the initial object k; that is each projective has a structure
of an augmented k-algebra.

4.7. Acyclic objects and the universality of ∂∗-functors. Given a ∂∗-functor
T = (Ti| i ≥ 0) from a right exact category (CX ,EX) to a category CY , we call an object
M of CX T -acyclic if Ti(M) is a trivial object for all i ≥ 1.
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4.7.1. Proposition. Let (CA,EA) and (CX ,EX) be right exact categories with initial
objects and CA

G−→ CX a functor which preserves conflations. Let T = (Ti| i ≥ 0) be an
’exact’ ∂∗-functor from (CX ,EX) to a category CZ with initial objects. If there are enough
objects M of CX such that G(M) is a T -acyclic object, then T ◦G is a universal ∂∗-functor.

Proof. Since the functor G maps conflation to conflations, and the ∂∗-functor T is
’exact’, its composition T ◦ G is an ’exact’ ∂∗-functor. Since there are enough objects in
CA which the functor G maps to acyclic objects (i.e. for each object L of CA, there is a
deflation M −→ L such that G(M) is T -acyclic), the functor Ti ◦ G is effaceable for all
i ≥ 1. Therefore, by 4.6, the composition T ◦G is a universal ∂∗-functor.

5. Universal problems for universal ∂∗- and ∂-functors.

5.1. The categories of universal ∂∗- and ∂-functors. Fix a right exact svelte
category (CX ,EX) with an initial object. Let ∂∗Un(X,EX) denote the category whose
objects are universal ∂∗-functors from (CX ,EX) to categories CY (with initial objects).
Let T be a universal ∂∗- functor from (CX ,EX) to CY and T̃ a universal ∂∗- functor from
(CX ,EX) to CZ . A morphism from T to T ′ is a pair (F, φ), where F is a functor from CY to
CZ and φ is a ∂∗-functor isomorphism F ◦T ∼−→ T ′. If (F ′, φ′) is a morphism from T ′ to T ′′,
then the composition of (F, φ) and (F ′, φ′) is defined by (F ′, φ′)◦(F, φ) = (F ′ ◦F, φ′ ◦F ′φ).

Dually, for a left exact category (CX, IX) with a final object, we denote by ∂Un(X, IX)
the category whose objects are universal ∂-functors from (CX, IX) to categories with final
object. Given two universal ∂-functors T and T ′ from (CX, IX) to respectively CY and
CZ , a morphism from T to T ′ is a pair (F,ψ), where F is a functor from CY to CZ and ψ
is a functor isomorphism T ′ ∼−→ F ◦ T . The composition is defined by (F ′, ψ′) ◦ (F,ψ) =
(F ′ ◦ F, F ′ψ ◦ ψ′).

5.2. Universal problems for universal ∂-functors with values in complete
categories and ∂∗-functors with values in cocomplete categories.

Let (CX ,EX) be a svelte right exact category. We denote by ∂∗Unc(X,EX) the subcat-
egory of ∂∗Un(X,EX) whose objects are universal ∂∗-functors from (CX ,EX) to complete
(i.e. having limits of small diagrams) categories CY and morphisms between these universal
∂∗-functors are pairs (F, φ), where the functor F preserves limits.

For a svelte left exact category (CX, IX), we denote by ∂Unc(X, IX) the subcategory
of ∂Un(X, IX) whose objects are ∂-functors with values in cocomplete categories and mor-
phisms are pairs (F,ψ) such that the functor F preserves small colimits.

5.2.1. Proposition. Let (CX ,EX) be a svelte right exact category with initial objects
and (CX, IX) a svelte left exact category with final objects. The categories ∂∗Unc(X,EX)
and ∂Unc(X, IX) have initial objects.

Proof. It suffices to prove the assertion about ∂Unc(X, IX), because the assertion
about ∂∗-functors is obtained via dualization.

Consider the Yoneda embedding

CX

hX

−−−→ C∧
X , M 7−→ CX(−,M).
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We denote by Ext•X,IX
the universal ∂-functor from (CX, IX) to C∧

X such that Ext0X,IX
=

hX. The claim is that Ext•X,IX
is an initial object of the category ∂Unc(X, IX).

