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Mixed motives and cycle complexes



Recall from lecture 3:

• The category PST: presheaves on Corfin(k) and the category

ShNis(Corfin(k)) of Nisnevich sheaves with transfer on Sm/k.

• The full subcategory DMeff− (k) ⊂ D−(ShNis(Corfin(k))): com-

plexes of sheaves with homotopy invariant cohomology sheaves.

• The Suslin complex: C∗ : ShNis(Corfin(k)) → DMeff− (k).

. . . → Cn(F )(X) := F (X × ∆n)
∑n

i=0(−1)iδ∗i−−−−−−−−−→ Cn−1(F )(X) = F (X × ∆n−1) → . . .

• For X ∈ Sm/k, the representable sheaf L(X): L(X)(Y ) =

cfin(Y, X) = HomCorfin(k)
([Y ], [X]).



Thus, we have the functor

M : Sm/k → DMeff− (k)

M(X) := C∗(L(X))

We also recall two main structural results:



Theorem (PST) Let F be a homotopy invariant PST on Sm/k.

Then

(1) The cohomology presheaves X �→ Hq(XNis, FNis) are PST’s

(2) FNis is strictly homotopy invariant.

(3) FZar = FNis and Hq(XZar, FZar) = Hq(XNis, FNis).

Proposition DMeff− (k) is a triangulated subcategory of

D−(ShNis(Corfin(k))).



This latter result follows from

Lemma Let HI(k) ⊂ ShNis(Corfin(k)) be the full subcategory of

homotopy invariant sheaves. Then HI(k) is an abelian subcate-

gory of ShNis(Corfin(k)), closed under extensions in ShNis(Corfin(k)).

which in turn is a consequence of the PST theorem.



Theorem (Global PST) Let F ∗ be a complex of PSTs on

Sm/k: F ∈ C−(PST ). Suppose that the cohomology presheaves

hi(F ) are homotopy invariant. Then

(1) For Y ∈ Sm/k, Hi(YNis, F
∗
Nis)

∼= Hi(YZar, F
∗
Zar)

(2) The presheaf Y �→ Hi(YNis, F
∗
Nis) is homotopy invariant

(1) and (2) follows from the PST theorem using the spectral

sequence:

E
p,q
2 = Hp(Yτ , hq(F )τ) =⇒ H

p+q(Yτ , Fτ), τ = Nis,Zar.



Statement of main results



The localization theorem

Theorem The functor C∗ : ShNis(Corfin(k)) → DMeff− (k) ex-

tends to an exact functor

RC∗ : D−(ShNis(Corfin(k))) → DMeff− (k),

left adjoint to the inclusion DMeff− (k) → D−(ShNis(Corfin(k))).

RC∗ identifies DMeff− (k) with the localization D−(ShNis(Corfin(k)))/A,

where A is the localizing subcategory of D−(ShNis(Corfin(k)))

generated by complexes

L(X × A
1)

L(p1)−−−−→ L(X); X ∈ Sm/k.



The tensor structure

We define a tensor structure on ShNis(Corfin(k)):

Set L(X) ⊗ L(Y ) := L(X × Y ).

For a general F , we have the canonical surjection

⊕(X,s∈F (X))L(X) → F.

Iterating gives the canonical left resolution L(F ) → F . Define

F ⊗ G := HNis
0 (L(F ) ⊗ L(G)).

The unit for ⊗ is L(Spec k).

There is an internal Hom in ShNis(Corfin(k)):

Hom(L(X), G)(U) = G(U × X);

Hom(F, G) := H0
Nis(Hom(L(F ), G)).



Tensor structure in DMeff−

The tensor structure on ShNis(Corfin(k)) induces a tensor struc-

ture ⊗L on D−(ShNis(Corfin(k))).

We make DMeff− (k) a tensor triangulated category via the local-

ization theorem:

M ⊗ N := RC∗(i(M) ⊗L i(N)).



