

SMR/1840-21

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Mixed motives and cycle complexes

Marc Levine Universitaet Duisburg-Essen, Germany

Recall from lecture 3:

- The category PST: presheaves on $Cor_{fin}(k)$ and the category Sh^{Nis}($Cor_{fin}(k)$) of Nisnevich sheaves with transfer on Sm/k.
- The full subcategory $DM_{-}^{\text{eff}}(k) \subset D^{-}(Sh^{\text{Nis}}(Cor_{\text{fin}}(k)))$: complexes of sheaves with homotopy invariant cohomology sheaves.
- The Suslin complex: C_* : Sh^{Nis}(Cor_{fin}(k)) $\rightarrow DM_-^{\text{eff}}(k)$.

$$\dots \to C_n(F)(X) := F(X \times \Delta^n)$$
$$\xrightarrow{\sum_{i=0}^n (-1)^i \delta_i^*} C_{n-1}(F)(X) = F(X \times \Delta^{n-1}) \to \dots$$

• For $X \in \text{Sm}/k$, the representable sheaf L(X): $L(X)(Y) = c_{fin}(Y,X) = \text{Hom}_{\text{Cor}_{fin}(k)}([Y],[X]).$

Thus, we have the functor

$$M: \mathbf{Sm}/k \to DM_{-}^{\mathsf{eff}}(k)$$

 $M(X) := C_*(L(X))$

We also recall two main structural results:

Theorem (PST) Let F be a homotopy invariant PST on Sm/k. Then

(1) The cohomology presheaves $X \mapsto H^q(X_{Nis}, F_{Nis})$ are PST's

(2) F_{Nis} is strictly homotopy invariant.

(3) $F_{\text{Zar}} = F_{\text{Nis}}$ and $H^q(X_{\text{Zar}}, F_{\text{Zar}}) = H^q(X_{\text{Nis}}, F_{\text{Nis}})$.

Proposition $DM_{-}^{\text{eff}}(k)$ is a triangulated subcategory of $D^{-}(Sh^{\text{Nis}}(Cor_{\text{fin}}(k))).$

This latter result follows from

Lemma Let $HI(k) \subset Sh^{Nis}(Cor_{fin}(k))$ be the full subcategory of homotopy invariant sheaves. Then HI(k) is an abelian subcategory of $Sh^{Nis}(Cor_{fin}(k))$, closed under extensions in $Sh^{Nis}(Cor_{fin}(k))$.

which in turn is a consequence of the PST theorem.

Theorem (Global PST) Let F^* be a complex of PSTs on Sm/k: $F \in C^-(PST)$. Suppose that the cohomology presheaves $h^i(F)$ are homotopy invariant. Then

(1) For $Y \in \mathbf{Sm}/k$, $\mathbb{H}^{i}(Y_{\mathsf{Nis}}, F^{*}_{\mathsf{Nis}}) \cong \mathbb{H}^{i}(Y_{\mathsf{Zar}}, F^{*}_{\mathsf{Zar}})$

(2) The presheaf $Y \mapsto \mathbb{H}^{i}(Y_{Nis}, F^{*}_{Nis})$ is homotopy invariant

(1) and (2) follows from the PST theorem using the spectral sequence:

$$E_2^{p,q} = H^p(Y_\tau, h^q(F)_\tau) \Longrightarrow \mathbb{H}^{p+q}(Y_\tau, F_\tau), \tau = \text{Nis}, \text{Zar}.$$

Statement of main results

The localization theorem

Theorem The functor C_* : Sh^{Nis}(Cor_{fin}(k)) $\rightarrow DM_{-}^{\text{eff}}(k)$ extends to an exact functor

 $\mathbf{R}C_*: D^-(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k))) \to DM^{\mathsf{eff}}_-(k),$

left adjoint to the inclusion $DM_{-}^{\text{eff}}(k) \rightarrow D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k))).$

 $\mathbf{R}C_*$ identifies $DM^{\text{eff}}_{-}(k)$ with the localization $D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k)))/\mathcal{A}$, where \mathcal{A} is the localizing subcategory of $D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k)))$ generated by complexes

$$L(X \times \mathbb{A}^1) \xrightarrow{L(p_1)} L(X); \quad X \in \mathbf{Sm}/k.$$

The tensor structure

We define a tensor structure on $Sh^{Nis}(Cor_{fin}(k))$:

Set $L(X) \otimes L(Y) := L(X \times Y)$.

