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Recall from Lecture 2:
Cor r;, (k) := the category with objects [X] for X € Sm/k and
morphisms

Homcor . (o ([X], [Y]) := o(X,Y) € 2(X x )

the finite over X correspondences.

Cor ;n (k) is a tensor category with [X]®[Y] = [XTTY], [X]®[Y] =
[X x Y], etc.

Form a triangulated tensor category by taking the homotopy
category K°(Cor p;,(k)).



Localize K®(Cor ¢;,(k)) to impose
1. Homotopy invariance: [X x Al] £ [X]

2. Mayer-Vietoris: For X = U UV, the complex
[UnV] —[U]l®[V] — [X]
IS isomorphic to O.

Then take the pseudo-abelian hull to form the category of effec-
tive geometric motives DMGH, (k).

Sending X to the image of [X] in DM (k) gives a symmetric
monoidal functor

Mgm : Sm/k — DMGH (k).



Form the category of geometric motives by inverting Z(1) :=
Mgm(P1)[-2]:

DMgm (k) := DMSH(K)[Z(1))®1].

The canonical functor i : DM§H (k) — DMgm(k) is a full embed-
ding.

Note. We will see later that, just as for M~(k), DMgm(k) is a
rigid tensor (triangulated) category: we invert Z(1) so that every
object has a dual.



Elementary constructions in DMgﬁﬁ(k)



Motivic cohomology

Definition For X € Sm/k, q € Z, set
HP(X,7(g)) 1= Hompaz - ey (Mam(X), Z(q) [p)).

Compare with CH"(X) = HomCHM(k)(]l(—r),h(X)). In fact, for
all X € Sm/k, there is a natural isomorphism

CH(X) = Homg ey (1(—=7), H(X))
= HOM p prym (k) (Mam (X)), Z(r)[2r]) = H2"(X, Z(r)).

In particular, sending h(X) to Mgm(X) for X € SmProj/k gives
a full embedding

CHM(IC)OD — DMgm(lC)



Products Define the cup product

HP(X,Z(q)) ® HY (X,Z(¢")) — HP TP (X, Z(q + ¢))
by sending a ® b to
Mgm(X) % Mgm(X) @ Mgm(X)

22, 7(q) [p] @ Z() Y] = Z(q + ) p + P'].

This makes &, ¢HP(X,Z(q)) a graded commutative ring with unit
1 the map Mgm(X) — Z induced by px : X — Speck.



Homotopy property

Applying Hom p o, (—,Z(g)[p]) to the isomorphism
px © Mgm(X x Al) — Mgm(X) gives the homotopy property for
H*(—,Z(*)):

p* HP(X,Z(q)) = HP(X x Al Z(q)).



Mayer-Vietoris

For U,V C X open subschemes we can apply Hompy,,,(—, Z(q) [p])
to the distinguished triangle

Mgm(UﬂV) — Mgm(U)EBMgm(V) — Mgm(UUV) — Mgm(UﬂV)[l]

This gives the Mayer-Vietoris exact sequence for H*(—,7Z(x)):

. — HP" Y (U UV, Z(q)) — HP(UNV,Z(q))
— HP(U,Z(q)) @ HP(V,Z(q)) — HP(UUV,Z(q)) — ...



The end of the road?

It is difficult to go much further using only the techniques of
geometry and homological algebra.

One would like to have:

e Chern classes of line bundles and a projective bundle formula
e A Gysin isomorphism

e A computation of the morphisms in DMSEQ(I«) as algebraic
cycles.

Voevodsky achieves this by viewing DMgﬁﬂ(k) as a subcategory
of a derived category of “Nisnevich sheaves with transfer’ .
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Outline:

e Sites and sheaves

e Categories of motivic complexes

e [ he Suslin complex

e [ he main results: the localization and embedding theorems
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Sites and sheaves

We give a quick review of the theory of sheaves on a Grothendieck
Site.
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Presheaves A presheaf P on a small category € with values in
a category A is a functor

P:C°P 5 A,

Morphisms of presheaves are natural transformations of func-

tors. This defines the category of A-valued presheaves on G,
PreShv?(@).