In fact, let CY be a cocomplete category. By [GZ, II.1.3], the composition with the
Yoneda embedding CX

hX−→ C∧
X is an equivalence between the category Homc(C∧

X, CY ) of
continuous (that is having a right adjoint, or, equivalently, preserving colimits) functors
C∧

X −→ CY and the category Hom(CX, CY ) of functors from CX to CY . Let CX
F−→ CY be

an arbitrary functor and C∧
X

Fc−→ CY the corresponding continuous functor. By definition,

S+F (L) = colim(Cok(F (M −→ Cok(j)), where L j−→ M runs through inflations of L.
Since Fc preserves colimits, it follows from (the dual version of) 3.3.4(a) that Fc ◦Ext•X,IX

is a universal ∂-functor whose zero component is Fc ◦ Ext0X,IX
= Fc ◦ hX = F. Therefore,

by (the dual version of the argument of) 3.3.2, the universal ∂-functor Fc ◦ Ext•X,IX
is

isomorphic to the right satellite S•+F of the functor F . This shows that Ext•X,IX
is an

initial object of the category ∂Unc(X, IX).

5.3. The universal problem for arbitrary universal ∂- and ∂∗-functors. Let
(CX, IX) be a svelte left exact category with final objects. Let CXs denote the smallest
strictly full subcategory of the category C∧

X containing all presheaves ExtnX,IX
(L), L ∈

ObCX, n ≥ 0. Let Ext•X,IX
denote the corestriction of the ∂-functor Ext•X,IX

to the
subcategory CXs . Thus, Ext•X,IX

is the composition of the ∂-functor Ext•X,IX
and the

inclusion functor CXs

JX

−−−→ C∧
X. It follows that Ext•X,IX

is a universal ∂-functor.

5.3.1. Proposition. Let (CX, IX) a svelte left exact category with final objects.
For any universal ∂-functor T = (Ti, di | i ≥ 0) from (CX, IX) to a category CY (with

final objects), there exists a unique (up to isomorphism) functor CXs

Ts

−→ CY such that
T = T s ◦ Ext•X,IX

and the diagram

C∧
X

T∗0
−−−→ C∨op

Y

JX

x x hoY

CXs

Ts

−−−→ CY

commutes. Here C∨op

Y denote the category of presheaves of sets on CopY (i.e. functors
CY −→ Sets) and hoY the (dual) Yoneda functor CY −→ C∨op

Y , L 7−→ CY (L,−).; and T ∗0
is a unique continuous (i.e. having a right adjoint) functor such that T ∗0 ◦ hX = hoY ◦ T0.

Proof. The category C∨op

Y is cocomplete (and complete) and the functor hoY preserves
colimits. Therefore, by 3.3.4, the composition hoY ◦T is a universal ∂-functor from (CX, IX)
to C∨op

Y . By 5.2.1, the ∂-functor hoY ◦ T is the composition of the universal ∂-functor

Ext•X,IX
from (CX, IX) to C∧

X and the unique continuous functor C∧
X

T∗0−→ C∨op

Y such that
T ∗0 ◦ hX = hoY ◦ T0. Since the functor hoY is fully faithful, this implies that the universal ∂-
functor T = (Ti, di | i ≥ 0) is isomorphic to the composition of the corestriction of Ext•X,IX

to the subcategory CXs and a unique functor CXs

Ts

−−−→ CY such that the composition
hoY ◦ T s coincides with the restriction of the functor T ∗0 to the subcategory CXs .
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5.3.2. Note. The formulation of the dual assertion about the universal ∂∗-functors
is left to the reader.

5.4. The k-linear version. Fix a right exact svelte k-linear additive category
(CX ,EX). Let ∂∗kUn(X,EX) denote the category whose objects are universal k-linear ∂∗-
functors from (CX ,EX) to k-linear additive categories CY . Let T be a universal k-linear
∂∗-functor from (CX ,EX) to CY and T̃ a universal k-linear ∂∗- functor from (CX ,EX) to
CZ . A morphism from T to T ′ is a pair (F, φ), where F is a k-linear functor from CY to CZ
and φ is a ∂∗-functor isomorphism F ◦ T ∼−→ T ′. If (F ′, φ′) is a morphism from T ′ to T ′′,
then the composition of (F, φ) and (F ′, φ′) is defined by (F ′, φ′)◦(F, φ) = (F ′ ◦F, φ′ ◦F ′φ).

We denote by ∂∗kUnc(X,EX) the subcategory of ∂∗kUn(X,EX) whose objects are k-
linear ∂∗-functors with values in complete categories and morphisms are pairs (F, φ) such
that the functor F preserves small limits.

Dually, for a left exact svelte k-linear additive category (CX, IX), we denote by
∂kUn(X, IX) the category whose objects are universal k-linear ∂-functors from (CX, IX)
to additive k-linear categories. Given two universal ∂-functors T and T ′ from (CX, IX) to
respectively CY and CZ , a morphism from T to T ′ is a pair (F,ψ), where F is a k-linear
functor from CY to CZ and ψ a functor isomorphism T ′ ∼−→ F ◦ T . The composition is
defined by (F ′, ψ′) ◦ (F,ψ) = (F ′ ◦ F, F ′ψ ◦ ψ′).

