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Recall from lecture 3:

e The category PST: presheaves on Corfn(k) and the category
ShNIS(Coryin(k)) of Nisnevich sheaves with transfer on Sm/k.

e The full subcategory DM€ (k) ¢ D—(ShNiS(Corgin(k))): com-
plexes of sheaves with homotopy invariant cohomology sheaves.

e The Suslin complex: Cx : ShNIS(Corgn(k)) — DMET (k).

L Cp(F)(X) = F(X x AM)

20D o ()X = F(X x AP S

e For X € Sm/k, the representable sheaf L(X): L(X)(Y) =
¢rin(Y, X) = Homeor, oy (Y], [X]).




Thus, we have the functor

M : Sm/k — DMET (k)

We also recall two main structural results:



Theorem (PST) LetF beahomotopy invariant PST on Sm/k.
Then

(1) The cohomology presheaves X — HI(Xpis, Fnis) are PST's
(2) Fyjs is strictly homotopy invariant.
(3) Fzar = Fnis and HY(Xzgy, Fzar) = H1(XNis, FNis) -

Proposition DME" (k) is a triangulated subcategory of
D~ (ShNS(Corgin (k))).



This latter result follows from

Lemma Let HI(k) c ShNIS(Coryi,(k)) be the full subcategory of
homotopy invariant sheaves. Then HI(k) is an abelian subcate-
gory of ShNIS(Corsin (k)), closed under extensions in ShN'S(Corgin (k)).

which in turn is a consequence of the PST theorem.



Theorem (Global PST) Let ' be a complex of PSTs on
Sm/k: F € C—(PST). Suppose that the cohomology presheaves
h'(F) are homotopy invariant. Then

(1) ForY € Sm/k, H'(Ynis, FYis) = H'(Yzar, F2 )
(2) The presheaf Y — H'(Yyie, i) s homotopy invariant

(1) and (2) follows from the PST theorem using the spectral
sequence:

ESY = HP(Y;, hi(F);) = HPTI(Y;, F;), = Nis, Zar.



Statement of main results



T he localization theorem

Theorem The functor Csx : ShNS(Corgin(k)) — DMET (k) ex-
tends to an exact functor

RC . D_(ShNiS(COI’ﬁn(k))) — DMEﬂ:(/C),
left adjoint to the inclusion DM (k) — D~ (Shyis(Corsin(k))).

RC, identifies DM€ (k) with the localization D~ (Shy;is(Corsin(k))) /A,
where A is the localizing subcategory of D~ (Shyis(Corsin(k)))
generated by complexes

L(X x AY) 2P rexy. X Smyk,



The tensor structure

We define a tensor structure on ShNS(Coryin(k)):
Set L(X)®L(Y) . =L(X xXY).

For a general F', we have the canonical surjection

EB(X,SEF(X))L(X) — F.
Iterating gives the canonical left resolution L(F) — F. Define

F®G = HYS(LF) @ L(R)).
The unit for ® is L(Speck).
There is an internal Hom in ShNS(Cor¢i,(k)):

Hom(L(X),G)(U) = GU x X);
Hom(F,G) := HYic(FHom(L(F), G)).



Tensor structure in DMET

The tensor structure on ShNS(Cors,(k)) induces a tensor struc-
ture ®L on D~ (Shyis(Corsin(k))).

We make DMEfr(lc) a tensor triangulated category via the local-
ization theorem:

M ® N = RC.(i(M) @ i(N)).



We have the functor L : Corfin(k) — Shyis(Corsin(k)) sending X
to the representable sheaf L(X). This extends to a functor on
the homotopy categories

L : K®(Corfin(k)) — K°(Shyis(Corfin(k)));
composing with
K" (Shyis(Corin(k))) — K~ (Shyis(Corfin(k)))
— D™ (Shyis(Corgin(k)))
gives

L : K®(Corgin(k)) — D™ (Shyis(Corsin(k))).



We also have the canonical localization functor
q : K°(Corfin(k)) — DMGH (k)
and the localization functor

RC, : D™ (Shyis(Corsin(k))) — DMET (k).



The embedding theorem

Theorem There is a commutative diagram of exact tensor
functors

Kb(Corfin(k)) - D~ (Shpis(Corfin(k)))

| ne.

DMSN (k)  — DMET (k)

such that
1. 2 is a full embedding with dense image.
2. ROW(L(X)) = C«(X).