Remark We require C to be small so that the collection of
natural transformations v : F' — G, for presheaves F, (G, form a
set. It would suffice that € be essentially small (the collection of
isomorphism classes of objects form a set).
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Structural results

Theorem (1) IfA is an abelian category, then so is PreShv” (@),
with kernel and cokernel defined objectwise: For f . F — G,

ker(f)(z) = ker(f(z) : F(z) — G(z));
coker(f)(xz) = coker(f(xz) : F(x) — G(x)).
(2) For A = Ab, PreShv*P(@) has enough injectives.

The second part is proved by using a result of Grothendieck,
noting that PreShvAP(@) has the set of generators {Zx | X € C},
where Zx (Y') is the free abelian group on Home(Y, X).
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Pre-topologies

Definition Let € be a category. A Grothendieck pre-topology
7 on € is given by defining, for X € €, a collection Cov,(X)
of covering families of X: a covering family of X is a set of
morphisms {fo : Uy — X} in C. These satisfy:

Al. {idx} is in Cov,(X) for each X € C.

A2. For {fa : Uy — X} € Covr(X) and g: Y — X a morphism in
C, the fiber products Uy X x Y all exist and {po : Ua Xx Y — Y}
is in Cov,-(Y).

A3. If {fa : Ua — X} is in Covr(X) and if {gag : Vag — Ua} is in
Cov;(Uq) for each «, then {fa0g.3: Vo — X} is in Cov,(X).

A category with a (pre) topology is a site
15



Sheaves on a site

For S presheaf of abelian groups on C and {fs : Uy — X} €
Cov,(X) for some X € G, we have the “restriction” morphisms

f:z : S(X) — S(Ua)
P16 - SWUa) — S(Ua xx Ug)
paa’ﬁ : S(U,B) — S(Ua X X Uﬁ)
Taking products, we have the sequence of abelian groups

[1P105-11P50 5

0 — sC0) 9 T swa)

Definition A presheaf S is a sheaf for r if for each covering
family {fo : Uo — X} € Cov,, the sequence (1) is exact. The
category ShvAP(@) of sheaves of abelian groups on € for 7 is the
full subcategory of PreShv®P(€) with objects the sheaves.
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Proposition (1) The inclusion i : Shv®P(@) — PreShvAP(@)
admits a left adjoint: ‘sheafification”.

(2) ShvAP(@R) is an abelian category: For f : F — G, ker(f) is
the presheaf kernel. coker(f) is the sheafification of the presheaf

cokernel.

(3) Shv2P(@) has enough injectives.
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Categories of motivic complexes
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Nisnevich sheaves The sheaf-theoretic construction of mixed mo-
tives is based on the notion of a Nisnevich sheaf with transfer.

Definition Let X be a k-scheme of finite type. A Nisnevich
cover U — X is an étale morphism of finite type such that, for
each finitely generated field extension F of k, the map on F-
valued points U(F) — X (F) is surjective.

Using Nisnevich covers as covering families gives us the small
Nisnevich site on X, Xyjs- The big Nisnevich site over k, with
underlying category Sm/k, is defined similarly.

Notation ShN'S(X) := Nisnevich sheaves of abelian groups on X,
ShNIS(k) := Nisnevich sheaves of abelian groups on Sm/k

For a presheaf F on Sm/k or Xyis, we let Fjs denote the asso-

ciated sheaf.
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For a category €, we have the category of presheaves of abelian
groups on G, i.e., the category of functors C°P — Ab.

Definition (1) The category PST (k) of presheaves with transfer
is the category of presheaves of abelian groups on Cor ¢;, (k).

