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4 Lecture 4: Symmetric products of motives

This lecture summarizes the main points of [VO7]. If X is a normal quasiprojective variety
over a field of characteristic 0, the symmetric product S™X = X™/%,, is also normal (where
¥, is the symmetric group). More generally, if G is a subgroup of ¥,, then S¢X = X™/G
determines a functor from the category Norm of normal quasiprojective varieties to itself.
If X, denotes the disjoint union of X and Spec(X) then there is a natural split sequence of

pointed objects (which extends to simplicial objects as well):
(4.1) S™MHX L) — S™(Xy) — (S"X),.

It is easy to see that S™(X,) = (S™X), is a functor on Norm,, and that it extends to
finite correspondences, giving us a functor S{ from Cor — or even Cor(Norm) — to itself,

characterized by the formula:

St (RuX) = Rtr§m<X+) = R (5™ X).
This functor extends to simplicial objects and commutes with direct sums.
Lemma 4.2. For any (simplicial) normal X, Y we have

SRy X ® R,Y) = ,+§|9 Si(RuX) @ S5,(RyY).
it+j=m
Proof. Tmmediate from R, (X [[Y) = Ru X® R, Y and STM(X[]Y) =[] SY(X)xS/(Y). O
Examples 4.3. (a) Since S™(5%) 2 {0,1,...,m} we have S™(5%) = S° and S™(R) = R.
(b) Since Ry (P') 2 R L' and S™P' & P™ Lemma 4.2 yields S{*(L') = L™

We write S*°(X ) for the colimit of the pointed spaces S™(X). From (4.1) one gets:

Proposition 4.4. For any simplicial object V, of Norm_ there is an isomorphism

Ru(5=V.) = D

m=

| SERy(V2).
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The following result is a translation of the Suslin-Voevodsky result [10] that finite cor-
respondences of degree m > 0 from X to Y correspond to morphisms from X to S™(Y),

together with the fact that a connected simplicial H-space has a homotopy inverse.

Theorem 4.5. Let V, be a simplicial object of Norm. . If the simplicial sets Hom(X,V,)
are connected for all X, then the morphism S*®(V,) — uZ(V,) is a global weak equivalence

of spaces (functors on Sm/k).
Examples 4.6. (a) When V is S° (which is not connected), the morphism in 4.5 is N — Z.
(b) If n > 1, 4.4 and 4.5 yield K,, = uZ(V,) = S>°(V,) and Ry, (K,) = &>_, S (L").
(c) The pointed space K; = ulL! represents H>!(—,Z), where L' = Z(A'/A' —0). Since
Sm(L') = L™ by 4.3(b), Proposition 4.4 yields:
Ru(K1) = RuS®(Al/A! — 0) =~ GL™.
So cohomology operations H*!(X,Z) — HP4(X, R) are classified by the elements of

H™ (K, R) = Hompm(Ry K1, R(q)[p]) = T] HP*™* " (k, R).

m=1

These correspond to homogeneous polynomials f(t) = Ya;t* of bidegree (p,q) in

H*(k, R)[t] with ag = 0 and bidegree(t) = (2,1), as described in Example 2.1(b).

The operations x +— f(x) are nontrivial on z € H*'(PY R) for large N, since
H**(PYN, R) = H**(k, R)[z]/(zN*1); see [4, 15.5]

Now suppose that R is either Z) or Z/{, so that (¢ —1)!'is a unit of R. If m < ¢, the

symmetrizing idempotent e = (Xo)/m! of R[%,,] acts on Ry, (X™) and it is easy to see that

the canonical map Ry (X™) — S (R X) = Ri:(S™X) induces an isomorphism
(4.7) Sii(RuX) = e- Ry (X™), m < /.
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Example 4.7.1. Fix m < £. If the interchange 7 on T ® T is equivalent to the identity (e.g.,
T = L[2b]); then S{/(T) = T If 1 ~ —1 (e.g., T = L%2b + 1]), then S7*(T") = 0.

We will now describe S™(M) in terms of Sf.. If G is any subgroup of 3,,, the wreath product
G Y, =G"x%,

acts on {1,...,mn} by decomposing it into n blocks of m elements, with G acting on the

blocks and ¥,, permuting the blocks. Thus G 3, C ¥,,,. It is easy to see that
S™(S(X4)) = SO (Xy).

Similarly, if H is a subgroup of ¥, and we embed ¥,, x ¥, in ¥,,;, then S (X ) =

SE(Xy) x ST(X,) and S (R, X) = SG(R.X) ® SE (R, X).
Proposition 4.8. If m =mg+ ml + - -+ m,L" with 0 <m; < £, the subgroup
G =Ty X (B2 8my) X (B2 Ze) 1 8m,) -+ X ((Ze") 1 B,

of X contains a Sylow (-subgroup of Xp,. If R = Zy or Z/l then for every simplicial V

and M = R, (V'), Si(M) is a direct summand of
Si(M) = (Si°M) ® S (S M) @ Si2(S4,(SpM)) ® -+ @ Sy ((S5,)"M).

