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Motivic sheaves



Recall from Lecture 2:

Corfin(k) := the category with objects [X] for X ∈ Sm/k and

morphisms

HomCorfin(k)
([X], [Y ]) := c(X, Y ) ⊂ Z(X × Y )

the finite over X correspondences.

Corfin(k) is a tensor category with [X]⊕[Y ] = [X�Y ], [X]⊗[Y ] =

[X × Y ], etc.

Form a triangulated tensor category by taking the homotopy

category Kb(Corfin(k)).
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Localize Kb(Corfin(k)) to impose

1. Homotopy invariance: [X × A1] ∼= [X]

2. Mayer-Vietoris: For X = U ∪ V , the complex

[U ∩ V ] → [U ] ⊕ [V ] → [X]

is isomorphic to 0.

Then take the pseudo-abelian hull to form the category of effec-
tive geometric motives DMeff

gm(k).

Sending X to the image of [X] in DMeff
gm(k) gives a symmetric

monoidal functor

Mgm : Sm/k → DMeff
gm(k).
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Form the category of geometric motives by inverting Z(1) :=

M̃gm(P1)[−2]:

DMgm(k) := DMeff
gm(k)[Z(1))⊗−1].

The canonical functor i : DMeff
gm(k) → DMgm(k) is a full embed-

ding.

Note. We will see later that, just as for M∼(k), DMgm(k) is a

rigid tensor (triangulated) category: we invert Z(1) so that every

object has a dual.
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Elementary constructions in DMeff
gm(k)
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Motivic cohomology

Definition For X ∈ Sm/k, q ∈ Z, set

Hp(X, Z(q)) := HomDMgm(k)(Mgm(X), Z(q)[p]).

Compare with CHr(X) = HomCHM(k)(1(−r), h(X)). In fact, for
all X ∈ Sm/k, there is a natural isomorphism

CHr(X) = HomCHM(k)(1(−r), h(X))

= HomDMgm(k)(Mgm(X), Z(r)[2r]) = H2r(X, Z(r)).

In particular, sending h(X) to Mgm(X) for X ∈ SmProj/k gives
a full embedding

CHM(k)op ↪→ DMgm(k)
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Products Define the cup product

Hp(X, Z(q)) ⊗ Hp′(X, Z(q′)) → Hp+p′(X, Z(q + q′))

by sending a ⊗ b to

Mgm(X)
δ−→ Mgm(X) ⊗ Mgm(X)

a⊗b−−→ Z(q)[p] ⊗ Z(q′)[p′] ∼= Z(q + q′)[p + p′].

This makes ⊕p,qHp(X, Z(q)) a graded commutative ring with unit

1 the map Mgm(X) → Z induced by pX : X → Spec k.

6



Homotopy property

Applying HomDMgm(−, Z(q)[p]) to the isomorphism

p∗ : Mgm(X × A1) → Mgm(X) gives the homotopy property for

H∗(−, Z(∗)):
p∗ : Hp(X, Z(q))

∼−→ Hp(X × A
1, Z(q)).
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Mayer-Vietoris

For U, V ⊂ X open subschemes we can apply HomDMgm(−, Z(q)[p])

to the distinguished triangle

Mgm(U∩V ) → Mgm(U)⊕Mgm(V ) → Mgm(U∪V ) → Mgm(U∩V )[1].

This gives the Mayer-Vietoris exact sequence for H∗(−, Z(∗)):

. . . → Hp−1(U ∪ V, Z(q)) → Hp(U ∩ V, Z(q))

→ Hp(U, Z(q)) ⊕ Hp(V, Z(q)) → Hp(U ∪ V, Z(q)) → . . .
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The end of the road?

It is difficult to go much further using only the techniques of

geometry and homological algebra.

One would like to have:

• Chern classes of line bundles and a projective bundle formula

• A Gysin isomorphism

• A computation of the morphisms in DMeff
gm(k) as algebraic

cycles.

Voevodsky achieves this by viewing DMeff
gm(k) as a subcategory

of a derived category of “Nisnevich sheaves with transfer”.
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Outline:

• Sites and sheaves

• Categories of motivic complexes

• The Suslin complex

• The main results: the localization and embedding theorems

11



Sites and sheaves

We give a quick review of the theory of sheaves on a Grothendieck

site.
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Presheaves A presheaf P on a small category C with values in

a category A is a functor

P : Cop → A.