We denote by ∂kUnc(X, IX) the subcategory of ∂kUn(X, IX) whose objects are k-linear
∂-functors with values in cocomplete categories and morphisms are pairs (F,ψ) such that
the functor F preserves small colimits.

5.4.1. Proposition. Let (CX ,EX) (resp. (CX, IX)) be a svelte right (resp. left) exact
additive k-linear category. The categories ∂∗kUnc(X,EX) and ∂kUnc(X, IX) have initial
objects.

Proof. By duality, it suffices to prove that the category ∂kUnc(X, IX) has an initial
object. The argument is similar to the argument of 5.2.1, except for the category C∧

X of
presheaves of sets on the category CX is replaced by the categoryMk(X) of presheaves of
k-modules on CX. The initial object of the category ∂kUnc(X, IX) is the universal k-linear
∂-functor Ext•(X,IX) from (CX, IX) to the category Mk(X) whose zero component is the
(k-linear) Yoneda embedding CX −→Mk(X), L 7−→ CX(−, L).

Let (CX, IX) be a svelte k-linear additive left exact category. Let Ms
k(X denote the

smallest additive strictly full subcategory of the categoryMk(X) containing all presheaves
Extn(X,IX)(L), L ∈ ObCX, n ≥ 0. Let Ext•(X,IX) denote the corestriction of the ∂-functor
Ext•(X,IX) to the subcategory Ms

k(X. Thus, Ext•(X,IX) is the composition of the k-linear
∂-functor Ext•X,IX

and the inclusion functor

Ms
k(X)

JX

−−−→Mk(X).

It follows that Ext•X,IX
is a universal ∂-functor.

5.4.2. Proposition. Let (CX, IX) be a svelte left exact category with final objects.
For any universal ∂-functor T = (Ti, di | i ≥ 0) from (CX, IX) to a category CY (with
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final objects), there exists a unique (up to isomorphism) functor CXs

Ts

−→ CY such that
T = T s ◦ Ext•X,IX

and the diagram

C∧
X

T∗0
−−−→ C∨op

Y

JX

x x hoY

CXs

Ts

−−−→ CY

commutes. Here C∨op

Y denote the category of presheaves of sets on CopY (i.e. functors
CY −→ Sets) and hoY the (dual) Yoneda functor CY −→ C∨op

Y , L 7−→ CY (L,−).; and T ∗0
is a unique continuous (i.e. having a right adjoint) functor such that T ∗0 ◦ hX = hoY ◦ T0.

Proof. The argument is similar to that of 5.3.1.

6. The stable category of a left exact category.

6.1. Reformulations. Fix a svelte left exact category (CX , IX). Let Θ̂∗
X denote

the continuous (that is having a right adjoint) functor C∧
X −→ C∧

X determined (uniquely

up to isomorphism) by the equality Ext1X = Θ̂∗
X ◦ hX . To any conflation N j−→M

e−→ L,
corresponds the diagram

N̂
ĵ

−−−→ M̂
ê

−−−→ L̂y y d0(E)

x̂
λ(N̂)
−−−→ Θ̂∗

X(N̂)

(1)

where L̂ = hX(L) and x̂ is the final object of the category C∧
X of presheaves on CX .

Due to the universality of Ext•X , all the information about universal ∂-functors from

the left exact category (CX , IX), is encoded in the diagrams (1), where N j−→ M
e−→ L

runs through the class of conflations of (CX , IX).
In fact, the universal ∂-functor Ext•X is of the form (Θ̂∗n

X ◦ hX , Θ̂∗n
X (d0)|n ≥ 0); and

for any functor F from CX to a category CY with colimits and final objects, the universal
∂-functor (Ti, di | i ≥ 0) from (CX , IX) to CY with T0 = F is isomorphic to

F ∗ ◦ Ext•X = (F ∗Θ̂∗n
X ◦ hX , F ∗Θ̂∗n

X (d0) | n ≥ 0). (2)

6.2. Note. If CX is a pointed category, then the presheaf x̂ = CX(−, x) is both a

final and an initial object of the category C∧
X . In particular, the morphism x̂

λ(N̂)
−−−→ Θ̂∗

X(N̂)
in (1) is uniquely defined, hence is not a part of the data. In this case, the data consists
of diagrams

N̂
ĵ

−−−→ M̂
ê

−−−→ L̂
d0(E)
−−−→ Θ̂∗

X(N̂),

where E = (N j−→M
e−→ L) runs through conflations of (CX , IX).
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6.3. Stable category of (CX , IX). Consider the full subcategory CXs of the cat-
egory C∧

X whose objects are Θ̂∗n
X (M), where M runs through representable presheaves

and n through nonnegative integers. We denote by θXs the endofunctor CXs −→ CXs

induced by Θ̂∗
X . It follows that CXs is the smallest Θ̂∗

X -stable strictly full subcategory of
the category C∧

X containing all presheaves M̂ = CX(−,M), M ∈ ObCX .