We have the functor L : Corfin(k) → ShNis(Corfin(k)) sending X

to the representable sheaf L(X). This extends to a functor on

the homotopy categories

L : Kb(Corfin(k)) → Kb(ShNis(Corfin(k)));

composing with

Kb(ShNis(Corfin(k))) → K−(ShNis(Corfin(k)))

→ D−(ShNis(Corfin(k)))

gives

L : Kb(Corfin(k)) → D−(ShNis(Corfin(k))).



We also have the canonical localization functor

q : Kb(Corfin(k)) → DMeff
gm(k)

and the localization functor

RC∗ : D−(ShNis(Corfin(k))) → DMeff− (k).



The embedding theorem

Theorem There is a commutative diagram of exact tensor

functors

Kb(Corfin(k))
L−→ D−(ShNis(Corfin(k)))

q

⏐⏐⏐�
⏐⏐⏐�RC∗

DMeff
gm(k) −→

i
DMeff− (k)

such that

1. i is a full embedding with dense image.

2. RC∗(L(X)) ∼= C∗(X).



Corollary For X and Y ∈ Sm/k,

Hom
DMeff

gm(k)(Mgm(Y ), Mgm(X)[n])

∼= H
n(YNis, C∗(X)) ∼= H

n(YZar, C∗(X)).

Proof. For a sheaf F , and Y ∈ Sm/k,

HomShNis(Corfin)
(L(Y ), F ) = F (Y )

Thus the Hom in the derived category, for F a complex of

sheaves, is:

HomD−(ShNis(Corfin))
(L(Y ), F [n]) = H

n(YNis, F ).



Thus (using the embedding theorem and localization theorem)

Hom
DMeff

gm(k)(Mgm(Y ), Mgm(X)[n])

= Hom
DMeff− (k)(C∗(Y ), C∗(X)[n])

= HomD−(ShNis(Corfin))
(L(Y ), C∗(X)[n])

= H
n(YNis, C∗(X)).

PST theorem =⇒ Hn(YZar, C∗(X)) = Hn(YNis, C∗(X)).



Suslin homology

Definition For X ∈ Sm/k, define the Suslin homology of X as

HSus
i (X) := Hi(C∗(X)(Spec k)).

Theorem Let U, V be open subschemes of X ∈ Sm/k. Then

there is a long exact Mayer-Vietoris sequence

. . . → HSus
n+1(U ∪ V ) → HSus

n (U ∩ V )

→ HSus
n (U) ⊕ HSus

n (V ) → HSus
n (U ∪ V ) → . . .

Proof. By the embedding theorem [U ∩ V ] → [U ]⊕ [V ] → [U ∪ V ]

maps to the distinguished triangle in DMeff− (k):

C∗(U ∩ V )Nis → C∗(U)Nis ⊕ C∗(V )Nis → C∗(U ∪ V )Nis →



This yields a long exact sequence upon applying

HomDMeff(Mgm(Y ),−) for any Y ∈ Sm/k.

By the corollary to the embedding theorem, this gives the long

exact sequence

. . . → H
−n(YNis, C∗(U∩V )) → H

−n(YNis, C∗(U))⊕H
−n(YNis, C∗(V ))

→ H
−n(YNis, C∗(U ∩ V ) → H

−n+1(YNis, C∗(U ∩ V )) → . . .

Now just take Y = Spec k, since

H
−n(Spec kNis, C∗(X)) = Hn(C∗(X)(Spec k)) = HSus

n (X).



In fact, the embedding theorem implies that for all Y ∈ Sm/k,

the homology sheaves hZar
n (Y ) associated to the presheaf U �→

Hn(C∗(Y )(U)) are the same as the sheaves associated to the

presheaf

U �→ Hom
DMeff− (k)(Mgm(U), Mgm(Y )[−n]).

Thus

• hZar
n (Y × A1) → hZar

n (Y ) is an isomorphism

• for Y = U ∪ V , have a long exact Mayer-Vietoris sequence

. . . → hZar
p (U∩V ) → hZar

p (U)⊕hZar
p (V ) → hZar

p (Y ) → hZar
p−1(U∩V ) → . . .