Morphisms of presheaves are natural transformations of func-

tors. This defines the category of A-valued presheaves on C,

PreShvA(C).

Remark We require C to be small so that the collection of

natural transformations ϑ : F → G, for presheaves F, G, form a

set. It would suffice that C be essentially small (the collection of

isomorphism classes of objects form a set).
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Structural results

Theorem (1) If A is an abelian category, then so is PreShvA(C),

with kernel and cokernel defined objectwise: For f : F → G,

ker(f)(x) = ker(f(x) : F (x) → G(x));

coker(f)(x) = coker(f(x) : F (x) → G(x)).

(2) For A = Ab, PreShvAb(C) has enough injectives.

The second part is proved by using a result of Grothendieck,

noting that PreShvAb(C) has the set of generators {ZX | X ∈ C},
where ZX(Y ) is the free abelian group on HomC(Y, X).
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Pre-topologies

Definition Let C be a category. A Grothendieck pre-topology
τ on C is given by defining, for X ∈ C, a collection Covτ(X)
of covering families of X: a covering family of X is a set of
morphisms {fα : Uα → X} in C. These satisfy:

A1. {idX} is in Covτ(X) for each X ∈ C.

A2. For {fα : Uα → X} ∈ Covτ(X) and g : Y → X a morphism in
C, the fiber products Uα ×X Y all exist and {p2 : Uα ×X Y → Y }
is in Covτ(Y ).

A3. If {fα : Uα → X} is in Covτ(X) and if {gαβ : Vαβ → Uα} is in
Covτ(Uα) for each α, then {fα ◦ gαβ : Vαβ → X} is in Covτ(X).

A category with a (pre) topology is a site
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Sheaves on a site

For S presheaf of abelian groups on C and {fα : Uα → X} ∈
Covτ(X) for some X ∈ C, we have the “restriction” morphisms

f∗
α : S(X) → S(Uα)

p∗1,α,β : S(Uα) → S(Uα ×X Uβ)

p∗2,α,β : S(Uβ) → S(Uα ×X Uβ).

Taking products, we have the sequence of abelian groups

0 → S(X)

∏
f∗
α−−−→ ∏

α
S(Uα)

∏
p∗1,α,β−

∏
p∗2,α,β−−−−−−−−−−−−→ ∏

α,β

S(Uα ×X Uβ). (1)

Definition A presheaf S is a sheaf for τ if for each covering
family {fα : Uα → X} ∈ Covτ , the sequence (1) is exact. The
category ShvAb

τ (C) of sheaves of abelian groups on C for τ is the
full subcategory of PreShvAb(C) with objects the sheaves.
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Proposition (1) The inclusion i : ShvAb
τ (C) → PreShvAb

τ (C)

admits a left adjoint: “sheafification”.

(2) ShvAb
τ (C) is an abelian category: For f : F → G, ker(f) is

the presheaf kernel. coker(f) is the sheafification of the presheaf

cokernel.

(3) ShvAb
τ (C) has enough injectives.

17



Categories of motivic complexes
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Nisnevich sheaves The sheaf-theoretic construction of mixed mo-
tives is based on the notion of a Nisnevich sheaf with transfer.

Definition Let X be a k-scheme of finite type. A Nisnevich
cover U → X is an étale morphism of finite type such that, for
each finitely generated field extension F of k, the map on F -
valued points U(F ) → X(F ) is surjective.

Using Nisnevich covers as covering families gives us the small
Nisnevich site on X, XNis. The big Nisnevich site over k, with
underlying category Sm/k, is defined similarly.

Notation ShNis(X) := Nisnevich sheaves of abelian groups on X,
ShNis(k) := Nisnevich sheaves of abelian groups on Sm/k

For a presheaf F on Sm/k or XNis, we let FNis denote the asso-
ciated sheaf.
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For a category C, we have the category of presheaves of abelian
groups on C, i.e., the category of functors Cop → Ab.

Definition (1) The category PST(k) of presheaves with transfer
is the category of presheaves of abelian groups on Corfin(k).