6.3.1. Triangles. We call the diagram

N̂
ĵ

−−−→ M̂
ê

−−−→ L̂
d0(E)
−−−→ Θ̂∗

X(N̂), (1)

quasi-suspended where E = (N j−→ M
e−→ L) is a conflation in (CX , IX), a standard

triangle.
A triangle is any diagram in CXs of the form

N j−→M e−→ L d−→ θXs(N ), (2)

which is isomorphic to a standard triangle. It follows that for every triangle, the diagram

M
e

−−−→ Ly y d

x̂
λ(N )
−−−→ Θ̂∗

X(N )

commutes. Triangles form a category TrXs : morphisms from

N
j

−−−→M
e

−−−→ L
d

−−−→ θX(N )

to

N ′ j′

−−−→M′ e′

−−−→ L′
d′

−−−→ θX(N ′)

are given by commutative diagrams

N
j

−−−→ M
e

−−−→ L
d

−−−→ θX(N )
f

y y g
y h

y θX(f)

N ′ j′

−−−→ M′ e′

−−−→ L′
d′

−−−→ θX(N ′)

The composition is obvious.

6.3.2. The prestable category of a left exact category. Thus, we have obtained
a data (CXs , (θXs , λ),TrXs). We call this data the prestable category of the left exact
category (CX , IX).

6.3.3. The stable category of a left exact category with final objects. Let
(CX , IX) be a left exact category with a final object x and (CXs , θXs , λ;TrXs) the associ-
ated with (CX , IX) presuspended category. Let Σ = ΣθXs

be the class of all arrows t of
CXs such that θXs(t) is an isomorphism.
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We call the quotient category CXs = Σ−1CXs the stable category of the left exact
category (CX , IX). The endofunctor θXs determines a conservative endofunctor θXs of

the stable category CXs . The localization functor CXs

q∗
Σ−→ CXs maps final objects to final

objects. Let λs denote the image x̃ = q∗
Σ
(x̂) −→ θXs of the cone x̂ λ−→ θXs .

Finally, we denote by TrXs the strictly full subcategory of the category of diagrams
of the form N −→M −→ L −→ θXs(N ) generated by q∗

Σ
(TrXs).

The data (CXs , θXs , λs;TrXs) will be called the stable category of (CX , IX).

6.4. Dual notions. If (CX,EX) is a right exact category with an initial object,
one obtains, dualizing the definitions of 6.3.2 and 6.3.3, the notions of the precostable and
costable category of (CX,EX).

6.5. The k-linear version. Let (CX , JX) be a k-linear additive svelte left exact
category. Replacing the category of C∧

X of presheaves of sets by the category Mk(X)
of presheaves of k-modules on CX and the functor Ext1(X,IX) by its k-linear version,
Ext1(X,IX), we obtain the k-linear versions of prestable and stable categories of the left
exact category (CX , JX).

6.5.1. Note. If (CX , JX) is a k-linear exact category (that is JX happen to be
the class of inflations of a k-linear exact category) with enough injectives, than its stable
category defined above is equivalent to the conventional stable category of (CX , JX). Recall
that the latter has the same objects as CX and its morphisms are homotopy classes of

morphisms of CX : two morphisms M
f−→−→
g

N are homotopy equivalent to each other if

their difference f − g factors through an injective object.
Notice that our construction of stable category of (C,IX) does not require any addi-

tional hypothesis. In particular, it extends the notion of the stable category to arbitrary
exact categories.

7. Complement: presuspended and quasi-suspended categories. It is tempt-
ing to follow Keller’s example [Ke1], [KeV] and turn essential properties of prestable and
stable categories of a left exact category into axioms. We call the corresponding notions
respectively presuspended and quasi-suspended categories.

7.1. Presuspended categories. Fix a category CX with a final object x and a

functor CX

θ̃X

−−−→ x\CX, or, what is the same, a pair (θX, λ), where θX is an endofunctor
CX −→ CX and λ is a cone x −→ θX. We denote by T̃rX the category whose objects are
all diagrams of the form

N
j

−−−→M
e

−−−→ L
d

−−−→ θX(N )

such that the square
M

e
−−−→ Ly y d

x
λ(N )
−−−→ θX(N )
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commutes. Morphisms from

N
j

−−−→M
e

−−−→ L
d

−−−→ θX(N )

to

N ′ j′

−−−→M′ e′

−−−→ L′
d′

−−−→ θX(N ′)

are triples (N f−→ N ′,M g−→M′,L h−→ L′) such that the diagram

N
j

−−−→ M
e

−−−→ L
d

−−−→ θX(N )
f

y y g
y h

y θX(f)

N ′ j′

−−−→ M′ e′

−−−→ L′
d′

−−−→ θX(N ′)

commutes. The composition of morphisms is natural.

