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Lecture 4. Universal K-functors.

1. Preliminaries: left exact categories of right exact ’spaces’.

We start with left exact stuctures formed by localizations of ’spaces’ represented by
svelte categories. Then the obtained facts are used to define natural left exact structures
on the category of ’spaces’ represented by right exact categories.

The following proposition is a refinement of [R3, 1.4.1].

1.1. Proposition. Let Z
f←− X

q−→ Y be morphisms of ’spaces’ such that q (i.e. its

inverse image functor CY
q∗
−→ CX) is a localization. Then

(a) The canonical morphism Z
q̃−→ Z

∐
f,q

Y is a localization.

(b) If q is a continuous localization, then q̃ is a continuous localization.
(c) If Σq∗ = {s ∈ HomCY | q∗(s) is invertible} is a left (resp. right) multiplicative

system, then Σ
q̃∗ has the same property.

1.2. Corollary. Let Z
f←− X

q−→ Y be morphisms of ’spaces’ such that q is a

localization, and let Z
q̃−→ Z

∐
f,q

Y be a canonical morphism. Suppose the category CY has

finite limits (resp. finite colimits). Then q̃∗ is a left (resp. right) exact localization, if the
localization q∗ is left (resp. right) exact.

Proof. By 1.1(a), q̃∗ is a localization functor.

Suppose that the category CY has finite limits and the localization functor CY
q∗
−→ CX

is left exact. Then it follows from [GZ, I.3.4] that Σq∗ = {s ∈ HomCY | q∗(s) is invertible}
is a right multiplicative system. The latter implies, by 1.1(c), that Σ

q̃∗ is a right multi-
plicative system. Therefore, by [GZ, I.3.1], the localization functor q̃∗ is left exact.

The following assertion is a refinement of [R3, 1.4.2].

1.3. Proposition. Let X
p←− Z

q−→ Y be morphisms of ’spaces’ such that p∗ and q∗

are localization functors. Then the square

Z
q−−−→ Y

p
⏐⏐�

⏐⏐� p1

X
q1−−−→ X

∐
p,q

Y

is cartesian.

1.4. Left exact structures on the category of ’spaces’. Let L denote the
class of all localizations of ’spaces’ (i.e. morphisms whose inverse image functors are
localizations). We denote by L� (resp. Lr) the class of localizations X

q−→ Y of ’spaces’
such that Σq∗ = {s ∈ HomCY | q∗(s) is invertible} is a left (resp. right) multiplicative
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system. We denote by Le the intersection of L� and Lr (i.e. the class of localizations q
such that Σq∗ is a multiplicative system) and by Lc the class of continuous (i.e. having a
direct image functor) localizations of ’spaces’. Finally, we set Lc

e = Lc ∩ Le; i.e. Lc
e is the

class of continuous localizations X
q−→ Y such that Σq∗ is a multiplicative system.

1.4.1. Proposition. Each of the classes of morphisms L, L�, Lr, Le, Lc, and Lc
e

are structures of a left exact category on the category |Cat|o of ’spaces’.

Proof. It is immediate that each of these classes is closed under composition and
contains all isomorphisms of the category |Cat|o. It follows from 1.1 that each of the
classes is stable under cobase change. In other words, the arrows of each class can be
regarded as cocovers of a copretopology. It remains to show that these copretopologies are
subcanonical. Since L is the finest copretopology, it suffices to show that L is subcanonical.

The copretopology L being subcanonical means precisely that for any localization
X

q−→ Y , the square
X

q−−−→ Y

q
⏐⏐�

⏐⏐� q1

Y
q2−−−→ Y

∐
q,q

Y

is cartesian. But, this follows from 1.3.

1.5. Observation. Each object of the left exact category (|Cat|o,Lc) is injective.
In fact, a ’space’ X is an injective object of (|Cat|o,Lc) iff each morphism X

q−→ Y

is split; i.e. there is a morphism Y
t−→ X such that t ◦ q = idX . Since the morphism

q is continuous, it has a direct image functor, q∗, which is fully faithful, because q∗ is a
localization functor. The latter means precisely that the adjunction arrow q∗q∗ −→ IdCX

is
an isomorphism. Therefore, the morphism Y

t−→ X whose inverse image functor coincides
with q∗ satisfies the equality t ◦ q = idX .

1.6. Left exact structures on the category of right (or left) exact ’spaces’.
A right exact ’space’ is a pair (X, EX), where X is a ’space’ and EX is a right exact
structure on the category CX . We denote by Espr the category whose objects are right
exact ’spaces’ (X, EX) and morphisms from (X, EX) to (Y,EY ) are given by morphisms

X
f−→ Y of ’spaces’ whose inverse image functor, f∗, is ’exact’; i.e. f∗ maps deflations to

deflations and preserves pull-backs of deflations.
Dually, a left exact ’space’ is a pair (Y,IY ), where (CY , IY ) is a left exact category. We

denote by Esp� the category whose objects are left exact ’spaces’ (Y,IY ) and morphisms
(Y,IY ) −→ (Z,IZ) are given by morphisms Y −→ Z whose inverse image functors are
’coexact’, which means that they preserve inflations their push-forwards.