(2) The category of Nisnevich sheaves with transfer on Sm/k,
ShN'S(Corfm(k)), is the full subcategory of PST (k) with objects
those F such that, for each X € Sm/k, the restriction of F to
XNis IS a sheaf.

Note. A PST F is a presheaf on Sm/k together with transfer
maps

Tr(a) : F(Y) — F(X)
for every finite correspondence a € Corfm(X, Y), with:

Tr(l ) = f* Tr(aob) = Tr(b)oTr(a), Tr(axb) = Tr(a) £Tr(b).
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Definition Let F' be a presheaf of abelian groups on Sm/k. We
call FF homotopy invariant if for all X € Sm/k, the map

p* i F(X) — F(X x AD)

IS an isomorphism.

We call F' strictly homotopy invariant if for all ¢ > 0, the coho-
mology presheaf X — HY(X\js, FNis) IS homotopy invariant.

Theorem (PST) LetF beahomotopy invariant PST on Sm/k.
T hen

(1) The cohomology presheaves X — HY(Xpis, Fnis) are PST's
(2) Fyis Is strictly homotopy invariant.

(3) Fzar = Fnis and HYU( Xzar, Fzar) = HY(Xnis, FNis) -
21



Remarks (1) uses the fact that for finite map Z — X with X
Hensel local and Z irreducible, Z is also Hensel local. (2) and (3)
rely on Voevodsky's generalization of Quillen’s proof of Gersten’s
conjecture, viewed as a “moving lemma using transfers’. For
example:

Lemma (Voevodsky’s moving lemma) Let X be in Sm/k, S
a finite set of points of X, jiy : U — X an open subscheme. Then
there is an open neighborhood 3y, : V — X of S in X and a finite
correspondence a € ¢(V,U) such that, for all homotopy invariant
PST's F', the diagram

F(X) 2 R0

J‘*/J JT’I‘(CL)
F(V) — F(V)
commutes.
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One consequence of the lemma is
(1) If X is semi-local, then F(X) — F(U) is a split injection.
Variations on this construction prove:

(2) If X is semi-local and smooth then F(X) = F»5(X) and

(3) If U is an open subset of Al, then Fy,(U) = F(U) and
H™(U, Fa) = 0 for n > 0.

(4) If 5 : U — X has complement a smooth k-scheme i : 7 — X,
then cokerF(Xz5) — j«EF'(Uzar) (as a sheaf on Z»,) depends
only on the Nisnevich neighborhood of Z in X.

(1)-(4) together with some cohomological techniques prove the
theorem.
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The category of motivic complexes

Definition Inside the derived category D_(ShN‘S(Corfm(k))),
we have the full subcategory DMEfr(k) consisting of complexes
whose cohomology sheaves are homotopy invariant.

Proposition DME" (k) is a triangulated subcategory of
D=(shNS(Cor 4, (K))).

This follows from

Lemma Let HI(k) C ShN'S(Cory;,(k)) be the full subcategory
of homotopy invariant sheaves. Then HI(k) is an abelian subcat-
egory of ShNIS(Cor ¢4, (k)), closed under extensions in ShN'S(Cor ¢;,,(k)).
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Proof of the lemma. Given f : F — G in HI(k), ker(f) is the
presheaf kernel, hence in HI(k).

The presheaf coker(f) is homotopy invariant, so by the PST
theorem coker(f)nis iS homotopy invariant.

Given 0 — A — E — B — 0 exact in ShN'S(Cor;,,(k)) with
A B e HIK).

Consider p: X x Al — X. The PST theorem implies
Rlp.A =0, so

0 — p«sA — p«E — p«B — 0 is exact as sheaves on X.

Thus p« ¥ = FE, so E is homotopy invariant.
25



The Suslin complex
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The Suslin complex
Let A™ = Speckl[tg,...,tn]/ Xl gt; — 1.
n — A" defines the cosimplicial k-scheme A*.