Corollary For X andY € Sm/k,

HomDMgem(k)(Mgm(Y),Mgm(X)[n])
= H"(Ynis; C+(X)) = H"(Yzar, C«(X)).

Proof. For a sheaf F, and Y € Sm/k,

HOMS1 (Corgy) (L(Y). F) = F(Y)

Thus the Hom in the derived category, for F a complex of
sheaves, is:

HoM b (shyic(Corp)) (LY, Fl[n]) = H" (Ynis, F).



Thus (using the embedding theorem and localization theorem)

HOM p preft () (Mam (Y), Mgm (X)[n])
el ) (G (Y), C(X)[n])

= HOM (s Corgy (LY ), Ce(X) )
= H"(Ynis, Cx(X)).

= Hom

PST theorem = H"(Yzg5,, C«(X)) = H"(YNis, Cx(X)).



Suslin homology

Definition For X € Sm/k, define the Suslin homology of X as
HPYS(X) := H;(Cw(X)(Speck)).

Theorem Let U,V be open subschemes of X € Sm/k. Then
there is a long exact Mayer-Vietoris sequence

— HYS(UUV) — H'S(UNV)
— HXYS(U) @ HXYS(V) —» HXYS(UUV) — ...

Proof. By the embedding theorem [UNV] — [U] & [V] — [U U V]
maps to the distinguished triangle in DM (k):

Cx(U N V)Nis = Cx(U)Nis ® Cx(V)Nis — C«(U U V)is —



This yields a long exact sequence upon applying
Hom ), rerf (Mgm(Y'), —) for any Y € Sm/k.

By the corollary to the embedding theorem, this gives the long
exact sequence

. — H"(YNis, Cx(UNV)) — H " (YNis, Cx(U))BH ™" (YNis; Cx(V))
— H™™(Ynis, C+(UNV) = H "L (Yyis, Cx(UNV)) — ...

Now just take Y = Speck, since

H~"(Spec kyjis, C+(X)) = Hn(Cx(X)(Speck)) = H>YS(X).



In fact, the embedding theorem implies that for all Y € Sm/k,
the homology sheaves h%ar(Y) associated to the presheaf U —

H,(C«(Y)(U)) are the same as the sheaves associated to the
presheaf

U— HOmDMSﬂ—‘(k)(Mgm(U), Mgm(Y) [—n])
Thus

o hZ3"(Y x A1) — rZ37(Y) is an isomorphism

e for Y = U UV, have a long exact Mayer-Vietoris sequence

.= hEA(UNV) — hEA(U)®hs (V) — 5 (Y) — RS2 (UNV) — ...



Fundamental constructions in DMS, (k)

We discuss the projective bundle formula the blow-up formula
and the Gysin isomorphism, realizing these as morphisms and
isomorphisms in DMSH,.



Weight one motivic cohomology

Z(1)[2] is the reduced motive of P1, and Mgm(P!) is represented
in DM€ by the Suslin complex Cx(P1). The homology sheaves
of Cx(P1) and Ci(Speck) are given by:

Lemma h3"(P1) = Z, h{"(P) = Gy and hZ3(P1) = 0 for
n > 2. h§2"(Speck) = Z, hZ3"(Speck) =0 for n > 1.

Sketch of proof: Cp(Speck)(Y) = (Y xA™,Speck) = HO (Y74, 7).
Thus

HO(Yzar,Z) forp=0

hp(Cx(Speck)(Y)) = {o for p # 0



We have h53'(Al) = hZ3'(Speck) and we have a Meyer-Vietoris
sequence
.= hEA(AY) @ RS (AY) — REAT(PY) — K22 (AN 0) — ...
giving
Zar ol Z Z
RZ2M(PL) = hZ2(Spec k) & hZ%, (Gim).
where hﬁﬁ(@m) = hg_arl(Al \ 0)/h53r1(1).

So we need to see that

Gm®Z-[1] forp=0
0 else.

hgar(Al \ O) — {



For this, let Y = SpecO for O =0x , some xz € X € Sm/k
he? (AT 0) x p = Hp(Cu(AT\ 0)(Y)).

For W CY x A™ x (Al \ 0) finite and surjective over Y x A", W
has a monic defining equation

N-1

Fy(y,t,z) =z + Y Fi(y, )z’ + Fo(y,t)
=1

with Fo(y,t) a unit in Oltg,...,tn]/ > ;t; — 1.



Map h43" — Z by W — degy W.

