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4 Lecture 4: Symmetric products of motives

This lecture summarizes the main points of [V07]. If X is a normal quasiprojective variety

over a field of characteristic 0, the symmetric product SmX = Xm/Σm is also normal (where

Σm is the symmetric group). More generally, if G is a subgroup of Σm then SGX = Xm/G

determines a functor from the category Norm of normal quasiprojective varieties to itself.

If X+ denotes the disjoint union of X and Spec(X) then there is a natural split sequence of

pointed objects (which extends to simplicial objects as well):

(4.1) Sm−1(X+) → Sm(X+) → (SmX)+.

It is easy to see that S̃m(X+) = (SmX)+ is a functor on Norm+, and that it extends to

finite correspondences, giving us a functor Sm
tr from Cor — or even Cor(Norm) — to itself,

characterized by the formula:

Sm
tr (RtrX) = RtrS̃

m(X+) = Rtr(S
mX).

This functor extends to simplicial objects and commutes with direct sums.

Lemma 4.2. For any (simplicial) normal X, Y we have

Sm
tr

(RtrX ⊕ RtrY ) ∼=
⊕

i+j=m

Si
tr
(RtrX) ⊗ Sj

tr
(RtrY ).

Proof. Immediate from Rtr(X
∐

Y ) = RtrX⊕RtrY and Sm(X
∐

Y ) =
∐

Si(X)×Sj(Y ).

Examples 4.3. (a) Since Sm(S0) ∼= {0, 1, . . . , m} we have S̃m(S0) = S0 and Sm
tr (R) ∼= R.

(b) Since Rtr(P
1) ∼= R ⊕ L1 and SmP1 ∼= Pm, Lemma 4.2 yields Sm

tr (L
1) ∼= Lm.

We write S∞(X+) for the colimit of the pointed spaces Sn(X+). From (4.1) one gets:

Proposition 4.4. For any simplicial object V
•

of Norm+ there is an isomorphism

Rtr(S
∞V

•
) ∼=

⊕∞

m=0
Sm

tr
Rtr(V•

).
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The following result is a translation of the Suslin-Voevodsky result [10] that finite cor-

respondences of degree m ≥ 0 from X to Y correspond to morphisms from X to Sm(Y ),

together with the fact that a connected simplicial H-space has a homotopy inverse.

Theorem 4.5. Let V
•

be a simplicial object of Norm+. If the simplicial sets Hom(X, V
•
)

are connected for all X, then the morphism S∞(V
•
) → uZtr(V•

) is a global weak equivalence

of spaces (functors on Sm/k).

Examples 4.6. (a) When V is S0 (which is not connected), the morphism in 4.5 is N → Z.

(b) If n ≥ 1, 4.4 and 4.5 yield Kn = uZtr(V•
) ∼= S∞(V

•
) and Rtr(Kn) ∼= ⊕∞

m=1 Sm
tr (L

n).

(c) The pointed space K1 = uL1 represents H2,1(−, Z), where L1 = Ztr(A
1/A1 − 0). Since

Sm
tr (L

1) ∼= Lm by 4.3(b), Proposition 4.4 yields:

Rtr(K1) � RtrS
∞(A1/A1 − 0) � ⊕Lm.

So cohomology operations H2,1(X, Z) → Hp,q(X, R) are classified by the elements of

Hp,q(K1, R) ∼= HomDM(RtrK1, R(q)[p]) ∼=
∞∏

m=1

Hp−2m,q−m(k, R).

These correspond to homogeneous polynomials f(t) = Σait
i of bidegree (p, q) in

H∗∗(k, R)[t] with a0 = 0 and bidegree(t) = (2, 1), as described in Example 2.1(b).

