

SMR/1840-20

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Motivic sheaves

Marc Levine Universitaet Duisburg-Essen, Germany

Recall from Lecture 2:

 $\operatorname{Cor}_{fin}(k) :=$ the category with objects [X] for $X \in \operatorname{Sm}/k$ and morphisms

$$\operatorname{Hom}_{\operatorname{Cor}_{fin}(k)}([X], [Y]) := c(X, Y) \subset \mathcal{Z}(X \times Y)$$

the *finite over X* correspondences.

 $\operatorname{Cor}_{fin}(k)$ is a tensor category with $[X] \oplus [Y] = [X \amalg Y]$, $[X] \otimes [Y] = [X \times Y]$, etc.

Form a triangulated tensor category by taking the homotopy category $K^b(Cor_{fin}(k))$.

Localize $K^b(Cor_{fin}(k))$ to impose

- 1. Homotopy invariance: $[X \times \mathbb{A}^1] \cong [X]$
- 2. Mayer-Vietoris: For $X = U \cup V$, the complex

$$[U \cap V] \to [U] \oplus [V] \to [X]$$

is isomorphic to 0.

Then take the pseudo-abelian hull to form the category of *effective geometric motives* $DM_{qm}^{eff}(k)$.

Sending X to the image of [X] in $DM_{gm}^{eff}(k)$ gives a symmetric monoidal functor

$$M_{\text{gm}}: \mathbf{Sm}/k \to DM_{\text{gm}}^{\text{eff}}(k).$$

Form the category of *geometric motives* by inverting $\mathbb{Z}(1) := \widetilde{M_{gm}}(\mathbb{P}^1)[-2]$:

$$DM_{gm}(k) := DM_{gm}^{eff}(k)[\mathbb{Z}(1))^{\otimes -1}].$$

The canonical functor $i: DM_{gm}^{eff}(k) \to DM_{gm}(k)$ is a full embedding.

Note. We will see later that, just as for $M_{\sim}(k)$, $DM_{gm}(k)$ is a *rigid* tensor (triangulated) category: we invert $\mathbb{Z}(1)$ so that every object has a dual.

Elementary constructions in $DM_{gm}^{eff}(k)$

Motivic cohomology

Definition For $X \in \mathbf{Sm}/k$, $q \in \mathbb{Z}$, set

 $H^p(X,\mathbb{Z}(q)) := \operatorname{Hom}_{DM_{\operatorname{gm}}(k)}(M_{\operatorname{gm}}(X),\mathbb{Z}(q)[p]).$

Compare with $CH^r(X) = Hom_{CHM(k)}(\mathbb{1}(-r), \mathfrak{h}(X))$. In fact, for all $X \in Sm/k$, there is a natural isomorphism

$$CH^{r}(X) = Hom_{CHM(k)}(\mathbb{1}(-r), \mathfrak{h}(X))$$

= Hom_{DMgm(k)}(Mgm(X), \mathbb{Z}(r)[2r]) = H^{2r}(X, \mathbb{Z}(r)).

In particular, sending $\mathfrak{h}(X)$ to $M_{gm}(X)$ for $X \in \mathbf{SmProj}/k$ gives a full embedding

$$CHM(k)^{\mathsf{op}} \hookrightarrow DM_{\mathsf{gm}}(k)$$

Products Define the cup product

$$H^p(X,\mathbb{Z}(q))\otimes H^{p'}(X,\mathbb{Z}(q'))\to H^{p+p'}(X,\mathbb{Z}(q+q'))$$

by sending $a\otimes b$ to

$$M_{gm}(X) \xrightarrow{\delta} M_{gm}(X) \otimes M_{gm}(X)$$
$$\xrightarrow{a \otimes b} \mathbb{Z}(q)[p] \otimes \mathbb{Z}(q')[p'] \cong \mathbb{Z}(q+q')[p+p'].$$

This makes $\bigoplus_{p,q} H^p(X, \mathbb{Z}(q))$ a graded commutative ring with unit 1 the map $M_{gm}(X) \to \mathbb{Z}$ induced by $p_X : X \to \operatorname{Spec} k$.