(2) The category of Nisnevich sheaves with transfer on Sm/k,
ShNis(Corfin(k)), is the full subcategory of PST(k) with objects
those F such that, for each X ∈ Sm/k, the restriction of F to
XNis is a sheaf.

Note. A PST F is a presheaf on Sm/k together with transfer
maps

Tr(a) : F (Y ) → F (X)

for every finite correspondence a ∈ Corfin(X, Y ), with:

Tr(Γf) = f∗, Tr(a◦ b) = Tr(b)◦Tr(a), Tr(a± b) = Tr(a)±Tr(b).
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Definition Let F be a presheaf of abelian groups on Sm/k. We
call F homotopy invariant if for all X ∈ Sm/k, the map

p∗ : F (X) → F (X × A
1)

is an isomorphism.

We call F strictly homotopy invariant if for all q ≥ 0, the coho-
mology presheaf X �→ Hq(XNis, FNis) is homotopy invariant.

Theorem (PST) Let F be a homotopy invariant PST on Sm/k.
Then

(1) The cohomology presheaves X �→ Hq(XNis, FNis) are PST’s

(2) FNis is strictly homotopy invariant.

(3) FZar = FNis and Hq(XZar, FZar) = Hq(XNis, FNis).
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Remarks (1) uses the fact that for finite map Z → X with X

Hensel local and Z irreducible, Z is also Hensel local. (2) and (3)
rely on Voevodsky’s generalization of Quillen’s proof of Gersten’s
conjecture, viewed as a “moving lemma using transfers”. For
example:

Lemma (Voevodsky’s moving lemma) Let X be in Sm/k, S

a finite set of points of X, jU : U → X an open subscheme. Then
there is an open neighborhood jV : V → X of S in X and a finite
correspondence a ∈ c(V, U) such that, for all homotopy invariant
PST’s F , the diagram

F (X)
j∗U−−→ F (U)

j∗V

⏐⏐⏐�
⏐⏐⏐�Tr(a)

F (V ) F (V )

commutes.
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One consequence of the lemma is

(1) If X is semi-local, then F (X) → F (U) is a split injection.

Variations on this construction prove:

(2) If X is semi-local and smooth then F (X) = FZar(X) and
Hn(XZar, FZar) = 0 for n > 0.

(3) If U is an open subset of A1
k, then FZar(U) = F (U) and

Hn(U, FZar) = 0 for n > 0.

(4) If j : U → X has complement a smooth k-scheme i : Z → X,
then cokerF (XZar) → j∗F (UZar) (as a sheaf on ZZar) depends
only on the Nisnevich neighborhood of Z in X.

(1)-(4) together with some cohomological techniques prove the
theorem.
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The category of motivic complexes

Definition Inside the derived category D−(ShNis(Corfin(k))),

we have the full subcategory DMeff− (k) consisting of complexes

whose cohomology sheaves are homotopy invariant.

Proposition DMeff− (k) is a triangulated subcategory of

D−(ShNis(Corfin(k))).

This follows from

Lemma Let HI(k) ⊂ ShNis(Corfin(k)) be the full subcategory

of homotopy invariant sheaves. Then HI(k) is an abelian subcat-

egory of ShNis(Corfin(k)), closed under extensions in ShNis(Corfin(k)).
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Proof of the lemma. Given f : F → G in HI(k), ker(f) is the

presheaf kernel, hence in HI(k).

The presheaf coker(f) is homotopy invariant, so by the PST

theorem coker(f)Nis is homotopy invariant.

Given 0 → A → E → B → 0 exact in ShNis(Corfin(k)) with

A, B ∈ HI(k).

Consider p : X × A1 → X. The PST theorem implies

R1p∗A = 0, so

0 → p∗A → p∗E → p∗B → 0 is exact as sheaves on X.

Thus p∗E = E, so E is homotopy invariant.

25



The Suslin complex

26



The Suslin complex

Let ∆n := Spec k[t0, . . . , tn]/
∑n

i=0 ti − 1.

n �→ ∆n defines the cosimplicial k-scheme ∆∗.

Definition Let F be a presheaf on Corfin(k). Define the

presheaf Cn(F ) by

Cn(F )(X) := F (X × ∆n)

The Suslin complex C∗(F ) is the complex with differential

dn :=
∑
i

(−1)iδ∗i : Cn(F ) → Cn−1(F ).