For a general F, we have the canonical surjection

$$\oplus_{(X,s\in F(X))}L(X)\to F.$$

Iterating gives the canonical left resolution $\mathcal{L}(F) \to F$. Define

$$F \otimes G := H_0^{\mathsf{Nis}}(\mathcal{L}(F) \otimes \mathcal{L}(G)).$$

The unit for \otimes is $L(\operatorname{Spec} k)$.

There is an *internal Hom* in $Sh^{Nis}(Cor_{fin}(k))$:

$$\mathcal{H}om(L(X),G)(U) = G(U \times X);$$

$$\mathcal{H}om(F,G) := H^{0}_{\mathsf{Nis}}(\mathcal{H}om(\mathcal{L}(F),G)).$$

Tensor structure in DM_{-}^{eff}

The tensor structure on $Sh^{Nis}(Cor_{fin}(k))$ induces a tensor structure \otimes^{L} on $D^{-}(Sh_{Nis}(Cor_{fin}(k)))$.

We make $DM_{-}^{\text{eff}}(k)$ a tensor triangulated category via the localization theorem:

 $M \otimes N := \mathbf{R}C_*(i(M) \otimes^L i(N)).$

We have the functor $L : Cor_{fin}(k) \to Sh_{Nis}(Cor_{fin}(k))$ sending X to the representable sheaf L(X). This extends to a functor on the homotopy categories

$$L: K^{b}(\operatorname{Cor}_{\mathsf{fin}}(k)) \to K^{b}(\operatorname{Sh}_{\mathsf{Nis}}(\operatorname{Cor}_{\mathsf{fin}}(k)));$$

composing with

$$K^{b}(Sh_{Nis}(Cor_{fin}(k))) \to K^{-}(Sh_{Nis}(Cor_{fin}(k))) \to D^{-}(Sh_{Nis}(Cor_{fin}(k)))$$

gives

$$L: K^{b}(\operatorname{Cor}_{\mathsf{fin}}(k)) \to D^{-}(\operatorname{Sh}_{\mathsf{Nis}}(\operatorname{Cor}_{\mathsf{fin}}(k))).$$

We also have the canonical localization functor

$$q: K^b(\operatorname{Cor}_{\mathsf{fin}}(k)) \to DM^{\mathsf{eff}}_{\mathsf{gm}}(k)$$

and the localization functor

$$\mathbf{R}C_*: D^-(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k))) \to DM^{\mathsf{eff}}_-(k).$$

The embedding theorem

Theorem There is a commutative diagram of exact tensor functors

such that

1. i is a full embedding with dense image.

2. $\mathbf{R}C_*(L(X)) \cong C_*(X)$.

Corollary For X and $Y \in \mathbf{Sm}/k$,

$$\operatorname{Hom}_{DM_{gm}^{\operatorname{eff}}(k)}(M_{gm}(Y), M_{gm}(X)[n]) \\ \cong \mathbb{H}^{n}(Y_{\operatorname{Nis}}, C_{*}(X)) \cong \mathbb{H}^{n}(Y_{\operatorname{Zar}}, C_{*}(X)).$$

Proof. For a sheaf F, and $Y \in \mathbf{Sm}/k$,

$$\operatorname{Hom}_{\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}})}(L(Y),F) = F(Y)$$

Thus the Hom in the derived category, for F a complex of sheaves, is:

$$\operatorname{Hom}_{D^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}))}(L(Y), F[n]) = \mathbb{H}^{n}(Y_{\operatorname{Nis}}, F).$$

