

SMR/1840-27

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Symmetric products of motives

Charles Weibel Rutgers University, Piscataway, USA

4 Lecture 4: Symmetric products of motives

This lecture summarizes the main points of [V07]. If X is a normal quasiprojective variety over a field of characteristic 0, the symmetric product $S^m X = X^m / \Sigma_m$ is also normal (where Σ_m is the symmetric group). More generally, if G is a subgroup of Σ_m then $S^G X = X^m / G$ determines a functor from the category **Norm** of normal quasiprojective varieties to itself. If X_+ denotes the disjoint union of X and Spec(X) then there is a natural split sequence of pointed objects (which extends to simplicial objects as well):

(4.1)
$$S^{m-1}(X_+) \to S^m(X_+) \to (S^m X)_+.$$

It is easy to see that $\tilde{S}^m(X_+) = (S^m X)_+$ is a functor on **Norm**₊, and that it extends to finite correspondences, giving us a functor S^m_{tr} from **Cor** — or even **Cor**(**Norm**) — to itself, characterized by the formula:

$$S_{\rm tr}^m(R_{\rm tr}X) = R_{\rm tr}\widetilde{S}^m(X_+) = R_{\rm tr}(S^mX).$$

This functor extends to simplicial objects and commutes with direct sums.

Lemma 4.2. For any (simplicial) normal X, Y we have

$$S_{tr}^m(R_{tr}X \oplus R_{tr}Y) \cong \bigoplus_{i+j=m} S_{tr}^i(R_{tr}X) \otimes S_{tr}^j(R_{tr}Y).$$

Proof. Immediate from $R_{tr}(X \coprod Y) = R_{tr}X \oplus R_{tr}Y$ and $S^m(X \coprod Y) = \coprod S^i(X) \times S^j(Y)$. \Box

Examples 4.3. (a) Since $S^m(S^0) \cong \{0, 1, \dots, m\}$ we have $\widetilde{S}^m(S^0) = S^0$ and $S^m_{\text{tr}}(R) \cong R$.

(b) Since $R_{tr}(\mathbb{P}^1) \cong R \oplus \mathbb{L}^1$ and $S^m \mathbb{P}^1 \cong \mathbb{P}^m$, Lemma 4.2 yields $S^m_{tr}(\mathbb{L}^1) \cong \mathbb{L}^m$.

We write $S^{\infty}(X_{+})$ for the colimit of the pointed spaces $S^{n}(X_{+})$. From (4.1) one gets:

Proposition 4.4. For any simplicial object V_{\bullet} of Norm₊ there is an isomorphism

$$R_{tr}(S^{\infty}V_{\bullet}) \cong \bigoplus_{m=0}^{\infty} S_{tr}^{m}R_{tr}(V_{\bullet}).$$

The following result is a translation of the Suslin-Voevodsky result [10] that finite correspondences of degree $m \ge 0$ from X to Y correspond to morphisms from X to $S^m(Y)$, together with the fact that a connected simplicial H-space has a homotopy inverse.

Theorem 4.5. Let V_{\bullet} be a simplicial object of Norm_{+} . If the simplicial sets $\operatorname{Hom}(X, V_{\bullet})$ are connected for all X, then the morphism $S^{\infty}(V_{\bullet}) \to u\mathbb{Z}_{tr}(V_{\bullet})$ is a global weak equivalence of spaces (functors on Sm/k).

Examples 4.6. (a) When V is S^0 (which is *not* connected), the morphism in 4.5 is $\mathbb{N} \to \mathbb{Z}$.

- (b) If $n \ge 1$, 4.4 and 4.5 yield $K_n = u\mathbb{Z}_{tr}(V_{\bullet}) \cong S^{\infty}(V_{\bullet})$ and $R_{tr}(K_n) \cong \bigoplus_{m=1}^{\infty} S_{tr}^m(\mathbb{L}^n)$.
- (c) The pointed space $K_1 = u\mathbb{L}^1$ represents $H^{2,1}(-,\mathbb{Z})$, where $\mathbb{L}^1 = \mathbb{Z}_{tr}(\mathbb{A}^1/\mathbb{A}^1 0)$. Since $S_{tr}^m(\mathbb{L}^1) \cong \mathbb{L}^m$ by 4.3(b), Proposition 4.4 yields:

$$R_{\rm tr}(K_1) \simeq R_{\rm tr} S^{\infty}(\mathbb{A}^1/\mathbb{A}^1 - 0) \simeq \oplus \mathbb{L}^m.$$