Homotopy property

Applying $\text{Hom}_{DM_{\text{gm}}}(-,\mathbb{Z}(q)[p])$ to the isomorphism $p_*: M_{\text{gm}}(X \times \mathbb{A}^1) \to M_{\text{gm}}(X)$ gives the *homotopy property* for $H^*(-,\mathbb{Z}(*))$:

$$p^*: H^p(X, \mathbb{Z}(q)) \xrightarrow{\sim} H^p(X \times \mathbb{A}^1, \mathbb{Z}(q)).$$

Mayer-Vietoris

For $U, V \subset X$ open subschemes we can apply $\text{Hom}_{DM_{gm}}(-, \mathbb{Z}(q)[p])$ to the distinguished triangle

 $M_{\mathsf{gm}}(U \cap V) \to M_{\mathsf{gm}}(U) \oplus M_{\mathsf{gm}}(V) \to M_{\mathsf{gm}}(U \cup V) \to M_{\mathsf{gm}}(U \cap V)$ [1].

This gives the *Mayer-Vietoris exact sequence* for $H^*(-,\mathbb{Z}(*))$:

 $\dots \to H^{p-1}(U \cup V, \mathbb{Z}(q)) \to H^p(U \cap V, \mathbb{Z}(q))$ $\to H^p(U, \mathbb{Z}(q)) \oplus H^p(V, \mathbb{Z}(q)) \to H^p(U \cup V, \mathbb{Z}(q)) \to \dots$

The end of the road?

It is difficult to go much further using only the techniques of geometry and homological algebra.

One would like to have:

- Chern classes of line bundles and a projective bundle formula
- A Gysin isomorphism
- A computation of the morphisms in $DM_{gm}^{eff}(k)$ as algebraic cycles.

Voevodsky achieves this by viewing $DM_{gm}^{eff}(k)$ as a subcategory of a derived category of "Nisnevich sheaves with transfer".

Motivic sheaves

School on Algebraic *K*-theory and its applications ICTP-May 14-26, 2007

Marc Levine

Outline:

- Sites and sheaves
- Categories of motivic complexes
- The Suslin complex
- The main results: the localization and embedding theorems

Sites and sheaves

We give a quick review of the theory of sheaves on a Grothendieck site.

Presheaves A *presheaf* P on a small category \mathcal{C} with values in a category \mathcal{A} is a functor

$$P: \mathcal{C}^{\mathsf{op}} \to \mathcal{A}.$$

Morphisms of presheaves are natural transformations of functors. This defines the category of \mathcal{A} -valued presheaves on \mathcal{C} , $PreShv^{\mathcal{A}}(\mathcal{C})$.

Remark We require \mathcal{C} to be small so that the collection of natural transformations $\vartheta : F \to G$, for presheaves F, G, form a set. It would suffice that \mathcal{C} be essentially small (the collection of isomorphism classes of objects form a set).

Structural results

Theorem (1) If \mathcal{A} is an abelian category, then so is $PreShv^{\mathcal{A}}(\mathcal{C})$, with kernel and cokernel defined objectwise: For $f : F \to G$,

$$ker(f)(x) = ker(f(x) : F(x) \to G(x));$$

 $coker(f)(x) = coker(f(x) : F(x) \to G(x)).$

(2) For A = Ab, $PreShv^{Ab}(\mathcal{C})$ has enough injectives.

The second part is proved by using a result of Grothendieck, noting that $PreShv^{Ab}(\mathcal{C})$ has the set of generators $\{\mathbb{Z}_X \mid X \in \mathcal{C}\}$, where $\mathbb{Z}_X(Y)$ is the free abelian group on $Hom_{\mathcal{C}}(Y, X)$.