Thus (using the embedding theorem and localization theorem) $Hom_{DM_{gm}^{eff}(k)}(M_{gm}(Y), M_{gm}(X)[n])$ $= Hom_{DM_{-}^{eff}(k)}(C_{*}(Y), C_{*}(X)[n])$ $= Hom_{D^{-}(Sh_{Nis}(Cor_{fin}))}(L(Y), C_{*}(X)[n])$ $= \mathbb{H}^{n}(Y_{Nis}, C_{*}(X)).$

 $\mathsf{PST} \text{ theorem} \Longrightarrow \mathbb{H}^n(Y_{\mathsf{Zar}}, C_*(X)) = \mathbb{H}^n(Y_{\mathsf{Nis}}, C_*(X)).$

Suslin homology

Definition For $X \in \text{Sm}/k$, define the *Suslin homology* of X as $H_i^{\text{Sus}}(X) := H_i(C_*(X)(\text{Spec }k)).$

Theorem Let U, V be open subschemes of $X \in Sm/k$. Then there is a long exact Mayer-Vietoris sequence

$$\dots \to H_{n+1}^{\mathsf{Sus}}(U \cup V) \to H_n^{\mathsf{Sus}}(U \cap V) \to H_n^{\mathsf{Sus}}(U) \oplus H_n^{\mathsf{Sus}}(V) \to H_n^{\mathsf{Sus}}(U \cup V) \to \dots$$

Proof. By the embedding theorem $[U \cap V] \rightarrow [U] \oplus [V] \rightarrow [U \cup V]$ maps to the distinguished triangle in $DM^{\text{eff}}_{-}(k)$:

$$C_*(U \cap V)_{\mathsf{Nis}} \to C_*(U)_{\mathsf{Nis}} \oplus C_*(V)_{\mathsf{Nis}} \to C_*(U \cup V)_{\mathsf{Nis}} \to$$

This yields a long exact sequence upon applying $\operatorname{Hom}_{DM^{\operatorname{eff}}}(M_{\operatorname{gm}}(Y), -)$ for any $Y \in \operatorname{Sm}/k$.

By the corollary to the embedding theorem, this gives the long exact sequence

$$\dots \to \mathbb{H}^{-n}(Y_{\mathsf{Nis}}, C_*(U \cap V)) \to \mathbb{H}^{-n}(Y_{\mathsf{Nis}}, C_*(U)) \oplus \mathbb{H}^{-n}(Y_{\mathsf{Nis}}, C_*(V))$$
$$\to \mathbb{H}^{-n}(Y_{\mathsf{Nis}}, C_*(U \cap V)) \to \mathbb{H}^{-n+1}(Y_{\mathsf{Nis}}, C_*(U \cap V)) \to \dots$$

Now just take $Y = \operatorname{Spec} k$, since

 $\mathbb{H}^{-n}(\operatorname{Spec} k_{\operatorname{Nis}}, C_*(X)) = H_n(C_*(X)(\operatorname{Spec} k)) = H_n^{\operatorname{Sus}}(X).$

In fact, the embedding theorem implies that for all $Y \in \mathbf{Sm}/k$, the homology sheaves $h_n^{\text{Zar}}(Y)$ associated to the presheaf $U \mapsto$ $H_n(C_*(Y)(U))$ are the same as the sheaves associated to the presheaf

$$U \mapsto \operatorname{Hom}_{DM_{-}^{\operatorname{eff}}(k)}(M_{\operatorname{gm}}(U), M_{\operatorname{gm}}(Y)[-n]).$$

Thus

• $h_n^{\operatorname{Zar}}(Y \times \mathbb{A}^1) \to h_n^{\operatorname{Zar}}(Y)$ is an isomorphism

• for $Y = U \cup V$, have a long exact Mayer-Vietoris sequence

$$\ldots \to h_p^{\mathsf{Zar}}(U \cap V) \to h_p^{\mathsf{Zar}}(U) \oplus h_p^{\mathsf{Zar}}(V) \to h_p^{\mathsf{Zar}}(Y) \to h_{p-1}^{\mathsf{Zar}}(U \cap V) \to \ldots$$

Fundamental constructions in $DM_{gm}^{eff}(k)$

We discuss the projective bundle formula the blow-up formula and the Gysin isomorphism, realizing these as morphisms and isomorphisms in $DM_{\rm gm}^{\rm eff}$.