So cohomology operations $H^{2,1}(X,\mathbb{Z}) \to H^{p,q}(X,R)$ are classified by the elements of

$$H^{p,q}(K_1, R) \cong \operatorname{Hom}_{\mathbf{DM}}(R_{\operatorname{tr}}K_1, R(q)[p]) \cong \prod_{m=1}^{\infty} H^{p-2m,q-m}(k, R)$$

These correspond to homogeneous polynomials $f(t) = \Sigma a_i t^i$ of bidegree (p,q) in $H^{**}(k,R)[t]$ with $a_0 = 0$ and bidegree(t) = (2,1), as described in Example 2.1(b). The operations $x \mapsto f(x)$ are nontrivial on $x \in H^{2,1}(\mathbb{P}^N, R)$ for large N, since $H^{*,*}(\mathbb{P}^N, R) = H^{*,*}(k,R)[x]/(x^{N+1})$; see [4, 15.5]

Now suppose that R is either $\mathbb{Z}_{(\ell)}$ or \mathbb{Z}/ℓ , so that $(\ell - 1)!$ is a unit of R. If $m < \ell$, the symmetrizing idempotent $e = (\Sigma \sigma)/m!$ of $R[\Sigma_m]$ acts on $R_{tr}(X^m)$ and it is easy to see that the canonical map $R_{tr}(X^m) \to S^m_{tr}(R_{tr}X) = R_{tr}(S^mX)$ induces an isomorphism

(4.7)
$$S^m_{\rm tr}(R_{\rm tr}X) \cong e \cdot R_{\rm tr}(X^m), \qquad m < \ell.$$

Example 4.7.1. Fix $m < \ell$. If the interchange τ on $T \otimes T$ is equivalent to the identity (e.g., $T = \mathbb{L}^{a}[2b]$); then $S_{tr}^{m}(T) \cong T^{\otimes m}$. If $\tau \simeq -1$ (e.g., $T = \mathbb{L}^{a}[2b+1]$), then $S_{tr}^{m}(T) \cong 0$.

We will now describe $S^m_{tr}(M)$ in terms of S^{ℓ}_{tr} . If G is any subgroup of Σ_m , the wreath product

$$G \wr \Sigma_n = G^n \rtimes \Sigma_n$$

acts on $\{1, \ldots, mn\}$ by decomposing it into n blocks of m elements, with G acting on the blocks and Σ_n permuting the blocks. Thus $G \wr \Sigma_n \subset \Sigma_{mn}$. It is easy to see that

$$S^n(S^G(X_+)) = S^{G \wr \Sigma_n}(X_+).$$

Similarly, if H is a subgroup of Σ_n and we embed $\Sigma_m \times \Sigma_n$ in Σ_{m+n} then $S^{G \times H}(X_+) = S^G(X_+) \times S^H(X_+)$ and $S^{G \times H}_{tr}(R_{tr}X) = S^G_{tr}(R_{tr}X) \otimes S^H_{tr}(R_{tr}X)$.

Proposition 4.8. If $m = m_0 + m_1 \ell + \cdots + m_r \ell^r$ with $0 \le m_i < \ell$, the subgroup

$$G = \Sigma_{m_0} \times (\Sigma_{\ell} \wr \Sigma_{m_1}) \times ((\Sigma_{\ell} \wr \Sigma_{\ell}) \wr \Sigma_{m_2}) \cdots \times ((\Sigma_{\ell}) \wr \Sigma_{m_r})$$

of Σ_m contains a Sylow ℓ -subgroup of Σ_m . If $R = \mathbb{Z}_{(\ell)}$ or \mathbb{Z}/ℓ then for every simplicial V and $M = R_{tr}(V)$, $S_{tr}^m(M)$ is a direct summand of

$$S_{tr}^G(M) = (S_{tr}^{m_0}M) \otimes S_{tr}^{m_1}(S_{tr}^\ell M) \otimes S_{tr}^{m_2}(S_{tr}^\ell(S_{tr}^\ell M)) \otimes \cdots \otimes S_{tr}^{m_r}((S_{tr}^\ell)^r M).$$