Fundamental constructions in DMeff
gm(k)

We discuss the projective bundle formula the blow-up formula

and the Gysin isomorphism, realizing these as morphisms and

isomorphisms in DMeff
gm.



Weight one motivic cohomology

Z(1)[2] is the reduced motive of P1, and Mgm(P1) is represented

in DMeff− by the Suslin complex C∗(P1). The homology sheaves

of C∗(P1) and C∗(Spec k) are given by:

Lemma hZar
0 (P1) = Z, hZar

1 (P1) = Gm and hZar
n (P1) = 0 for

n ≥ 2. hZar
0 (Spec k) = Z, hZar

n (Spec k) = 0 for n ≥ 1.

Sketch of proof: Cn(Spec k)(Y ) = c(Y ×∆n,Spec k) = H0(YZar, Z).

Thus

hp(C∗(Spec k)(Y )) =

⎧⎨
⎩

H0(YZar, Z) for p = 0

0 for p = 0



We have hZar
p (A1) = hZar

p (Spec k) and we have a Meyer-Vietoris

sequence

. . . → hZar
p (A1) ⊕ hZar

p (A1) → hZar
p (P1) → hZar

p−1(A
1 \ 0) → . . .

giving

hZar
p (P1) = hZar

p (Spec k) ⊕ hZar
p−1(Gm).

where hZar
p−1(Gm) := hZar

p−1(A
1 \ 0)/hZar

p−1(1).

So we need to see that

hZar
p (A1 \ 0) =

⎧⎨
⎩

Gm ⊕ Z · [1] for p = 0

0 else.



For this, let Y = SpecO for O = OX,x some x ∈ X ∈ Sm/k

hZar
p (A1 \ 0)X,x = Hp(C∗(A1 \ 0)(Y )).

For W ⊂ Y ×∆n × (A1 \ 0) finite and surjective over Y ×∆n, W

has a monic defining equation

FW (y, t, x) = xN +
N−1∑

i=1

Fi(y, t)xi + F0(y, t)

with F0(y, t) a unit in O[t0, . . . , tn]/
∑

i ti − 1.



Map hZar
0 → Z by W �→ degY W .

Define clY : Gm(Y ) → H0(C∗(A1 \ 0)(Y ))deg0 by

clY (u) := [Γu − Γ1],

Γu ⊂ Y × A1 \ 0 the graph of u : Y → A1 \ 0.

One shows clY is a group homomorphism by using the cycle T

on Y × ∆1 × A1 \ 0 defined by

t(x − uv)(x − 1) + (1 − t)(x − u)(x − v),

dT = (Γuv − Γ1) − (Γu − Γ1) − (Γv − Γ1).



To show clY is surjective: If W ⊂ Y × A1 \ 0 is finite over Y ,

we have the unit u := (−1)NFW (y,0) with FW (y, x) the monic

defining equation for W , N = degY W . The function

F (y, x, t) := tFW (y, x) + (1 − t)(x − u)(x − 1)N−1

defines a finite cycle T on Y × ∆1 × A1 \ 0 with

dT = W − Γu − (N − 1)Γ1 = (W − degY W · Γ1) − (Γu − Γ1).

To show that clY is injective: show sending W to (−1)NFW (y,0)

passes to H0. This can be done by noting that there are no

non-constant maps f : A1 → A1 \ 0.



The proof that hZar
p (Y ) = 0 for p > 0 is similar.

This computation implies that

Z(1) ∼= Gm[−1]

in DMeff− (k). Indeed:

Z(1)[2] ∼= Cone(C∗(P1) → C∗(Spec k))[−1]
∼= hZar

1 (P1)[1] = Gm[1]



This yields:

Proposition For X ∈ Sm/k, we have

Hn(X, Z(1)) =

⎧⎪⎪⎨
⎪⎪⎩

H0
Zar(X, O∗

X) for n = 1

Pic(X) := H1
Zar(X, O∗

X) for n = 2

0 else.