Weight one motivic cohomology

 $\mathbb{Z}(1)[2]$ is the reduced motive of \mathbb{P}^1 , and $M_{gm}(\mathbb{P}^1)$ is represented in DM_-^{eff} by the Suslin complex $C_*(\mathbb{P}^1)$. The homology sheaves of $C_*(\mathbb{P}^1)$ and $C_*(\operatorname{Spec} k)$ are given by:

Lemma $h_0^{\text{Zar}}(\mathbb{P}^1) = \mathbb{Z}$, $h_1^{\text{Zar}}(\mathbb{P}^1) = \mathbb{G}_m$ and $h_n^{\text{Zar}}(\mathbb{P}^1) = 0$ for $n \ge 2$. $h_0^{\text{Zar}}(\text{Spec } k) = \mathbb{Z}$, $h_n^{\text{Zar}}(\text{Spec } k) = 0$ for $n \ge 1$.

Sketch of proof: $C_n(\operatorname{Spec} k)(Y) = c(Y \times \Delta^n, \operatorname{Spec} k) = H^0(Y_{\operatorname{Zar}}, \mathbb{Z}).$ Thus

$$h_p(C_*(\operatorname{Spec} k)(Y)) = \begin{cases} H^0(Y_{\operatorname{Zar}}, \mathbb{Z}) & \text{for } p = 0\\ 0 & \text{for } p \neq 0 \end{cases}$$

We have $h_p^{\rm Zar}({\mathbb A}^1)=h_p^{\rm Zar}(\operatorname{Spec} k)$ and we have a Meyer-Vietoris sequence

$$\dots \to h_p^{\text{Zar}}(\mathbb{A}^1) \oplus h_p^{\text{Zar}}(\mathbb{A}^1) \to h_p^{\text{Zar}}(\mathbb{P}^1) \to h_{p-1}^{\text{Zar}}(\mathbb{A}^1 \setminus 0) \to \dots$$
 giving

$$h_p^{\operatorname{Zar}}(\mathbb{P}^1) = h_p^{\operatorname{Zar}}(\operatorname{Spec} k) \oplus h_{p-1}^{\operatorname{Zar}}(\mathbb{G}_m).$$

where $h_{p-1}^{\operatorname{Zar}}(\mathbb{G}_m) := h_{p-1}^{\operatorname{Zar}}(\mathbb{A}^1 \setminus 0) / h_{p-1}^{\operatorname{Zar}}(1).$

So we need to see that

$$h_p^{\operatorname{Zar}}(\mathbb{A}^1 \setminus 0) = \begin{cases} \mathbb{G}_m \oplus \mathbb{Z} \cdot [1] & \text{ for } p = 0\\ 0 & \text{ else.} \end{cases}$$

For this, let $Y = \operatorname{Spec} \mathfrak{O}$ for $\mathfrak{O} = \mathfrak{O}_{X,x}$ some $x \in X \in \operatorname{Sm}/k$ $h_p^{\operatorname{Zar}}(\mathbb{A}^1 \setminus \mathbb{O})_{X,x} = H_p(C_*(\mathbb{A}^1 \setminus \mathbb{O})(Y)).$

For $W \subset Y \times \Delta^n \times (\mathbb{A}^1 \setminus 0)$ finite and surjective over $Y \times \Delta^n$, W has a monic defining equation

$$F_W(y,t,x) = x^N + \sum_{i=1}^{N-1} F_i(y,t)x^i + F_0(y,t)$$

with $F_0(y,t)$ a unit in $\mathcal{O}[t_0,\ldots,t_n]/\sum_i t_i-1$.