1.6.1. Note. The categories Espr and Esp� are naturally isomorphic to each other:
the isomorphism is given by the dualization functor (X, EX) �−→ (Xo,Eop

X ). Therefore,
every assertion about the category Espr of right exact ’spaces’ translates into an assertion
about the category Esp� of left exact ’spaces’ and vice versa.

1.6.2. Proposition. The category Espr has fibered coproducts.
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1.6.3. Canonical left exact structures on the category Espr. Let Les denote
the class of all morphisms (X, EX)

q−→ (Y,EY ) of right exact ’spaces’ such that q∗ is a
localization functor and each arrow of EX is isomorphic to an arrow q∗(e) for some e ∈ EY .

If Σq∗ is a left or right multiplicative system, then this condition means that EX is
the smallest right exact structure containing q∗(EY ).

1.6.3.1. Proposition. The class Les is a left exact structure on the category Espr

of right exact ’spaces’.

1.6.3.2. Corollary. Each of the classes of morphisms of ’spaces’ L�, Lr, Le, Lc,
and Lc

e (cf. 1.4, 1.4.1) induces a structure of a left exact category on the category Espr of
right exact ’spaces’.

Proof. The class L� induces the class Les
� of morphisms of the category Espr formed

by all arrows (X, EX)
q−→ (Y,EY ) from Les such that the morphism of ’spaces’ X

q−→ Y
belongs to L�. Similarly, we define the classes Les

� , Les
r , Lc

es, and Le,c
es .

1.6.3.3. The left exact structure Les
sq. For a right exact ’space’ (X, EX), let

Sq(X, EX) denote the class of all cartesian squares in the category CX some of the arrows
of which (at least two) belong to EX .

The class Les
sq consists of all morphisms (X, EX)

q−→ (Y,EY ) of right exact ’spaces’
such that its inverse image functor, q∗, is equivalent to a localization functor and each
square of Sq(X, EX) is isomorphic to some square of q∗(Sq(Y,EY )).

1.6.3.4. Proposition. The class Les
sq is a left exact structure on the category Espr

of right exact ’spaces’ which is coarser than Les and finer than Les
r .

Proof. The argument is left to the reader.

1.7. Relative right exact ’spaces’. The category Espr of right exact ’spaces’ has
initial objects and no final object. Final objects appear if we fix a right exact ’space’
S = (S, ES) and consider the category Espr/S instead of Espr. The category Espr/S has
a natural final object and cokernels of all morphisms. It also inherits left exact structures
from Espr, in particular those defined above (see 1.6.3.2). Therefore, our theory of derived
functors (satellites) can be applied to functors from Espr/S.

1.8. The category of right exact k-’spaces’. For a commutative unital ring k,
we denote by Espr

k the category whose objects are right exact ’spaces’ (X, EX) such that
CX is a k-linear additive category and morphisms are morphisms of right exact ’spaces’
whose inverse image functors are k-linear.

Each of the left exact structures Les, Les
� , Les

r , Les
r , Lc

es, and Le,c
es induces a left exact

structure on the category Espr
k of right exact k-’spaces’. We denote them by respectively

Les(k), Les
� (k), Les

r (k), Les
r (k), Lc

es(k), and Le,c
es (k).

2. The group K0 of a right (or left) exact ’space’.

2.1. The group Z0|CX |. For a svelte category CX , we denote by |CX | the set of
isomorphism classes of objects of CX , by Z|CX | the free abelian group generated by |CX |,
and by Z0(CX) the subgroup of Z|CX | generated by differences [M ] − [N ] for all arrows
M −→ N of the category CX . Here [M ] denotes the isomorphism class of an object M .

3



2.2. Proposition. (a) The maps X �−→ Z|CX | and X �−→ Z0(CX) extend natu-
rally to presheaves of Z-modules on the category of ’spaces’ |Cat|o (i.e. to functors from
(|Cat|o)op to Z−mod).

(b) If the category CX has an initial (resp. final) object x, then Z0(CX) is the sub-
group of Z|CX | generated by differences [M ]− [x], where [M ] runs through the set |CX | of
isomorphism classes of objects of CX .

Proof. The argument is left to the reader.

2.3. Note. Evidently, Z|CX | � Z|Cop
X | and Z0(CX) � Z0(C

op
X ).

2.4. The group K0 of a right exact ’space’. Let (X, EX) be a right exact ’space’.
We denote by K0(X, EX) the quotient of the group Z0|CX | by the subgroup generated by
the expressions [M ′]− [L′] + [L]− [M ] for all cartesian squares

M ′ f̃−−−→ M

e′
⏐⏐� cart

⏐⏐� e

L′ f−−−→ L

whose vertical arrows are deflations.
We call K0(X, EX) the group K0 of the right exact ’space’ (X, EX).