Proof. (Voevodsky, [V07]) The display is $S^G_{tr}(M)$ by the above remarks, and the map π from $S^G(V) = V^m/G$ to $S^m V = V^m/\Sigma_m$ is finite of degree $d = [\Sigma_m : G]$. It is well known (and easy to check) that G contains a Sylow ℓ -subgroup of Σ_m , so $\ell \nmid d$. The transpose π^t is a finite correspondence, and the composition $\pi \circ \pi^t$ is multiplication by d on $R_{tr}(\widetilde{S}^m V) = S^m_{tr}(M)$.

Theorem 4.9. When $R = \mathbb{Z}/\ell$, $S_{tr}^{\ell}(\mathbb{L}^n)$ is \mathbb{A}^1 -equivalent to

$$\mathbb{L}^{n\ell} \oplus \bigoplus_{i=1}^{n-1} \left\{ \mathbb{L}^{n+i(\ell-1)} \oplus \mathbb{L}^{n+i(\ell-1)}[1] \right\}.$$

Proof. (Sketch) Let C be the cyclic group of order ℓ and $G = C \rtimes (\mathbb{Z}/\ell)^{\times} \subseteq \Sigma_{\ell}$. Using the methods of [RPO], Voevodsky [V07] computes $R_{tr}(V-0)/C$, where V is the direct sum of n copies of the reduced regular representation $\mathbb{A}^{\ell-1}$ of C. Next, he observes that $S_{tr}^{C}\mathbb{L}^{n}$ is \mathbb{A}^{1} -equivalent to $\mathbb{L}^{n} \otimes R_{tr}(V-0)/C[1]$. Taking $(\mathbb{Z}/\ell)^{\times}$ -invariants, it follows that $S_{tr}^{G}(\mathbb{L}^{n})$ is \mathbb{A}^{1} -equivalent to the motive displayed in 4.9. Since $[\Sigma_{\ell}: G] = (\ell-2)!$, $S_{tr}^{\ell}(\mathbb{L}^{n})$ is a summand. Using the computation of $B\mu_{\ell}$ and $B\Sigma_{\ell}$ in [RPO], one shows that each summand of $S_{tr}^{G}(\mathbb{L}^{n})$ belongs to $S_{tr}^{\ell}(\mathbb{L}^{n})$.

Corollary 4.10. When $R = \mathbb{Z}/\ell$ and a > 0, $S_{tr}^{\ell}(\mathbb{L}^{a}[b])[1] \to S_{tr}^{\ell}(\mathbb{L}^{a}[b+1])$ is a split injection for all b, and we have:

$$S_{tr}^{\ell}(\mathbb{L}^{a}[1]) = \bigoplus_{i=1}^{a} \{ \mathbb{L}^{a+i(\ell-1)}[1] \oplus \mathbb{L}^{a+i(\ell-1)}[2] \};$$

$$S_{tr}^{\ell}(\mathbb{L}^{a}[b]) = S_{tr}^{\ell}(\mathbb{L}^{a}[1])[b-1] \oplus \bigoplus_{i=1}^{k} \{ \mathbb{L}^{a\ell}[2i\ell+1] \oplus \mathbb{L}^{a\ell}[2i\ell+2] \}, \quad b = 2k+1;$$

$$S_{tr}^{\ell}(\mathbb{L}^{a}[b]) = S_{tr}^{\ell}(\mathbb{L}^{a}[b-1])[1] \oplus \mathbb{L}^{a\ell}[b\ell], \quad b \ge 2 \ even.$$

Proof. Set $T = \mathbb{L}^{a}[b]$. Voevodsky shows in [V07] that the cone of $(S_{tr}^{\ell}T)[1] \to S_{tr}^{\ell}(T[1])$ is : $T^{\otimes \ell}[2]$ for b even, and $T^{\otimes \ell}[\ell]$ for b odd. In the odd case, the boundary map is zero for weight reasons. In the even case, the boundary map is an element of $\operatorname{Hom}(T^{\otimes \ell}, S_{tr}^{\ell}T) = \mathbb{Z}/\ell$. Using the topological realization functor, the topological calculations of Cartan [1] show that the boundary map is also zero. The result now follows by induction on b.