Proof.. Since Z(1) ∼= Gm[−1] in DMeff− (k), the corollary to the

embedding theorem gives:

Hom
DMeff

gm
(Mgm(X), Z(1)[n]) ∼= H

n
Nis(X, Z(1))

∼= H
n
Zar(X, Z(1)) ∼= Hn−1

Zar (X, Gm).



Chern classes of line bundles

Definition Let L → X be a line bundle on X ∈ Smk.

We let c1(L) ∈ H2(X, Z(1)) be the element corresponding to

[L] ∈ H1
Zar(X, O∗

X).



Weighted spheres Before we compute the motive of Pn, we

need:

Lemma There is a canonical isomorphism

Mgm(An \ 0) → Z(n)[2n − 1] ⊕ Z.

Proof. For n = 1, we have Mgm(P1) = Z ⊕ Z(1)[2], by definition

of Z(1). The Mayer-Vietoris distinguished triangle

Mgm(A1\0) → Mgm(A1)⊕Mgm(A1) → Mgm(P1) → Mgm(A1\0)[1]

defines an isomorphism t : Mgm(A1 \ 0) → Z(1)[1] ⊕ Z.



For general n, write An \ 0 = An \ An−1 ∪ An \ A1. By induction,

Mayer-Vietoris and homotopy invariance, this gives the distin-

guished triangle

(Z(1)[1] ⊕ Z) ⊗ (Z(n − 1)[2n − 3] ⊕ Z)

→ (Z(1)[1] ⊕ Z) ⊕ (Z(n − 1)[2n − 3] ⊕ Z)

→ Mgm(An \ 0)

→ (Z(1)[1] ⊕ Z) ⊗ (Z(n − 1)[2n − 3] ⊕ Z)[1]

yielding the result.



Projective bundle formula Let E → X be a rank n + 1 vector

bundle over X ∈ Sm/k, q : P(E) → X the resulting Pn−1 bundle,

O(1) the tautological quotient bundle.

Define αj : Mgm(P(E)) → Mgm(X)(j)[2j] by

Mgm(P(E))
δ−→ Mgm(P(E))⊗Mgm(P(E))

q⊗c1(O(1))j

−−−−−−−−→ Mgm(X)(j)[2j]

Theorem ⊕n
j=0αj : Mgm(P(E)) → ⊕n

j=0Mgm(X)(j)[2j] is an

isomorphism.



Proof. The map is natural in X. Mayer-Vietoris reduces to the
case of a trivial bundle, then to the case X = Spec k, so we need
to prove:

Lemma ⊕n
j=0αj : Mgm(Pn) → ⊕n

j=0Z(j)[2j] is an isomorphism.

Proof. Write Pn = An ∪ (Pn \ 0). Mgm(An) = Z. Pn \ 0 is an A1

bundle over Pn−1, so induction gives

Mgm(Pn \ 0) = ⊕n−1
j=0Z(j)[2j].

Also Mgm(An \ 0) = Z(n)[2n − 1] ⊕ Z.

The Mayer-Vietoris distinguished triangle

Mgm(An\0) → Mgm(An)⊕Mgm(Pn\0) → Mgm(Pn) → Mgm(An\0)[1]

gives the result.



Gysin isomorphism

Definition For i : Z → X a closed subset, let Mgm(X/X \ Z) ∈
DMeff

gm(k) be the image in DMeff
gm(k) of the complex [X\Z]

j−→ [X],

with [X] in degree 0.

Note. The Mayer-Vietoris property for Mgm(−) yields a Zariski

excision property: If Z is closed in U , an open in X, then

Mgm(U/U \ Z) → Mgm(X/X \ Z) is an isomorphism.

In fact, Voevodsky’s moving lemma shows that Mgm(X/X \ Z)

depends only on the Nisnevich neighborhood of Z in X: this is

the Nisnevich excision property.