7.1.1. Definition. A presuspended category is a triple (CX, θ̃X,TrX), where CX and
θ̃X = (θX, λ) are as above and TrX is a strictly full subcategory of the category T̃rX whose
objects are called triangles, which satisfies the following conditions:

(PS1) Let CX0 denote the full subcategory of CX generated by objects N such that
there exists a triangle N j−→M e−→ L d−→ θX(N ). For every N ∈ ObCX0 , the diagram

N
idN
−−−→ N −−−→ x

λ(N )
−−−→ θX(N )

is a triangle.

(PS2) For any triangle N j−→ M e−→ L d−→ θX(N ) and any morphism N f−→ N ′

with N ′ ∈ ObCX0 , there is a triangle N ′ j′−→M′ e′−→ L′ d′−→ θX(N ′) such that f extends
to a morphism of triangles

(N j−→M e−→ L d−→ θX(N ))
(f,g,h)

−−−−−−−→ (N ′ j′−→M′ e′−→ L′ d′−→ θX(N ′)).

(PS2’) For any pair of triangles

N j−→M e−→ L d−→ θX(N ) and N ′ j′−→M′ e′−→ L′ d′−→ θX(N ′)

and any commutative square

N
j

−−−→ M
f

y y g

N ′ j′

−−−→ M′
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there exists a morphism L h−→ L′ such that (f, g, h) is a morphism of triangles, i.e. the
diagram

N
j

−−−→ M
e

−−−→ L
d

−−−→ θX(N )
f

y y g
y h

y θX(f)

N ′ j′

−−−→ M′ e′

−−−→ L′
d′

−−−→ θX(N ′)

commutes.
(PS3) For any pair of triangles

N u−→M v−→ L w−→ θX(N ) and M x−→M′ s−→ M̃ r−→ θX(M),

there exists a commutative diagram

N
u

−−−→ M
v

−−−→ L
w

−−−→ θX(N )
id

y x
y y y

y id

N
u′

−−−→ M′ v′

−−−→ L′
w′

−−−→ θX(N )
s

y y t
y θX(u)

M̃
id
−−−→ M̃

r
−−−→ θX(M)

r
y y r′

θX(M)
θX(v)
−−−→ θX(L)

(2)

whose two upper rows and two central columns are triangles.
(PS4) For every triangle N j−→M e−→ L d−→ θX(N ), the sequence

. . . −−−→ CX(θX(N ),−) −−−→ CX(L,−) −−−→ CX(M,−) −−−→ CX(N ,−)

is exact.

7.2. The category of presuspended categories. Let T+CX = (CX, θX, λX;TrX)
and T+CY = (CY, θY, λY;TrY) be presuspended categories. A triangle functor from
T+CX to T+CY is a pair (F, φ), where F is a functor CX −→ CY which maps initial object
to an initial object and φ is a functor isomorphism F ◦ θX −→ θY ◦ F such that for every
triangle N u−→M v−→ L w−→ θX(N ) of T+CX, the sequence

F (N )
F (u)
−−−→ F (M)

F (v)
−−−→ F (L)

φ(N )F (w)
−−−→ θY(F (N ))

is a triangle of T+CY. The composition of triangle functors is defined naturally:

(G,ψ) ◦ (F, φ) = (G ◦ F,ψF ◦Gφ).
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Let (F, φ) and (F ′, φ′) be triangle functors from T−CX to T−CY. A morphism from

(F, φ) to (F ′, φ′) is given by a functor morphism F
λ−→ F ′ such that the diagram

θY ◦ F
φ

−−−→ F ◦ θX

θYλ
y y λθX

θY ◦ F ′ φ′

−−−→ F ′ ◦ θX

commutes. The composition is the compsition of the functor morphisms.
Altogether gives the definition of a bicategory PCat formed by svelte presuspended

categories, triangle functors as 1-morphisms and morphisms between them as 2-morphisms.
As usual, the term “category PCat” means that we forget about 2-morphisms.
Dualizing (i.e. inverting all arrows in the constructions above), we obtain the bicat-

egory PoCat formed by precosuspended svelte categories as objects, triangular functors as
1-morphisms, and morphisms between them as 2-morphisms.