Pre-topologies

Definition Let \mathcal{C} be a category. A *Grothendieck pre-topology* τ on \mathcal{C} is given by defining, for $X \in \mathcal{C}$, a collection $\text{Cov}_{\tau}(X)$ of *covering families* of X: a covering family of X is a set of morphisms $\{f_{\alpha} : U_{\alpha} \to X\}$ in \mathcal{C} . These satisfy:

A1. $\{id_X\}$ is in $Cov_{\tau}(X)$ for each $X \in \mathcal{C}$.

A2. For $\{f_{\alpha} : U_{\alpha} \to X\} \in \text{Cov}_{\tau}(X)$ and $g : Y \to X$ a morphism in \mathcal{C} , the fiber products $U_{\alpha} \times_X Y$ all exist and $\{p_2 : U_{\alpha} \times_X Y \to Y\}$ is in $\text{Cov}_{\tau}(Y)$.

A3. If $\{f_{\alpha} : U_{\alpha} \to X\}$ is in $Cov_{\tau}(X)$ and if $\{g_{\alpha\beta} : V_{\alpha\beta} \to U_{\alpha}\}$ is in $Cov_{\tau}(U_{\alpha})$ for each α , then $\{f_{\alpha} \circ g_{\alpha\beta} : V_{\alpha\beta} \to X\}$ is in $Cov_{\tau}(X)$.

A category with a (pre) topology is a *site*

Sheaves on a site

For S presheaf of abelian groups on \mathcal{C} and $\{f_{\alpha} : U_{\alpha} \to X\} \in Cov_{\tau}(X)$ for some $X \in \mathcal{C}$, we have the "restriction" morphisms

$$f_{\alpha}^{*}: S(X) \to S(U_{\alpha})$$

$$p_{1,\alpha,\beta}^{*}: S(U_{\alpha}) \to S(U_{\alpha} \times_{X} U_{\beta})$$

$$p_{2,\alpha,\beta}^{*}: S(U_{\beta}) \to S(U_{\alpha} \times_{X} U_{\beta}).$$

Taking products, we have the sequence of abelian groups

$$0 \to S(X) \xrightarrow{\prod f_{\alpha}^{*}} \prod_{\alpha} S(U_{\alpha}) \xrightarrow{\prod p_{1,\alpha,\beta}^{*} - \prod p_{2,\alpha,\beta}^{*}} \prod_{\alpha,\beta} S(U_{\alpha} \times_{X} U_{\beta}). \quad (1)$$

Definition A presheaf S is a *sheaf* for τ if for each covering family $\{f_{\alpha} : U_{\alpha} \to X\} \in \text{Cov}_{\tau}$, the sequence (1) is exact. The category $Shv_{\tau}^{Ab}(\mathcal{C})$ of sheaves of abelian groups on \mathcal{C} for τ is the full subcategory of $PreShv^{Ab}(\mathcal{C})$ with objects the sheaves.

Proposition (1) The inclusion $i : Shv_{\tau}^{Ab}(\mathcal{C}) \rightarrow PreShv_{\tau}^{Ab}(\mathcal{C})$ admits a left adjoint: "sheafification".

(2) $Shv_{\tau}^{Ab}(\mathcal{C})$ is an abelian category: For $f : F \to G$, ker(f) is the presheaf kernel. coker(f) is the sheafification of the presheaf cokernel.

(3) $Shv_{\tau}^{Ab}(\mathcal{C})$ has enough injectives.

Categories of motivic complexes

Nisnevich sheaves The sheaf-theoretic construction of mixed motives is based on the notion of a *Nisnevich sheaf with transfer*.

Definition Let X be a k-scheme of finite type. A Nisnevich cover $\mathcal{U} \to X$ is an étale morphism of finite type such that, for each finitely generated field extension F of k, the map on F-valued points $\mathcal{U}(F) \to X(F)$ is surjective.

Using Nisnevich covers as covering families gives us the *small* Nisnevich site on X, X_{Nis} . The big Nisnevich site over k, with underlying category Sm/k, is defined similarly.