Motivic cohomology with support Let Z ⊂ X be a closed

subset, U := X \ Z. Setting

H
p
Z(X, Z(q)) := Hom

DMeff− (k)(Mgm(X/U), Z(q)[p])

gives the long exact sequence for cohomology with support:

. . . → H
p
Z(X, Z(q))

i∗−→ Hp(X, Z(q))
j∗−→ Hp(U, Z(q)) → H

p+1
Z (X, Z(q)) →



Theorem (Gysin isomorphism) Let i : Z → X be a closed

embedding in Sm/k of codimension n, U = X \Z. Then there is

a natural isomorphism in DMeff
gm(k)

Mgm(X/U) ∼= Mgm(Z)(n)[2n].

In particular:

H
p
Z(X, Z(q)) = Hom

DMeff− (k)(Mgm(X/U), Z(q)[p])

= Hom
DMeff− (k)(Mgm(Z)(n)[2n], Z(q)[p])

= Hom
DMeff− (k)(Mgm(Z), Z(q − n)[p − 2n])

= Hp−2n(Z, Z(q − n)).



Gysin distinguished triangle

Theorem Let i : Z → X be a codimension n closed immersion

in Sm/k with open complement j : U → X. There is a canonical

distinguished triangle in DMeff
gm(k):

Mgm(U)
j∗−→ Mgm(X) → Mgm(Z)(n)[2n] → Mgm(U)[1]

Proof. By definition of Mgm(X/U), we have the canonical dis-

tinguished triangle in DMeff
gm(k):

Mgm(U)
j∗−→ Mgm(X) → Mgm(X/U) → Mgm(U)[1]

then insert the Gysin isomorphism Mgm(X/U) ∼= Mgm(Z)(n)[2n].



Applying Hom(−, Z(q)[p]) to the Gysin distinguished triangle gives

the long exact Gysin sequence

. . . → Hp−2n(Z, Z(q − n))
i∗−→ Hp(X, Z(q))

j∗−→ Hp(U, Z(q))
∂−→ Hp−2n+1(Z, Z(q − n)) →

which is the same as the sequence for cohomology with supports,

using the Gysin isomorphism

Hp−2n(Z, Z(q − n)) ∼= H
p
Z(X, Z(q)).

Now for the proof of the Gysin isomorphism theorem:



We first prove a special case:

Lemma Let E → Z be a vector bundle of rank n with zero
section s. Then Mgm(E/E \ s(Z)) ∼= Mgm(Z)(n)[2n].

Proof. Since Mgm(E) → Mgm(Z) is an isomorphism by homo-
topy, we need to show

Mgm(E \ s(Z)) ∼= Mgm(Z) ⊕ Mgm(Z)(n)[2n − 1].

Let P := P(E ⊕OZ), and write P = E ∪ (P \ s(Z)). Mayer-Vietoris
gives the distinguished triangle

Mgm(E \ s(Z)) → Mgm(E) ⊕ Mgm(P \ s(Z))

→ Mgm(P) → Mgm(E \ s(Z))[1]

Since P \ s(Z) → P(E) is an A1 bundle, the projective bundle
formula gives the isomorphism we wanted.



Deformation to the normal bundle

For i : Z → X a closed immersion in Sm/k, let

p : (X × A
1)Z×0 → X × A

1

be the blow-up of X × A1 along Z × 0. Set

Def(i) := (X × A
1)Z×0 \ p−1[X × 0].

We have ĩ : Z × A1 → Def(i), q : Def(i) → A1.

The fiber ĩ1 is i : Z → X, the fiber ĩ0 is s : Z → NZ/X.



Lemma The maps

Mgm(NZ/X/NZ/X \ s(Z)) → Mgm(Def(i)/[Def(i) \ Z × A
1])

Mgm(X/X \ Z) → Mgm(Def(i)/[Def(i) \ Z × A
1])

are isomorphisms.

Proof. By Nisnevich excision, we reduce to the case Z × 0 →
Z×An. In this case, Z×A1 → Def(i) is just (Z×0 → Z×An)×A1,

whence the result.

Proof of the theorem.

Mgm(X/X \ Z) ∼= Mgm(NZ/X/NZ/X \ s(Z)) ∼= Mgm(Z)(n)[2n]