Remark 4.10.1. The above formulas are incorrect for a = 0, where $\mathbb{L}^0 = R$; here we have $S_{tr}^{\ell}(R[1]) = 0$, and $S_{tr}^{\ell}(R[2]) \cong R[2\ell]$.

A proper Tate motive is a direct sum of motives of the form $\mathbb{L}^{a}[b]$ with $b \ge 0$. The category of proper Tate motives over a field R is idempotent complete, and closed in **DM** under \otimes .

Theorem 4.11. When $R = \mathbb{Z}/\ell$, $S_{tr}^{\infty}(\mathbb{L}^n)$ is a proper Tate motive. For each a there are only finitely many terms of weight a.

Proof. Combining 4.4, 4.8, 4.9 and 4.10 yields the theorem.

Proposition 4.12. (Pure Künneth formula) Let X and Y be pointed simplicial schemes such that $R_{tr}(Y)$ is a direct sum of motives $R(q_{\alpha})[p_{\alpha}]$. Assume that for each q there are only finitely many α with $q_{\alpha} = q$. Then the Künneth homomorphism is an isomorphism:

$$H^{**}(X,R) \otimes_{H^{**}(k,R)} H^{**}(Y,R) \to H^{**}(X \times Y,R)$$

Proof. By (2.3), $H^{n,i}(X \times Y, R) = \operatorname{Hom}_{\mathbf{DM}}(R_{\operatorname{tr}}(X \times Y), R(i)[n])$. Now $R_{\operatorname{tr}}(X \times Y)$ is the direct sum of the $R^{\operatorname{tr}}(X)(q_{\alpha})[p_{\alpha}]$, and we claim that

$$\operatorname{Hom}(R_{\operatorname{tr}}(X)(q)[p], R(i)[n]) = \begin{cases} H^{n-p,i-q}(X,R) & \text{if } q \le i; \\ 0 & \text{if } q > i. \end{cases}$$

The case X = Spec(k) shows that $H^{**}(Y, R)$ is a free $H^{**}(k, R)$ -module on finitely many generators γ_{α} in bidegrees (p_{α}, q_{α}) , and the result follows.

To verify the claim, we may suppose that p = 0. Suppose first that $q \leq i$. By the Cancellation Theorem [4, 16.25] we have $\operatorname{Hom}(M(q), R(i)) = \operatorname{Hom}(M, R(i-q))$ for any Min **DM**. In particular, $\operatorname{Hom}(R_{\operatorname{tr}}(X)(q), R(i)[n]) = \operatorname{Hom}(R_{\operatorname{tr}}(X), R(i-q)[n]) = H^{n,i-q}(X, R)$. Similarly, the case when q > i reduces to the case i = 0, q > 0. Here $R_{\operatorname{tr}}(X)(q)$ is a summand of $R_{\operatorname{tr}}(X \times \mathbb{P}^q)$ and $H^{p,0}(-, R) = H^p_{\operatorname{Zar}}(-, R)$, so the result follows from $H^*_{\operatorname{Zar}}(X, R) \cong$ $H^*_{\operatorname{Zar}}(X \times \mathbb{P}^q, R)$; see [RPO, 3.5].

Recall from 2.5 that $K_n = u\mathbb{L}^n$ represents $H^{2n,n}(-,\mathbb{Z})$, and that $\operatorname{char}(k) = 0$.

Corollary 4.13. For all n > 0 the Künneth maps are isomorphisms:

$$H^{**}(K_n, \mathbb{Z}/\ell) \otimes_{H^{**}} \cdots \otimes_{H^{**}} H^{**}(K_n, \mathbb{Z}/\ell) \xrightarrow{\simeq} H^{**}(K_n \times \cdots \times K_n, \mathbb{Z}/\ell)$$

This replaces the unproven "Lemma 2.3" in [MC/l]. Note that 4.13 is equivalent to: $\tilde{H}^{**}(K_n, \mathbb{Z}/\ell) \otimes_{H^{**}} \cdots \otimes_{H^{**}} \tilde{H}^{**}(K_n, \mathbb{Z}/\ell) \xrightarrow{\simeq} \tilde{H}^{**}(K_n \wedge \cdots \wedge K_n, \mathbb{Z}/\ell).$