Definition Let F be a presheaf on Cory;, (k). Define the
presheaf Cp(F") by

Cn(F)(X) :(= F(X x A™)
The Suslin complex C«(F') is the complex with differential

dp 1= Z(—1)i5;< : Cn(F) — C,,_1(F).

For X € Sm/k, let Cyx(X) be the complex of sheaves
Cn(X)(U) 1= Cor g, (U x A", X).

27



Remarks (1) If F' is a sheaf with transfers on Sm/k, then Cy(F)
iIs a complex of sheaves with transfers.

(2) The homology presheaves h;(F) := H4(C«(F)) are homo-
topy invariant. Thus, by Voevodsky's PST theorem, the associ-
ated Nisnevich sheaves h,'b-\”S(F) are strictly homotopy invariant.
We thus have the functor

Cy : ShNIS(Cor 44, (k) — DMET (k).

(3) For X in Schy, we have the sheaf with transfers L(X)(Y) =
Cor ¢;in (Y, X) for Y € Sm/k.
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For X € Sm/k, L(X) is the free sheaf with transfers generated
by the representable sheaf of sets Hom(—, X).

We have the canonical isomorphisms Hom(L(X), F) = F(X) and
Ci(X) = Co(L(X)).

In fact: For F' € Shys(Corg;n(k)) there is a canonical isomor-
phism

EthhNiS(COrﬁn(k))(L(X)7F) = Hn(XNi57F)
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Statement of main results
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The localization theorem

T heorem The functor Cy extends to an exact functor

RC. : D™ (Shnis(Corfin(k))) — DME" (k),
left adjoint to the inclusion DM (k) — D~ (Shyis(Cor ;,(k))).

RC. identifies DM (k) with the localization D~ (Shyis(Cor 7, (k))) /A,
where A is the localizing subcategory of D~ (Shyis(Cor ¢;,(k)))
generated by complexes

L(X x A1) L), L(X); X €Sm/k.
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The tensor structure

We define a tensor structure on ShN'S(Cor ;,,(k)):
Set L(X)® L(Y) :=L(X xXY).

For a general F', we have the canonical surjection

EB(X,SEF(X))L(X) — F.
Iterating gives the canonical left resolution L(F) — F. Define

F®G:= HYS(LF) @ L(R)).
The unit for ® is L(Speck).
There is an internal Hom in ShNiS(Corfm(k)):

Hom(L(X),G)(U) = GU x X);
Hom(F,G) := HYic(FHom(L(F), G)).
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Tensor structure in DMET

The tensor structure on ShNiS(Corfm(k)) induces a tensor struc-
ture ®L on D™ (Shy;is(Cor £;,(k))).

We make DMEfr(lc) a tensor triangulated category via the local-
ization theorem:

M ® N = RC.(i(M) @Li(N)).
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The embedding theorem

Theorem There is a commutative diagram of exact tensor
functors

HO(Cor i (k) = D™ (Shyis(Cor i ()))

l ke

DMEN (k) — DMET (k)

such that
1. 2 is a full embedding with dense image.
2. RO«(L(X)) = C«(X).

Corollary ForX andY € Sm/k, HomDMefr(k)(Mgm(Y),Mgm(X)[n]) =
am
H"™ (Ynis, Cx (X)) = H"(Yzar, C«(X)).
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Suslin homology

Definition For X € Sm/k, define the Suslin homology of X as
HPYS(X) := H;(Cx(X)(Speck)).

Theorem Let U,V be open subschemes of X € Sm/k. Then
there is a long exact Mayer-Vietoris sequence

= HMS(UUV) - H'S(UNV)
— HYS(U) @ H2VS(V) — HXYS(UUV) — ...

Proof. By the embedding theorem, we have
HRUS(Y') = Hom , efr 1y (Mgm(SPec k), Mgm(Y)[—n]).

for all Y € Sm/k, n € Z. Also, [UNV] — [U] @ [V] — [UU V]
extends to a distinguished triangle in DM€ (k).
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