Map
$$h_0^{\operatorname{Zar}} \to \mathbb{Z}$$
 by $W \mapsto \deg_Y W$.

Define $\operatorname{cl}_Y : \mathbb{G}_m(Y) \to H_0(C_*(\mathbb{A}^1 \setminus 0)(Y))_{\deg 0}$ by $\operatorname{cl}_Y(u) := [\Gamma_u - \Gamma_1],$ $\Gamma_u \subset Y \times \mathbb{A}^1 \setminus 0$ the graph of $u : Y \to \mathbb{A}^1 \setminus 0.$

One shows cl_Y is a group homomorphism by using the cycle T on $Y \times \Delta^1 \times \mathbb{A}^1 \setminus 0$ defined by

$$t(x - uv)(x - 1) + (1 - t)(x - u)(x - v),$$
$$dT = (\Gamma_{uv} - \Gamma_1) - (\Gamma_u - \Gamma_1) - (\Gamma_v - \Gamma_1).$$

To show cl_Y is surjective: If $W \subset Y \times \mathbb{A}^1 \setminus 0$ is finite over Y, we have the unit $u := (-1)^N F_W(y, 0)$ with $F_W(y, x)$ the monic defining equation for W, $N = \operatorname{deg}_Y W$. The function

$$F(y, x, t) := tF_W(y, x) + (1 - t)(x - u)(x - 1)^{N - 1}$$

defines a finite cycle T on $Y \times \Delta^1 \times \mathbb{A}^1 \setminus 0$ with

$$dT = W - \Gamma_u - (N - 1)\Gamma_1 = (W - \deg_Y W \cdot \Gamma_1) - (\Gamma_u - \Gamma_1).$$

To show that cl_Y is injective: show sending W to $(-1)^N F_W(y,0)$ passes to H_0 . This can be done by noting that there are no non-constant maps $f : \mathbb{A}^1 \to \mathbb{A}^1 \setminus 0$.

The proof that $h_p^{\text{Zar}}(Y) = 0$ for p > 0 is similar.

This computation implies that

$$\mathbb{Z}(1)\cong \mathbb{G}_m[-1]$$

in $DM_{-}^{\text{eff}}(k)$. Indeed:

$$\mathbb{Z}(1)[2] \cong \operatorname{Cone}(C_*(\mathbb{P}^1) \to C_*(\operatorname{Spec} k))[-1]$$
$$\cong h_1^{\operatorname{Zar}}(\mathbb{P}^1)[1] = \mathbb{G}_m[1]$$

This yields:

Proposition For $X \in \mathbf{Sm}/k$, we have

$$H^{n}(X,\mathbb{Z}(1)) = \begin{cases} H^{0}_{\mathsf{Zar}}(X,\mathbb{O}_{X}^{*}) & \text{for } n = 1\\ \mathsf{Pic}(X) := H^{1}_{\mathsf{Zar}}(X,\mathbb{O}_{X}^{*}) & \text{for } n = 2\\ 0 & \text{else.} \end{cases}$$

Proof. Since $\mathbb{Z}(1) \cong \mathbb{G}_m[-1]$ in $DM_{-}^{\text{eff}}(k)$, the corollary to the embedding theorem gives:

$$\operatorname{Hom}_{DM_{gm}^{eff}}(M_{gm}(X), \mathbb{Z}(1)[n]) \cong \mathbb{H}^{n}_{\operatorname{Nis}}(X, \mathbb{Z}(1))$$
$$\cong \mathbb{H}^{n}_{\operatorname{Zar}}(X, \mathbb{Z}(1)) \cong H^{n-1}_{\operatorname{Zar}}(X, \mathbb{G}_{m}).$$

Chern classes of line bundles

Definition Let $L \to X$ be a line bundle on $X \in \mathbf{Sm}_k$.