Proof. (Voevodsky, [V07]) The display is S¢(M) by the above remarks, and the map 7 from
SE(V) =V™/G to S™V = V™/%,, is finite of degree d = [£,,: G]. It is well known (and
easy to check) that G contains a Sylow ¢-subgroup of 3,,,, so £ d. The transpose 7' is a finite

correspondence, and the composition wor! is multiplication by d on Ry, (S™V) = S™(M). O

Theorem 4.9. When R =7/(, S{.(L") is A'-equivalent to

]Ln€ D 7@ {Lnﬁ»i(@fl) D L?’Hri(f*l) [1]} )
=1
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Proof. (Sketch) Let C' be the cyclic group of order £ and G = C' x (Z/¢)* C ¥,. Using the
methods of [RPO], Voevodsky [VO7] computes R, (V — 0)/C, where V is the direct sum of
n copies of the reduced regular representation A*~! of C. Next, he observes that SCIL" is
Al-equivalent to L" ® R.(V — 0)/C[1]. Taking (Z/¢)*-invariants, it follows that S& (L") is
Al-equivalent to the motive displayed in 4.9. Since [£,: G] = (£—2)!, S{ (L") is a summand.
Using the computation of Bu, and BY, in [RPO], one shows that each summand of S& (L")

belongs to Sf.(IL"). ]

Corollary 4.10. When R =7/ and a > 0, S;.(L2[b])[1] — S;.(L2[b+1]) is a split injection

for all b, and we have:

Sfr(La[l]) _ @jZI{La—H'(Z—l) [1] D La-ﬁ-i(f—l)[Q]};
SeLep]) = SLL Db - o @) {L2it+ oL it +2]}, b=2k+1;

SE(LeB]) = SE(Le[b — 1])[1] @ L¥[be], b > 2 even.

Proof. Set T = 1L*[b]. Voevodsky shows in [V07] that the cone of (SL,T)[1] — SL(T[1]) is :
T%¢[2] for b even, and T®*[{] for b odd. In the odd case, the boundary map is zero for weight
reasons. In the even case, the boundary map is an element of Hom(T%*, S{T) = Z/¢. Using
the topological realization functor, the topological calculations of Cartan [1] show that the

boundary map is also zero. The result now follows by induction on b. O

Remark 4.10.1. The above formulas are incorrect for a = 0, where .Y = R; here we have
Si(R[1]) = 0, and Sy, (R[2]) = R([2(].
A proper Tate motive is a direct sum of motives of the form L[] with b>0. The category

of proper Tate motives over a field R is idempotent complete, and closed in DM under ®.

Theorem 4.11. When R = 7Z/¢, S;°(L™) is a proper Tate motive. For each a there are only

finitely many terms of weight a.
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Proof. Combining 4.4, 4.8, 4.9 and 4.10 yields the theorem. O

Proposition 4.12. (Pure Kiinneth formula) Let X and Y be pointed simplicial schemes
such that Ry, (Y') is a direct sum of motives R(qa)[pa]. Assume that for each q there are only

finitely many o with q, = q. Then the Kunneth homomorphism is an isomorphism:
H™(X,R) @uw,r H™(Y,R) = H™(X x Y, R).

Proof. By (2.3), H"(X x Y, R) = Hompm (R (X x Y), R(i)[n]). Now Ry (X x Y) is the

direct sum of the R"(X)(qn)[pa), and we claim that

HPi=4(X R) if q<i;
Hom(Re:(X)(q)[p], R(i)[n]) = {

0 it ¢ > 1.
The case X = Spec(k) shows that H**(Y, R) is a free H**(k, R)-module on finitely many
generators 7, in bidegrees (pa, ¢a), and the result follows.

To verify the claim, we may suppose that p = 0. Suppose first that ¢ < i. By the
Cancellation Theorem [4, 16.25] we have Hom(M (q), R(:)) = Hom(M, R(i — q)) for any M
in DM. In particular, Hom(R(X)(q), R(i)[n]) = Hom(Ry(X), R(i—q)[n]) = H»" %X, R).
Similarly, the case when ¢ > i reduces to the case i = 0, ¢ > 0. Here R, (X)(¢) is a summand

of Ry(X x P?) and HP°(—, R) = HY (—,R), so the result follows from Hj, (X,R) &

Zar Zar

H*

Zar

(X x P, R); see [RPO, 3.5]. O
Recall from 2.5 that K,, = ulL" represents H*"“"(—,Z), and that char(k) = 0.

Corollary 4.13. For all n > 0 the Kinneth maps are isomorphisms:

H* (K, Z)0) @poe -+ Qpee H* (K, L)1) — H™* (K, x --- x K, 7/1).

This replaces the unproven “Lemma 2.3” in [MC/l]. Note that 4.13 is equvalent to:

H* (K, 7/0) @ppee -+ @ppew H (K, L)) — H* (K, A --- N Ky, Z/0).
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