For X ∈ Sm/k, let C∗(X) be the complex of sheaves

Cn(X)(U) := Corfin(U × ∆n, X).

27



Remarks (1) If F is a sheaf with transfers on Sm/k, then C∗(F )

is a complex of sheaves with transfers.

(2) The homology presheaves hi(F ) := H−i(C∗(F )) are homo-

topy invariant. Thus, by Voevodsky’s PST theorem, the associ-

ated Nisnevich sheaves hNis
i (F ) are strictly homotopy invariant.

We thus have the functor

C∗ : ShNis(Corfin(k)) → DMeff− (k).

(3) For X in Schk, we have the sheaf with transfers L(X)(Y ) =

Corfin(Y, X) for Y ∈ Sm/k.
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For X ∈ Sm/k, L(X) is the free sheaf with transfers generated

by the representable sheaf of sets Hom(−, X).

We have the canonical isomorphisms Hom(L(X), F ) = F (X) and

C∗(X) = C∗(L(X)).

In fact: For F ∈ ShNis(Corfin(k)) there is a canonical isomor-

phism

Extn
ShNis(Corfin(k))

(L(X), F ) ∼= Hn(XNis, F )
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Statement of main results
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The localization theorem

Theorem The functor C∗ extends to an exact functor

RC∗ : D−(ShNis(Corfin(k))) → DMeff− (k),

left adjoint to the inclusion DMeff− (k) → D−(ShNis(Corfin(k))).

RC∗ identifies DMeff− (k) with the localization D−(ShNis(Corfin(k)))/A,

where A is the localizing subcategory of D−(ShNis(Corfin(k)))

generated by complexes

L(X × A
1)

L(p1)−−−−→ L(X); X ∈ Sm/k.
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The tensor structure

We define a tensor structure on ShNis(Corfin(k)):

Set L(X) ⊗ L(Y ) := L(X × Y ).

For a general F , we have the canonical surjection

⊕(X,s∈F (X))L(X) → F.

Iterating gives the canonical left resolution L(F ) → F . Define

F ⊗ G := HNis
0 (L(F ) ⊗ L(G)).

The unit for ⊗ is L(Spec k).

There is an internal Hom in ShNis(Corfin(k)):

Hom(L(X), G)(U) = G(U × X);

Hom(F, G) := H0
Nis(Hom(L(F ), G)).
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Tensor structure in DMeff−

The tensor structure on ShNis(Corfin(k)) induces a tensor struc-

ture ⊗L on D−(ShNis(Corfin(k))).

We make DMeff− (k) a tensor triangulated category via the local-

ization theorem:

M ⊗ N := RC∗(i(M) ⊗L i(N)).
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The embedding theorem

Theorem There is a commutative diagram of exact tensor

functors

Hb(Corfin(k))
L−→ D−(ShNis(Corfin(k)))⏐⏐⏐�

⏐⏐⏐�RC∗

DMeff
gm(k) −→

i
DMeff− (k)

such that

1. i is a full embedding with dense image.

2. RC∗(L(X)) ∼= C∗(X).

Corollary For X and Y ∈ Sm/k, Hom
DMeff

gm(k)(Mgm(Y ), Mgm(X)[n]) ∼=
Hn(YNis, C∗(X)) ∼= Hn(YZar, C∗(X)).
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Suslin homology

Definition For X ∈ Sm/k, define the Suslin homology of X as

HSus
i (X) := Hi(C∗(X)(Spec k)).

Theorem Let U, V be open subschemes of X ∈ Sm/k. Then
there is a long exact Mayer-Vietoris sequence

. . . → HSus
n+1(U ∪ V ) → HSus

n (U ∩ V )

→ HSus
n (U) ⊕ HSus

n (V ) → HSus
n (U ∪ V ) → . . .

Proof. By the embedding theorem, we have

HSus
n (Y ) = Hom

DMeff− (k)(Mgm(Spec k), Mgm(Y )[−n]).

for all Y ∈ Sm/k, n ∈ Z. Also, [U ∩ V ] → [U ] ⊕ [V ] → [U ∪ V ]
extends to a distinguished triangle in DMeff− (k).
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