We let $c_1(L) \in H^2(X, \mathbb{Z}(1))$ be the element corresponding to $[L] \in H^1_{Zar}(X, \mathcal{O}^*_X).$

Weighted spheres Before we compute the motive of \mathbb{P}^n , we need:

Lemma There is a canonical isomorphism $M_{\text{gm}}(\mathbb{A}^n \setminus 0) \to \mathbb{Z}(n)[2n-1] \oplus \mathbb{Z}.$

Proof. For n = 1, we have $M_{gm}(\mathbb{P}^1) = \mathbb{Z} \oplus \mathbb{Z}(1)[2]$, by definition of $\mathbb{Z}(1)$. The Mayer-Vietoris distinguished triangle

 $M_{\text{gm}}(\mathbb{A}^1 \setminus 0) \to M_{\text{gm}}(\mathbb{A}^1) \oplus M_{\text{gm}}(\mathbb{A}^1) \to M_{\text{gm}}(\mathbb{P}^1) \to M_{\text{gm}}(\mathbb{A}^1 \setminus 0)[1]$ defines an isomorphism $t : M_{\text{gm}}(\mathbb{A}^1 \setminus 0) \to \mathbb{Z}(1)[1] \oplus \mathbb{Z}.$ For general n, write $\mathbb{A}^n \setminus 0 = \mathbb{A}^n \setminus \mathbb{A}^{n-1} \cup \mathbb{A}^n \setminus \mathbb{A}^1$. By induction, Mayer-Vietoris and homotopy invariance, this gives the distinguished triangle

$$(\mathbb{Z}(1)[1]\oplus\mathbb{Z})\otimes(\mathbb{Z}(n-1)[2n-3]\oplus\mathbb{Z})$$

$$\rightarrow (\mathbb{Z}(1)[1] \oplus \mathbb{Z}) \oplus (\mathbb{Z}(n-1)[2n-3] \oplus \mathbb{Z})$$

 $\rightarrow M_{\mathsf{gm}}(\mathbb{A}^n \setminus \mathsf{0})$

 $ightarrow (\mathbb{Z}(1)[1] \oplus \mathbb{Z}) \otimes (\mathbb{Z}(n-1)[2n-3] \oplus \mathbb{Z})[1]$

yielding the result.

Projective bundle formula Let $E \to X$ be a rank n + 1 vector bundle over $X \in \text{Sm}/k$, $q : \mathbb{P}(E) \to X$ the resulting \mathbb{P}^{n-1} bundle, $\mathcal{O}(1)$ the tautological quotient bundle.

Define $\alpha_j : M_{gm}(\mathbb{P}(E)) \to M_{gm}(X)(j)[2j]$ by $M_{gm}(\mathbb{P}(E)) \xrightarrow{\delta} M_{gm}(\mathbb{P}(E)) \otimes M_{gm}(\mathbb{P}(E)) \xrightarrow{q \otimes c_1(\mathfrak{O}(1))^j} M_{gm}(X)(j)[2j]$

Theorem $\bigoplus_{j=0}^{n} \alpha_j$: $M_{gm}(\mathbb{P}(E)) \rightarrow \bigoplus_{j=0}^{n} M_{gm}(X)(j)[2j]$ is an isomorphism.

Proof. The map is natural in X. Mayer-Vietoris reduces to the case of a trivial bundle, then to the case $X = \operatorname{Spec} k$, so we need to prove:

Lemma $\bigoplus_{j=0}^{n} \alpha_j : M_{gm}(\mathbb{P}^n) \to \bigoplus_{j=0}^{n} \mathbb{Z}(j)[2j]$ is an isomorphism. *Proof.* Write $\mathbb{P}^n = \mathbb{A}^n \cup (\mathbb{P}^n \setminus 0)$. $M_{gm}(\mathbb{A}^n) = \mathbb{Z}$. $\mathbb{P}^n \setminus 0$ is an \mathbb{A}^1 bundle over \mathbb{P}^{n-1} , so induction gives $M_{gm}(\mathbb{P}^n \setminus 0) = \bigoplus_{j=0}^{n-1} \mathbb{Z}(j)[2j].$ Also $M_{gm}(\mathbb{A}^n \setminus 0) = \mathbb{Z}(n)[2n-1] \oplus \mathbb{Z}.$