7.3. Quasi-suspended categories. We call a presuspended category (CX, θX, λ;TrX)
quasi-suspended if the functor θX is conservative. We denote by SCat the full subcategory
of the category PCat of presuspended categories whose objects are conservative presus-
pended svelte categories.

7.3.1. Example. The main example is, of course, the stable category of a left exact
category. In the case when the left exact category is an exact (additive) category, the stable
category is suspended in the sense of [KeV]. So ’quasi-’ is added to avoid extra confusion
in mathematics terminology.

7.3.2. From presuspended categories to quasi-suspended categories. Let
(CX, θX, λ;TrX) be a presuspended category and Σ = ΣθX

the class of all arrows s of the
category CX such that θX(s) is an isomorphism. Let ΘX denote the endofunctor of the
quotient category Σ−1CX uniquely determined by the equality ΘX ◦ q∗Σ = q∗Σ ◦ θX, where
q∗Σ denotes the localization functor CX −→ Σ−1CX. Notice that the functor q∗Σ maps final

objects to final objects. Let λ̃ denote the morphism q∗Σ(x) −→ ΘX induced by x
λ−→ θX

(that is by q∗Σ(x)
q∗Σ(λ)

−−−→ q∗Σ ◦ θX = ΘX ◦ q∗Σ) and T̃rX the essential image of TrX. Then the
data (Σ−1CX,ΘX, λ̃; T̃rX) is a quasi-suspended category.

The constructed above map (CX, θX, λ;TrX) 7−→ (Σ−1CX,ΘX, λ̃; T̃rX) extends to a

functor PCat
J∗−→ SCat which is a left adjoint to the inclusion functor SCat

J∗−→ PCat.

The natural triangle (localization) functors (CX, θX, λ;TrX)
q∗Σ
−−−→ (Σ−1CX,ΘX, λ̃; T̃rX)

form an adjunction arrow IdPCat −→ J∗J
∗. The other adjunction arrow is identical.

7.5. Quasi-triangulated categories. Let (CX, θX, λ;TrX) be a presuspended cate-
gory. We call it quasi-triangulated, if the endofunctor θX is an auto-equivalence.

In particular, every quasi-triangulated category is quasi-suspended. Let QTr denote
the full subcategory of PCat (or SCat) whose objects are quasi-triangulated subcategories.
We call a quasi-triangulated category strict if θX is an isomorphism of categories.
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7.5.1. Proposition. The inclusion functor QTr −→ PCat has a left adjoint. More
precisely, for each prestable category, TCX = (CX, θX, λ;TrX), there is a triangle functor
from TCX to a strict quasi-triangulated category such that any triangle functor to a quasi-
triangulated category factors uniquely through this functor.

Proof. The argument is a standard procedure of inverting a functor, which was orig-
inated, probably, in Grothendieck’s work on derivators. One can mimik the argument of
the similar theorem (from suspended to strict triangulated categories) from [KeV].

7.6. The k-linear version. It is obtained by restricting to k-linear additive cate-
gories and k-linear functors. Otherwise all axioms and facts look similarly. Details are left
to the reader.

7.7. Remark. Notice that the notion of a quasi-suspended k-linear category presented
here differs from the notion of suspended category proposed by Keller and Vossieck [KeV1].
In particular, the notion of a quasi-triangulated k-linear category is different from the
notion of a triangulated k-linear category.
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Ser. II, 9, 120–221 (1957)

[Ke1] B. Keller, Derived categories and their uses, preprint, 1994.
[KeV] B. Keller, D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris 305
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Appendix: some properties of kernels.

A.1. Proposition. Let M
f−→ N be a morphism of CX which has a kernel pair,

M ×N M
p1−→−→
p2

M. Then the morphism f has a kernel iff p1 has a kernel, and these two

kernels are naturally isomorphic to each other.

Proof. Suppose that f has a kernel, i.e. there is a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y y f

x
iN
−−−→ N

(1)

Then we have the commutative diagram

Ker(f)
γ

−−−→ M ×N M
p2
−−−→ M

f ′
y p1

y y f

x
iM
−−−→ M

f
−−−→ N

(2)

which is due to the commutativity of (1) and the fact that the unique morphism x
iN−→ N

factors through the morphism M
f−→ N . The morphism γ is uniquely determined by

the equality p2 ◦ γ = k(f). The fact that the square (1) is cartesian and the equalities
p2 ◦ γ = k(f) and iN = f ◦ iM imply that the left square of the diagram (2) is cartesian,

i.e. Ker(f)
γ

−−−→M ×N M is the kernel of the morphism p1.
Conversely, if p1 has a kernel, then we have a diagram

Ker(p1)
k(p1)
−−−→ M ×N M

p2
−−−→ M

p′1

y cart p1

y cart
y f

x
iM
−−−→ M

f
−−−→ N

which consists of two cartesian squares. Therefore the square

Ker(p1)
k(f)
−−−→ M

p′1

y cart
y f

x
iN
−−−→ N

with k(f) = p2 ◦ k(p1) is cartesian.