Define cly : G (Y) — Ho(Cx(A1\ 0)(Y))dego bY

Cly (u) := [y — 1],
M, CY x A1\ 0 the graph of v : Y — Al\ 0.

One shows cly is a group homomorphism by using the cycle T
on Y x Al x A1\ 0 defined by

t(x—uwv)(z—1)4+ (1 —-t)(x —u)(xz —v),

dl' = (ruv — rl) — (I_u — rl) - (I_U — I—l)-



To show cly is surjective: If W C Y x Al \ 0 is finite over Y,
we have the unit v := (=1 Fy(y,0) with Fyy(y,z) the monic
defining equation for W, N = degy W. The function

F(y,z,t) := tFy(y,z) + (1 — t)(z — u)(z — 1)V 1
defines a finite cycle T on Y x Al x A1\ 0 with

dl' =W — Ty —(N—-1)F{ =W —degy W -T1) — (e — M1).

To show that cly is injective: show sending W to (—1)¥ Fy(y, 0)
passes to Hp. This can be done by noting that there are no
non-constant maps f: Al — Al\ 0.



The proof that h52"(Y) = 0 for p > 0 is similar.

This computation implies that
Z(1) = Gm[-1]
in DMET(k). Indeed:

7Z(1)[2] & Cone(C«(PY) — C(Speck))[-1]
= pfA(PLY[1] = Gp[1]



T his yields:

Proposition For X € Sm/k, we have

(H9_ (X,0%) for n =1
H™(X,Z(1)) = { Pic(X) := H3_(X,0%) forn=2
0 else.

\

Proof.. Since Z(1) =& Gm[—1] in DM®T(k), the corollary to the
embedding theorem gives:

Hom et (Mgm (X)), Z(1)[n]) = Hiyis (X, Z(1))
> H, (X, Z(1)) & HZ.HX, ).



Chern classes of line bundles
Definition Let L — X be a line bundle on X € Sm,..

We let ¢1(L) € H?(X,Z(1)) be the element corresponding to
(L] € HS, (X, 0%).



Weighted spheres Before we compute the motive of P", we
need:

Lemma There is a canonical isomorphism

Proof. For n = 1, we have Mgm(P!) = Z ® Z(1)[2], by definition
of Z(1). The Mayer-Vietoris distinguished triangle

Mgm(A1\0) — Mgm(AY)®Mgm(A') — Mgm(P') — Mgm(AM\0)[1]
defines an isomorphism t : Mgm(Al\ 0) — Z(1)[1] & Z.



For general n, write A"\ 0 = A®\ A»~1 U A”\ Al. By induction,
Mayer-Vietoris and homotopy invariance, this gives the distin-
guished triangle

(Z(D)[1] e Z) @ (Z(n — 1)[2n - 3] ® Z)
— (Z(L)[1]®eZ)® (Z(n —1)[2n — 3] B Z)
— Mgm(A"™\ 0)

— (Z(D)[1] 8 Z) @ (Z(n —1)[2n — 3] & Z)[1]

yielding the result.



Projective bundle formula Let £ — X be a rank n 4+ 1 vector
bundle over X € Sm/k, ¢ : P(E) — X the resulting P*~1 bundle,
O(1) the tautological quotient bundle.

Define a; : Mgm(P(E)) — Mgm(X)(j)[25] by

g®c1(0(1))

Mgm(P(E)) % Mgm(P(E))@Mgm(P(E)) > Mgm (X)) (5)[24]

Theorem @;‘:Oaj . Mgm(P(E)) — EB?:OMgm(X)(j)[Qj] is an

iIsomorphism.



Proof. The map is natural in X. Mayer-Vietoris reduces to the
case of a trivial bundle, then to the case X = Speck, so we need
to prove:

Lemma @?:Oaj . Mgm(P™) — @?:OZ(j)[Qj] is an isomorphism.

Proof. Write P = A" U (P"\ 0). Mgm(A™) =Z. P*\ 0 is an Al
bundle over P*~1 so induction gives

Mgm(P"™\ 0) = @7—_$Z(5)[24].
Also Mgm(A™\ 0) =Z(n)[2n — 1] & Z.
The Mayer-Vietoris distinguished triangle
Mgm(A™\0) — Mgm(A™)SMgm(P"\0) — Mgm(P") — Mgm(A™\0)[1]

gives the result.