The Mayer-Vietoris distinguished triangle

 $M_{\text{gm}}(\mathbb{A}^n \setminus 0) \to M_{\text{gm}}(\mathbb{A}^n) \oplus M_{\text{gm}}(\mathbb{P}^n \setminus 0) \to M_{\text{gm}}(\mathbb{P}^n) \to M_{\text{gm}}(\mathbb{A}^n \setminus 0)[1]$ gives the result.

Gysin isomorphism

Definition For $i : Z \to X$ a closed subset, let $M_{gm}(X/X \setminus Z) \in DM_{gm}^{eff}(k)$ be the image in $DM_{gm}^{eff}(k)$ of the complex $[X \setminus Z] \xrightarrow{j} [X]$, with [X] in degree 0.

Note. The Mayer-Vietoris property for $M_{gm}(-)$ yields a Zariski excision property: If Z is closed in U, an open in X, then $M_{gm}(U/U \setminus Z) \to M_{gm}(X/X \setminus Z)$ is an isomorphism.

In fact, Voevodsky's moving lemma shows that $M_{gm}(X/X \setminus Z)$ depends only on the Nisnevich neighborhood of Z in X: this is the *Nisnevich excision* property.

Motivic cohomology with support Let $Z \subset X$ be a closed subset, $U := X \setminus Z$. Setting

$$H^p_Z(X,\mathbb{Z}(q)) := \operatorname{Hom}_{DM^{\operatorname{eff}}_{-}(k)}(M_{\operatorname{gm}}(X/U),\mathbb{Z}(q)[p])$$

gives the long exact sequence for cohomology with support:

$$\dots \to H^p_Z(X, \mathbb{Z}(q)) \xrightarrow{i_*} H^p(X, \mathbb{Z}(q))$$
$$\xrightarrow{j^*} H^p(U, \mathbb{Z}(q)) \to H^{p+1}_Z(X, \mathbb{Z}(q)) \to$$

Theorem (Gysin isomorphism) Let $i : Z \to X$ be a closed embedding in Sm/k of codimension $n, U = X \setminus Z$. Then there is a natural isomorphism in $DM_{\text{qm}}^{\text{eff}}(k)$

 $M_{\text{gm}}(X/U) \cong M_{\text{gm}}(Z)(n)[2n].$

In particular:

$$\begin{aligned} H^p_Z(X,\mathbb{Z}(q)) &= \operatorname{Hom}_{DM^{\operatorname{eff}}_{-}(k)}(M_{\operatorname{gm}}(X/U),\mathbb{Z}(q)[p]) \\ &= \operatorname{Hom}_{DM^{\operatorname{eff}}_{-}(k)}(M_{\operatorname{gm}}(Z)(n)[2n],\mathbb{Z}(q)[p]) \\ &= \operatorname{Hom}_{DM^{\operatorname{eff}}_{-}(k)}(M_{\operatorname{gm}}(Z),\mathbb{Z}(q-n)[p-2n]) \\ &= H^{p-2n}(Z,\mathbb{Z}(q-n)). \end{aligned}$$

Gysin distinguished triangle

Theorem Let $i : Z \to X$ be a codimension n closed immersion in Sm/k with open complement $j : U \to X$. There is a canonical distinguished triangle in $DM_{qm}^{eff}(k)$:

$$M_{\text{gm}}(U) \xrightarrow{j_*} M_{\text{gm}}(X) \to M_{\text{gm}}(Z)(n)[2n] \to M_{\text{gm}}(U)[1]$$

Proof. By definition of $M_{gm}(X/U)$, we have the canonical distinguished triangle in $DM_{gm}^{eff}(k)$:

$$M_{\text{gm}}(U) \xrightarrow{j_*} M_{\text{gm}}(X) \to M_{\text{gm}}(X/U) \to M_{\text{gm}}(U)$$
[1]

then insert the Gysin isomorphism $M_{gm}(X/U) \cong M_{gm}(Z)(n)[2n]$.