The operations x �→ f(x) are nontrivial on x ∈ H2,1(PN , R) for large N , since

H∗,∗(PN , R) = H∗,∗(k, R)[x]/(xN+1); see [4, 15.5]

Now suppose that R is either Z(�) or Z/�, so that (� − 1)! is a unit of R. If m < �, the

symmetrizing idempotent e = (Σσ)/m! of R [Σm] acts on Rtr(X
m) and it is easy to see that

the canonical map Rtr(X
m) → Sm

tr (RtrX) = Rtr(S
mX) induces an isomorphism

(4.7) Sm
tr (RtrX) ∼= e · Rtr(X

m), m < �.
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Example 4.7.1. Fix m < �. If the interchange τ on T ⊗T is equivalent to the identity (e.g.,

T = La[2b]); then Sm
tr (T ) ∼= T⊗m. If τ � −1 (e.g., T = La[2b + 1]), then Sm

tr (T ) ∼= 0.

We will now describe Sm
tr (M) in terms of S�

tr. If G is any subgroup of Σm, the wreath product

G 	 Σn = Gn � Σn

acts on {1, . . . , mn} by decomposing it into n blocks of m elements, with G acting on the

blocks and Σn permuting the blocks. Thus G 	 Σn ⊂ Σmn. It is easy to see that

Sn(SG(X+)) = SG�Σn(X+).

Similarly, if H is a subgroup of Σn and we embed Σm × Σn in Σm+n then SG×H(X+) =

SG(X+) × SH(X+) and SG×H
tr (RtrX) = SG

tr(RtrX) ⊗ SH
tr (RtrX).

Proposition 4.8. If m = m0 + m1� + · · ·+ mr�
r with 0 ≤mi < �, the subgroup

G = Σm0
× (Σ� 	 Σm1

) × ((Σ� 	 Σ�) 	 Σm2
) · · · × ((Σ�

�r) 	 Σmr
)

of Σm contains a Sylow �-subgroup of Σm. If R = Z(�) or Z/� then for every simplicial V

and M = Rtr(V ), Sm
tr

(M) is a direct summand of

SG
tr
(M) = (Sm0

tr
M) ⊗ Sm1

tr
(S�

tr
M) ⊗ Sm2

tr
(S�

tr
(S�

tr
M)) ⊗ · · · ⊗ Smr

tr
((S�

tr
)rM).

Proof. (Voevodsky, [V07]) The display is SG
tr(M) by the above remarks, and the map π from

SG(V ) = V m/G to SmV = V m/Σm is finite of degree d = [Σm : G]. It is well known (and

easy to check) that G contains a Sylow �-subgroup of Σm, so � � d. The transpose πt is a finite

correspondence, and the composition π◦πt is multiplication by d on Rtr(S̃
mV ) = Sm

tr (M).

Theorem 4.9. When R = Z/�, S�
tr
(Ln) is A1-equivalent to

Ln� ⊕
n−1⊕
i=1

{
Ln+i(�−1) ⊕ Ln+i(�−1)[1]

}
.
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Proof. (Sketch) Let C be the cyclic group of order � and G = C � (Z/�)× ⊆ Σ�. Using the

methods of [RPO], Voevodsky [V07] computes Rtr(V − 0)/C, where V is the direct sum of

n copies of the reduced regular representation A�−1 of C. Next, he observes that SC
trL

n is

A1-equivalent to Ln ⊗ Rtr(V − 0)/C[1]. Taking (Z/�)×-invariants, it follows that SG
tr(L

n) is

A1-equivalent to the motive displayed in 4.9. Since [Σ� : G] = (�−2)!, S�
tr(L

n) is a summand.

Using the computation of Bµ� and BΣ� in [RPO], one shows that each summand of SG
tr(L

n)

belongs to S�
tr(L

n).