A.2. Remarks. (a) Needless to say that the picture obtained in (the argument of)

A.1 is symmetric, i.e. there is an isomorphism Ker(p1)
τ ′f−→ Ker(p2) which is an arrow in
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the commutative diagram

Ker(p1)
k(p1)
−−−→ M ×N M

p1
−−−→ M

τ ′f

yo τf

yo y id
M

Ker(p2)
k(p2)
−−−→ M ×N M

p2
−−−→ M

(b) Let a morphismM
f−→ N have a kernel pair, M×NM

p1−→−→
p2

M, and a kernel. Then,

by A.1, there exists a kernel of p1, so that we have a morphism Ker(p1)
k(p1)
−−−→ M ×N M

and the diagonal morphism M
∆M

−−−→M ×N M . Since the left square of the commutative
diagram

x −−−→ Ker(p1)
p′1
−−−→ xy cart c(p1)

y y
M

∆M

−−−→ M ×N M
p1
−−−→ M

is cartesian and compositions of the horizontal arrows are identical morphisms, it follows
that its left square is cartesian too. Loosely, one can say that the intersection of Ker(p1)
with the diagonal of M ×N M is zero. If there exists a coproduct Ker(p1)

∐
M , then the

pair of morphisms Ker(p1)
k(p1)
−−−→M ×N M

∆M

←−−−M determine a morphism

Ker(p1)
∐

M −−−→M ×N M.

If the category CX is additive, then this morphism is an isomorphism, or, what is the
same, Ker(f)

∐
M ' M ×N M . In general, it is rarely the case, as the reader can find

out looking at the examples of 1.4.

A.3. Proposition. Let

M̃
f̃

−−−→ Ñ

g̃
y cart

y g

M
f

−−−→ N

(3)

be a cartesian square. Then Ker(f) exists iff Ker(f̃) exists, and they are naturally iso-
morphic to each other.

A.4. The kernel of a composition and related facts. Fix a category CX with
an initial object x.

A.4.1. The kernel of a composition. Let L
f−→ M and M

g−→ N be morphisms
such that there exist kernels of g and g ◦ f . Then the argument similar to that of A.3
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shows that we have a commutative diagram

Ker(gf)
f̃

−−−→ Ker(g)
g′

−−−→ x

k(gf)
y cart

y k(g) cart
y iN

L
f

−−−→ M
g

−−−→ N

(1)

whose both squares are cartesian and all morphisms are uniquely determined by f, g and
the (unique up to isomorphism) choice of the objects Ker(g) and Ker(gf).

Conversely, if there is a commutative diagram

K
u

−−−→ Ker(g)
g′

−−−→ x

t
y cart

y k(g)
y iN

L
f

−−−→ M
g

−−−→ N

whose left square is cartesian, then its left vertical arrow, K t−→ L, is the kernel of the

composition L
g◦f
−−−→ N .

A.4.2. Remarks. (a) It follows from A.3 that the kernel of L
f−→ M exists iff

the kernel of Ker(gf)
f̃

−−−→ Ker(g) exists and they are isomorphic to each other. More
precisely, we have a commutative diagram

Ker(f̃)
k(f̃)
−−−→ Ker(gf)

f̃
−−−→ Ker(g)

g′

−−−→ x

o
y k(gf)

y cart
y k(g) cart

y iN

Ker(f)
k(f)
−−−→ L

f
−−−→ M

g
−−−→ N

whose left vertical arrow is an isomorphism.
(b) Suppose that (CX ,EX) is a right exact category (with an initial object x). If the

morphism f above is a deflation, then it follows from this observation that the canonical

morphism Ker(gf)
f̃

−−−→ Ker(g) is a deflation too. In this case, Ker(f) exists, and we
have a commutative diagram

Ker(f̃)
k(f̃)
−−−→ Ker(gf)

f̃
−−−→ Ker(g)

o
y k(gf)

y cart
y k(g)

Ker(f)
k(f)
−−−→ L

f
−−−→ M

whose rows are conflations.