Applying Hom $(-, \mathbb{Z}(q)[p])$ to the Gysin distinguished triangle gives the long exact Gysin sequence

$$\dots \to H^{p-2n}(Z, \mathbb{Z}(q-n)) \xrightarrow{i_*} H^p(X, \mathbb{Z}(q))$$
$$\xrightarrow{j^*} H^p(U, \mathbb{Z}(q))$$
$$\xrightarrow{\partial} H^{p-2n+1}(Z, \mathbb{Z}(q-n)) \to$$

which is the same as the sequence for cohomology with supports, using the Gysin isomorphism

$$H^{p-2n}(Z,\mathbb{Z}(q-n))\cong H^p_Z(X,\mathbb{Z}(q)).$$

Now for the proof of the Gysin isomorphism theorem:

We first prove a special case:

Lemma Let $E \to Z$ be a vector bundle of rank n with zero section s. Then $M_{\text{gm}}(E/E \setminus s(Z)) \cong M_{\text{gm}}(Z)(n)[2n]$.

Proof. Since $M_{gm}(E) \rightarrow M_{gm}(Z)$ is an isomorphism by homotopy, we need to show

 $M_{\text{gm}}(E \setminus s(Z)) \cong M_{\text{gm}}(Z) \oplus M_{\text{gm}}(Z)(n)[2n-1].$

Let $\mathbb{P} := \mathbb{P}(E \oplus \mathcal{O}_Z)$, and write $\mathbb{P} = E \cup (\mathbb{P} \setminus s(Z))$. Mayer-Vietoris gives the distinguished triangle

 $M_{gm}(E \setminus s(Z)) \to M_{gm}(E) \oplus M_{gm}(\mathbb{P} \setminus s(Z))$ $\to M_{gm}(\mathbb{P}) \to M_{gm}(E \setminus s(Z))[1]$

Since $\mathbb{P} \setminus s(Z) \to \mathbb{P}(E)$ is an \mathbb{A}^1 bundle, the projective bundle formula gives the isomorphism we wanted.

Deformation to the normal bundle

For $i: Z \to X$ a closed immersion in Sm/k , let $p: (X \times \mathbb{A}^1)_{Z \times 0} \to X \times \mathbb{A}^1$ be the blow-up of $X \times \mathbb{A}^1$ along $Z \times 0$. Set $Def(i) := (X \times \mathbb{A}^1)_{Z \times 0} \setminus p^{-1}[X \times 0].$

We have $\tilde{i}: Z \times \mathbb{A}^1 \to Def(i), q: Def(i) \to \mathbb{A}^1$.

The fiber \tilde{i}_1 is $i: Z \to X$, the fiber \tilde{i}_0 is $s: Z \to N_{Z/X}$.

Lemma The maps

$$M_{\mathsf{gm}}(N_{Z/X}/N_{Z/X} \setminus s(Z)) \to M_{\mathsf{gm}}(Def(i)/[Def(i) \setminus Z \times \mathbb{A}^{1}])$$
$$M_{\mathsf{gm}}(X/X \setminus Z) \to M_{\mathsf{gm}}(Def(i)/[Def(i) \setminus Z \times \mathbb{A}^{1}])$$

are isomorphisms.

Proof. By Nisnevich excision, we reduce to the case $Z \times 0 \rightarrow Z \times \mathbb{A}^n$. In this case, $Z \times \mathbb{A}^1 \rightarrow Def(i)$ is just $(Z \times 0 \rightarrow Z \times \mathbb{A}^n) \times \mathbb{A}^1$, whence the result.

Proof of the theorem.

 $M_{\text{gm}}(X/X \setminus Z) \cong M_{\text{gm}}(N_{Z/X}/N_{Z/X} \setminus s(Z)) \cong M_{\text{gm}}(Z)(n)[2n]$