Notation $Sh^{Nis}(X) := N$ is nevich sheaves of abelian groups on X, $Sh^{Nis}(k) := N$ is nevich sheaves of abelian groups on Sm/k

For a presheaf \mathcal{F} on \mathbf{Sm}/k or X_{Nis} , we let \mathcal{F}_{Nis} denote the associated sheaf.

For a category C, we have the category of presheaves of abelian groups on C, i.e., the category of functors $C^{op} \rightarrow Ab$.

Definition (1) The category PST(k) of presheaves with transfer is the category of presheaves of abelian groups on $Cor_{fin}(k)$.

(2) The category of Nisnevich sheaves with transfer on Sm/k, $Sh^{Nis}(Cor_{fin}(k))$, is the full subcategory of PST(k) with objects those F such that, for each $X \in Sm/k$, the restriction of F to X_{Nis} is a sheaf.

Note. A PST F is a presheaf on Sm/k together with *transfer* maps

$$\mathsf{Tr}(a): F(Y) \to F(X)$$

for every finite correspondence $a \in Cor_{fin}(X, Y)$, with:

$$\operatorname{Tr}(\Gamma_f) = f^*, \ \operatorname{Tr}(a \circ b) = \operatorname{Tr}(b) \circ \operatorname{Tr}(a), \ \operatorname{Tr}(a \pm b) = \operatorname{Tr}(a) \pm \operatorname{Tr}(b).$$

Definition Let F be a presheaf of abelian groups on Sm/k. We call F homotopy invariant if for all $X \in Sm/k$, the map

$$p^*: F(X) \to F(X \times \mathbb{A}^1)$$

is an isomorphism.

We call F strictly homotopy invariant if for all $q \ge 0$, the cohomology presheaf $X \mapsto H^q(X_{Nis}, F_{Nis})$ is homotopy invariant.

Theorem (PST) Let F be a homotopy invariant PST on Sm/k. Then

(1) The cohomology presheaves $X \mapsto H^q(X_{Nis}, F_{Nis})$ are PST's

(2) F_{Nis} is strictly homotopy invariant.

(3) $F_{\text{Zar}} = F_{\text{Nis}}$ and $H^q(X_{\text{Zar}}, F_{\text{Zar}}) = H^q(X_{\text{Nis}}, F_{\text{Nis}})$.

Remarks (1) uses the fact that for finite map $Z \rightarrow X$ with X Hensel local and Z irreducible, Z is also Hensel local. (2) and (3) rely on Voevodsky's generalization of Quillen's proof of Gersten's conjecture, viewed as a "moving lemma using transfers". For example:

Lemma (Voevodsky's moving lemma) Let X be in Sm/k, Sa finite set of points of X, $j_U : U \to X$ an open subscheme. Then there is an open neighborhood $j_V : V \to X$ of S in X and a finite correspondence $a \in c(V,U)$ such that, for all homotopy invariant PST's F, the diagram

$$F(X) \xrightarrow{j_U^*} F(U)$$

$$j_V^* \downarrow \qquad \qquad \qquad \downarrow Tr(a)$$

$$F(V) = F(V)$$

commutes.

One consequence of the lemma is

(1) If X is semi-local, then $F(X) \to F(U)$ is a split injection.

Variations on this construction prove:

(2) If X is semi-local and smooth then $F(X) = F_{Zar}(X)$ and $H^n(X_{Zar}, F_{Zar}) = 0$ for n > 0.

(3) If U is an open subset of \mathbb{A}^1_k , then $F_{\mathsf{Zar}}(U) = F(U)$ and $H^n(U, F_{\mathsf{Zar}}) = 0$ for n > 0.

(4) If $j: U \to X$ has complement a smooth k-scheme $i: Z \to X$, then $cokerF(X_{Zar}) \to j_*F(U_{Zar})$ (as a sheaf on Z_{Zar}) depends only on the Nisnevich neighborhood of Z in X.

(1)-(4) together with some cohomological techniques prove the theorem.

The category of motivic complexes

Definition Inside the derived category $D^{-}(Sh^{Nis}(Cor_{fin}(k)))$, we have the full subcategory $DM_{-}^{eff}(k)$ consisting of complexes whose cohomology sheaves are homotopy invariant.