Corollary 4.10. When R = Z/� and a > 0, S�
tr(L

a[b])[1] → S�
tr(L

a[b+1]) is a split injection

for all b, and we have:

S�
tr(L

a[1]) =
⊕a

i=1

{
La+i(�−1)[1] ⊕ La+i(�−1)[2]

}
;

S�
tr(L

a[b]) = S�
tr(L

a[1])[b − 1] ⊕
⊕k

i=1

{
La�[2i� + 1] ⊕ La�[2i� + 2]

}
, b = 2k + 1;

S�
tr(L

a[b]) = S�
tr(L

a[b − 1])[1] ⊕ La�[b�], b ≥ 2 even.

Proof. Set T = La[b]. Voevodsky shows in [V07] that the cone of (S�
trT )[1] → S�

tr(T [1]) is :

T⊗�[2] for b even, and T⊗�[�] for b odd. In the odd case, the boundary map is zero for weight

reasons. In the even case, the boundary map is an element of Hom(T⊗�, S�
trT ) = Z/�. Using

the topological realization functor, the topological calculations of Cartan [1] show that the

boundary map is also zero. The result now follows by induction on b.

Remark 4.10.1. The above formulas are incorrect for a = 0, where L0 = R; here we have

S�
tr(R[1]) = 0, and S�

tr(R[2]) ∼= R[2�].

A proper Tate motive is a direct sum of motives of the form La[b] with b ≥ 0. The category

of proper Tate motives over a field R is idempotent complete, and closed in DM under ⊗.

Theorem 4.11. When R = Z/�, S∞
tr

(Ln) is a proper Tate motive. For each a there are only

finitely many terms of weight a.
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Proof. Combining 4.4, 4.8, 4.9 and 4.10 yields the theorem.

Proposition 4.12. (Pure Künneth formula) Let X and Y be pointed simplicial schemes

such that Rtr(Y ) is a direct sum of motives R(qα)[pα]. Assume that for each q there are only

finitely many α with qα = q. Then the Künneth homomorphism is an isomorphism:

H∗∗(X, R) ⊗H∗∗(k,R) H∗∗(Y, R) → H∗∗(X × Y, R).

Proof. By (2.3), Hn,i(X × Y, R) = HomDM(Rtr(X × Y ), R(i)[n]). Now Rtr(X × Y ) is the

direct sum of the Rtr(X)(qα)[pα], and we claim that

Hom(Rtr(X)(q)[p], R(i)[n]) =

{
Hn−p,i−q(X, R) if q ≤ i;

0 if q > i.

The case X = Spec(k) shows that H∗∗(Y, R) is a free H∗∗(k, R)-module on finitely many

generators γα in bidegrees (pα, qα), and the result follows.

To verify the claim, we may suppose that p = 0. Suppose first that q ≤ i. By the

Cancellation Theorem [4, 16.25] we have Hom(M(q), R(i)) = Hom(M, R(i − q)) for any M

in DM. In particular, Hom(Rtr(X)(q), R(i)[n]) = Hom(Rtr(X), R(i−q)[n]) = Hn,i−q(X, R).

Similarly, the case when q > i reduces to the case i = 0, q > 0. Here Rtr(X)(q) is a summand

of Rtr(X × Pq) and Hp,0(−, R) = Hp
Zar(−, R), so the result follows from H∗

Zar(X, R) ∼=

H∗
Zar(X × Pq, R); see [RPO, 3.5].

Recall from 2.5 that Kn = uLn represents H2n,n(−, Z), and that char(k) = 0.

Corollary 4.13. For all n > 0 the Künneth maps are isomorphisms:

H∗∗(Kn, Z/�) ⊗H∗∗ · · · ⊗H∗∗ H∗∗(Kn, Z/�)
�

−→H∗∗(Kn × · · · × Kn, Z/�).

This replaces the unproven “Lemma 2.3” in [MC/l]. Note that 4.13 is equvalent to:

H̃∗∗(Kn, Z/�) ⊗H∗∗ · · · ⊗H∗∗ H̃∗∗(Kn, Z/�)
�

−→ H̃∗∗(Kn ∧ · · · ∧ Kn, Z/�).
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