GQysin isomorphism

Definition For i: Z — X a closed subset, let Mgm(X/X \ Z) €
DME (k) be the image in DMER (k) of the complex [X\Z] & [X],
with [X] in degree O.

Note. The Mayer-Vietoris property for Mgm(—) yields a Zariski
excision property: If Z is closed in U, an open in X, then
MgmU/U\ Z) - Mgm(X/X \ Z) is an isomorphism.

In fact, Voevodsky's moving lemma shows that Mgm(X/X \ Z2)
depends only on the Nisnevich neighborhood of Z in X: this is
the Nisnevich excision property.



Motivic cohomology with support Let Z C X be a closed
subset, U := X \ Z. Setting

HY (X, 2(q)) := Hom et 1y (Mgm (X/U), Z(q) [p])
gives the long exact sequence for cohomology with support:
.— HY(X,Z(q)) = HP(X,Z(q))
L HP(U,Z(q)) — HETH(X,Z(q)) —



Theorem (Gysin isomorphism) Let i : Z — X be a closed
embedding in Sm/k of codimension n, U = X \ Z. Then there is
a natural isomorphism in DM§H (k)

Mgm(X/U) = Mgm(Z)(n)[2n].

In particular:

H7(X,Z(q)) = HOM 3 rerr 1y (Mgm (X/U), Z(q) [p])
= Hom et 1y (Mgm (2) (n) [2n], Z(q) [p])
= Hom )y sefr (1) (Mgm(2), Z(q — n)[p — 2n])
= HP~*"(Z,Z(q — n)).



Gysin distinguished triangle

Theorem Leti:: 72 — X be a codimension n closed immersion
in Sm/k with open complement j:U — X. There is a canonical
distinguished triangle in DMSI (k):

Mgm(U) = Mgm(X) — Mgm(Z)(n)[2n] — Mgm(U)[1]
Proof. By definition of Mgm(X/U), we have the canonical dis-
tinguished triangle in DMSI (k):

Mgm(U) =% Mgm(X) — Mgm(X/U) — Mgm(U)[1]
then insert the Gysin isomorphism Mgm(X/U) = Mgm(Z)(n)[2n].



Applying Hom(—,Z(q)[p]) to the Gysin distinguished triangle gives
the long exact Gysin sequence

s HP727(Z. 7(q — n)) 5 HP(X,Z(q))
2 HP(U, Z(q))
9, HP=2" T Y (7 7(q —n)) —

which is the same as the sequence for cohomology with supports,
using the Gysin isomorphism

HP™2"(Z,Z(q —n)) & HY(X,Z(q)).

Now for the proof of the Gysin isomorphism theorem:



We first prove a special case:

Lemma Let F — Z be a vector bundle of rank n with zero
section s. Then Mgm(E/E\ s(Z)) = Mgm(Z)(n)[2n].

Proof. Since Mgm(E) — Mgm(Z) is an isomorphism by homo-
topy, we need to show
Mgm(E \ s(Z)) = Mgm(Z) ® Mgm(Z)(n)[2n — 1].
Let P:=P(E®0Oy), and write P= EU(P\ s(Z)). Mayer-Vietoris
gives the distinguished triangle
Mgm(E \ s(Z)) — Mgm(E) & Mgm(P \ s(2))
— Mgm(P) — Mgm(E \ s(Z))[1]

Since P\ s(Z) — P(E) is an Al bundle, the projective bundle
formula gives the isomorphism we wanted.



Deformation to the normal bundle

For ¢ : Z — X a closed immersion in Sm/k, let
D (XxAl)ZXo—>X><A1
be the blow-up of X x Al along Z x 0. Set
Def(i) = (X x AY) zy0 \ p~H[X x O].
We have 7: Z x Al — Def(i), q: Def(i) — Al

The fiber 71 is i: Z — X, the fiber ig is s : Z — Ny/x.



Lemma The maps

Mgm(Ngzx/Nz/x \ s(Z)) — Mgm(Def(i)/[Def (i) \ Z x A™])
Mgm(X/X \ Z) — Mgm(Def(i)/[Def (i) \ Z x A'])

are isomorphisms.

Proof. By Nisnevich excision, we reduce to the case Z x 0 —
Z x A™. In this case, Zx Al — Def(i) is just (Zx0 — Zx A™) x Al
whence the result.

Proof of the theorem.

Mgm(X/X \ Z) = Mgm(Nz/x/Nz/x \ s(Z)) = Mgm(Z)(n)[2n]