Proposition $DM_{-}^{\text{eff}}(k)$ is a triangulated subcategory of $D^{-}(Sh^{\text{Nis}}(Cor_{fin}(k))).$

This follows from

Lemma Let $HI(k) \subset Sh^{Nis}(Cor_{fin}(k))$ be the full subcategory of homotopy invariant sheaves. Then HI(k) is an abelian subcategory of $Sh^{Nis}(Cor_{fin}(k))$, closed under extensions in $Sh^{Nis}(Cor_{fin}(k))$. *Proof of the lemma.* Given $f : F \to G$ in HI(k), ker(f) is the presheaf kernel, hence in HI(k).

The presheaf coker(f) is homotopy invariant, so by the PST theorem $coker(f)_{Nis}$ is homotopy invariant.

Given $0 \to A \to E \to B \to 0$ exact in $Sh^{Nis}(Cor_{fin}(k))$ with $A, B \in HI(k)$.

Consider $p: X \times \mathbb{A}^1 \to X$. The PST theorem implies $R^1 p_* A = 0$, so

 $0 \rightarrow p_*A \rightarrow p_*E \rightarrow p_*B \rightarrow 0$ is exact as sheaves on X.

Thus $p_*E = E$, so E is homotopy invariant.

The Suslin complex

The Suslin complex

Let
$$\Delta^n := \operatorname{Spec} k[t_0, ..., t_n] / \sum_{i=0}^n t_i - 1.$$

 $n \mapsto \Delta^n$ defines the cosimplicial k-scheme Δ^* .

Definition Let F be a presheaf on $Cor_{fin}(k)$. Define the presheaf $C_n(F)$ by

$$C_n(F)(X) := F(X \times \Delta^n)$$

The Suslin complex $C_*(F)$ is the complex with differential

$$d_n := \sum_i (-1)^i \delta_i^* : C_n(F) \to C_{n-1}(F).$$

For $X \in \mathbf{Sm}/k$, let $C_*(X)$ be the complex of sheaves $C_n(X)(U) := \operatorname{Cor}_{fin}(U \times \Delta^n, X).$

Remarks (1) If F is a sheaf with transfers on Sm/k, then $C_*(F)$ is a complex of sheaves with transfers.

(2) The homology presheaves $h_i(F) := \mathcal{H}^{-i}(C_*(F))$ are homotopy invariant. Thus, by Voevodsky's PST theorem, the associated Nisnevich sheaves $h_i^{\text{Nis}}(F)$ are strictly homotopy invariant. We thus have the functor

$$C_*$$
: Sh^{Nis}(Cor_{fin}(k)) $\rightarrow DM_-^{\text{eff}}(k)$.

(3) For X in Sch_k , we have the sheaf with transfers $L(X)(Y) = \operatorname{Cor}_{fin}(Y,X)$ for $Y \in \operatorname{Sm}/k$.

For $X \in \text{Sm}/k$, L(X) is the free sheaf with transfers generated by the representable sheaf of sets Hom(-, X).

We have the canonical isomorphisms Hom(L(X), F) = F(X) and $C_*(X) = C_*(L(X))$.

In fact: For $F \in Sh_{Nis}(Cor_{fin}(k))$ there is a canonical isomorphism

$$\operatorname{Ext}^n_{\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{fin}(k))}(L(X),F) \cong H^n(X_{\operatorname{Nis}},F)$$

Statement of main results

The localization theorem

Theorem The functor C_* extends to an exact functor $\mathbf{R}C_*: D^-(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{Cor}_{fin}(k))) \to DM^{\mathrm{eff}}_-(k),$ left adjoint to the inclusion $DM^{\mathrm{eff}}_-(k) \to D^-(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{Cor}_{fin}(k))).$

 $\mathbf{R}C_*$ identifies $DM_-^{\text{eff}}(k)$ with the localization $D^-(Sh_{Nis}(Cor_{fin}(k)))/\mathcal{A}$, where \mathcal{A} is the localizing subcategory of $D^-(Sh_{Nis}(Cor_{fin}(k)))$ generated by complexes

$$L(X \times \mathbb{A}^1) \xrightarrow{L(p_1)} L(X); \quad X \in \mathbf{Sm}/k.$$

The tensor structure

We define a tensor structure on $Sh^{Nis}(Cor_{fin}(k))$:

Set
$$L(X) \otimes L(Y) := L(X \times Y)$$
.