The following observations is useful (and are used) for analysing diagrams.
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A.4.3. Proposition.(a) Let M
g−→ N be a morphism with a trivial kernel. Then

a morphism L
f−→ M has a kernel iff the composition g ◦ f has a kernel, and these two

kernels are naturally isomorphic one to another.
(b) Let

L
f

−−−→ M

γ
y y g

M̃
φ

−−−→ N

be a commutative square such that the kernels of the arrows f and φ exist and the kernel
of g is trivial. Then the kernel of the composition φ ◦ γ is isomorphic to the kernel of the
morphism f , and the left square of the commutative diagram

Ker(f)
∼

−−−→ Ker(φγ)
k(f)
−−−→ L

f
−−−→ M

γ̃
y cart γ

y y g

Ker(φ)
k(φ)
−−−→ M̃

φ
−−−→ N

is cartesian.

Proof. (a) Since the kernel of g is trivial, the diagram A.4.1(1) specializes to the
diagram

Ker(gf)
f̃

−−−→ x
idx

−−−→ x

k(gf)
y cart

y k(g)
y iN

L
f

−−−→ M
g

−−−→ N

with cartesian squares. The left cartesian square of this diagram is the definition ofKer(f).
The assertion follows from A.4.1.

(b) Since the kernel of g is trivial, it follows from (a) that Ker(f) is naturally isomor-
phic to the kernel of g ◦ f = φ ◦ γ. The assertion follows now from A.4.1.

A.4.4. Corollary. Let CX be a category with an initial object x. Let L
f−→ M be a

strict epimorphism and M
g−→ N a morphism such that Ker(g)

k(g)
−−−→ M exists and is a

monomorphism. Then the composition g ◦ f is a trivial morphism iff g is trivial.

A.4.4.1. Note. The following example shows that the requirement ”Ker(g) −→M
is a monomorphism” in A.4.4 cannot be omitted.

Let CX be the category Algk of associative unital k-algebras, and let m be an ideal
of the ring k such that the epimorphism k −→ k/m does not split. Then the identical
morphism k/m −→ k/m is non-trivial, while its composition with the projection k −→ k/m
is a trivial morphism.
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A.5. The coimage of a morphism. Let M
f−→ N be an arrow which has a kernel,

i.e. we have a cartesian square

Ker(f)
k(f)
−−−→ M

f ′
y cart

y f

x
iN
−−−→ N

with which one can associate a pair of arrows Ker(f)
k(f)
−→−→
0f

M, where 0f is the composition

of the projection f ′ and the unique morphism x
iM−→M . Since iN = f ◦ iM , the morphism

f equalizes the pair Ker(f)
k(f)
−→−→
0f

M. If the cokernel of this pair of arrows exists, it will

be called the coimage of f and denoted by Coim(f), or. loosely, M/Ker(f).

Let M
f−→ N be a morphism such that Ker(f) and Coim(f) exist. Then f is the

composition of the canonical strict epimorphism M
pf

−−−→ Coim(f) and a uniquely defined

morphism Coim(f)
jf
−−−→ N .

A.5.1. Lemma. Let M
f−→ N be a morphism such that Ker(f) and Coim(f) exist.

There is a natural isomorphism Ker(f) ∼−→ Ker(pf ).

Proof. The outer square of the commutative diagram

Ker(f)
f ′

−−−→ x −−−→ x

k(f)
y cart

y y
M

pf

−−−→ Coim(f)
jf
−−−→ L

(1)

is cartesian. Therefore, its left square is cartesian which implies, by A.3, that Ker(pf ) is
isomorphic to Ker(f ′). But, Ker(f ′) ' Ker(f).

A.5.2. Note. By A.4.1, all squares of the commutative diagram

Ker(f)
f ′

−−−→ x

id
y cart

y
Ker(jfpf )

p̃f

−−−→ Ker(jf ) −−−→ x

k(f)
y cart

y cart
y

M
pf

−−−→ Coim(f)
jf
−−−→ L

(2)

are cartesian.
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If CX is an additive category and M
f−→ L is an arrow of CX having a kernel and

a coimage, then the canonical morphism Coim(f)
jf
−−−→ L is a monomorphism. Quite a

few non-additive categories have this property.

A.5.3. Example. Let CX be the category Algk of associative unital k-algebras.
Since cokernels of pairs of arrows exist in Algk, any algebra morphism has a coimage. It
follows from 1.4.1 that the coimage of an algebra morphism A

ϕ−→ B is A/K(ϕ), where
K(ϕ) is the kernel of φ in the usual sense (i.e. in the category of non-unital algebras).
The canonical decomposition ϕ = jϕ ◦ pϕ coincides with the standard presentation of ϕ as
the composition of the projection A −→ A/K(ϕ) and the monomorphism A/K(ϕ) −→ B.
In particular, ϕ is strict epimorphism of k-algebras iff it is isomorphic to the associated

coimage map A
pϕ

−−−→ Coim(ϕ) = A/K(ϕ).
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