For a general F, we have the canonical surjection

$$\oplus_{(X,s\in F(X))}L(X)\to F.$$

Iterating gives the canonical left resolution $\mathcal{L}(F) \to F$. Define

$$F \otimes G := H_0^{\mathsf{Nis}}(\mathcal{L}(F) \otimes \mathcal{L}(G)).$$

The unit for \otimes is $L(\operatorname{Spec} k)$.

There is an *internal Hom* in $Sh^{Nis}(Cor_{fin}(k))$:

$$\mathcal{H}om(L(X),G)(U) = G(U \times X);$$

$$\mathcal{H}om(F,G) := H^{0}_{\mathsf{Nis}}(\mathcal{H}om(\mathcal{L}(F),G))$$

Tensor structure in DM_{-}^{eff}

The tensor structure on $Sh^{Nis}(Cor_{fin}(k))$ induces a tensor structure \otimes^{L} on $D^{-}(Sh_{Nis}(Cor_{fin}(k)))$.

We make $DM_{-}^{\text{eff}}(k)$ a tensor triangulated category via the localization theorem:

 $M \otimes N := \mathbf{R}C_*(i(M) \otimes^L i(N)).$

The embedding theorem

Theorem There is a commutative diagram of exact tensor functors

$$\begin{array}{ccc} \mathcal{H}^{b}(\operatorname{Cor}_{fin}(k)) & \xrightarrow{L} & D^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{fin}(k))) \\ & & & & & \\ & & & & \\ & & & & \\ DM_{\operatorname{gm}}^{\operatorname{eff}}(k) & \xrightarrow{} & & DM_{-}^{\operatorname{eff}}(k) \end{array}$$

such that

- 1. *i* is a full embedding with dense image.
- 2. $\mathbf{R}C_*(L(X)) \cong C_*(X)$.

Corollary For X and $Y \in \mathbf{Sm}/k$, $\operatorname{Hom}_{DM_{gm}^{\operatorname{eff}}(k)}(M_{gm}(Y), M_{gm}(X)[n]) \cong \mathbb{H}^n(Y_{\operatorname{Nis}}, C_*(X)) \cong \mathbb{H}^n(Y_{\operatorname{Zar}}, C_*(X)).$

Suslin homology

Definition For $X \in \mathbf{Sm}/k$, define the *Suslin homology* of X as $H_i^{\mathsf{Sus}}(X) := H_i(C_*(X)(\operatorname{Spec} k)).$

Theorem Let U, V be open subschemes of $X \in Sm/k$. Then there is a long exact Mayer-Vietoris sequence

$$\dots \to H_{n+1}^{\mathsf{Sus}}(U \cup V) \to H_n^{\mathsf{Sus}}(U \cap V) \to H_n^{\mathsf{Sus}}(U) \oplus H_n^{\mathsf{Sus}}(V) \to H_n^{\mathsf{Sus}}(U \cup V) \to \dots$$

Proof. By the embedding theorem, we have

 $H_n^{\mathsf{Sus}}(Y) = \operatorname{Hom}_{DM_{-}^{\mathsf{eff}}(k)}(M_{\mathsf{gm}}(\operatorname{Spec} k), M_{\mathsf{gm}}(Y)[-n]).$

for all $Y \in \mathbf{Sm}/k$, $n \in \mathbb{Z}$. Also, $[U \cap V] \to [U] \oplus [V] \to [U \cup V]$ extends to a distinguished triangle in $DM^{\mathsf{eff}}_{-}(k)$.