2.4.1. Example: the group K0 of a ’space’. Any ’space’ X is identified with the
trivial right exact ’space’ (X, Iso(CX)). We set K0(X) = K0(X, Iso(CX)). That is K0(X)
coincides with the group Z0(CX).

2.4.2. Proposition. Let (X, EX) be a right exact ’space’ such that the category CX

has initial objects. Then K0(X, EX) is isomorphic to the quotient of the group Z0(X) by the
subgroup generated by the expressions [M ]− [L]− [N ] for all conflations N −→M −→ L.

2.5. Proposition. (a) The map (X, EX) �−→ K0(X, EX) extends to a contravariant
functor, K0, from the category Espr of right exact ’spaces’ (cf. 6.8) to the category Z−mod
of abelian groups.

(b) Let (X, EX)
f−→ (Y,EY ) be a morphism of Espr having the following property:

(†) if M ′ and L′ are non-isomorphic objects of CX which can be connected by non-
oriented sequence of arrows (i.e. they belong to one connected component of the associated
groupoid), then there exist objects M and L of CY which have the same property and such
that f∗(M) �M ′, f∗(L) � L′.

Then K0(Y,EY )
K0(f)
−−−→ K0(X, EX) is a group epimorphism.

In particular, the functor K0 maps ’exact’ localizations to epimorphisms.

3. Higher K-groups of right exact ’spaces’.

3.1. The relative functors K0 and their derived functors. Fix a right exact

’space’ Y = (Y,EY). The functor (Espr)op
K0−−−→ Z−mod induces a functor

(Espr/Y)op
KY

0−−−→ Z−mod
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defined by

KY
0 (X , ξ) = KY

0 (X ,X ξ→ Y) = Cok(K0(Y)
K0(ξ)−−−→ K0(X ))

and acting correspondingly on morphisms.
The main advantage of the functor KY

0 is that its domain, the category Espr/Y has
a final object, cokernels of morphisms, and natural left exact structures induced by left
exact structures on Espr. Fix a left exact structure I on Espr (say, one of those defined in
6.8.3.2) and denote by IY the left exact structure on Espr/Y induced by I. Notice that,
since the category Z−mod is complete (and cocomplete), there is a well defined satellite
endofunctor of Hom((Espr/Y)op, Z − mod), F �−→ SIYF. So that for every functor F
from (Espr/Y)op to Z − mod, there is a unique up to isomorphism universal ∂∗-functor
(Si

IYF, di | i ≥ 0).
In particular, there is a universal contravariant ∂∗-functor KY,I

• = (KY,I
i , di | i ≥ 0)

from the right exact category (Espr/Y, IY) of right exact ’spaces’ over Y to the category
Z−mod of abelian groups; that is KY,I

i = Si
IYKY,I

0 for all i ≥ 0.
We call the groups KY,I

i (X , ξ) universal K-groups of the right exact ’space’ (X , ξ)
over Y with respect to the left exact structure I.

3.2. ’Exactness’ properties. In general, the ∂∗-functor KY,I
• is not ’exact’. The

purpose of this section is to find some natural left exact structures I on the category
Espr/Y of right exact ’spaces’ over Y and its subcategory Esp∗r/Y (cf. 7.1.7) for which the
∂∗-functor KY,I

• is ’exact’.

3.2.1. Proposition. Let (X, ξ)
q−→ (X ′, ξ′) be a morphism of the category Espr/Y

such that X
q−→ X ′ belongs to Les (cf. 6.8.3) and has the following property:

(#) if M
s−→ L is a morphism of CX′ such that q∗(s) is invertible, then the element

[M ] − [L] of the group K0(X ′) belongs to the image of the map K0(X ′′)
K0(cq)

−−−→ K0(X ′),
where (X ′, ξ′)

cq−→ (X ′′, ξ′′) is the cokernel of the morphism (X, ξ)
q−→ (X ′, ξ′).

Suppose, in addition, that one of the following two conditions holds:
(i) the category CX′ has an initial object;

(ii) for any pair of arrows N
f−→ L

s←− M, of the category CX′ such that q∗(s) is
invertible, there exists a commutative square

Ñ
f̃−−−→ M

t
⏐⏐�

⏐⏐� s

N
f−−−→ L

such that q∗(t) is invertible.
Then for every conflation (X, ξ)

q−→ (X ′, ξ′)
cq−→ (X ′′, ξ′′) of the left exact category

(Espr/Y, IY) the sequence

KY
0 (X ′′, ξ′′)

KY
0 (cq)

−−−→ KY
0 (X ′, ξ′)

KY
0 (q)

−−−→ KY
0 (X, ξ) −−−→ 0
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of morphisms of abelian groups is exact.

3.2.2. Proposition. The class LY
es of all morphisms (X, ξ)

q−→ (X ′, ξ′) of Espr/Y
such that X

q−→ X ′ belongs to Les and satisfies the condition (#) of 3.2.1, is a left exact
structure on the category Espr/Y.

3.2.2.1. Proposition. The class LY
es,r of all morphisms (X, ξ)

q−→ (X ′, ξ′) og LY
es

such that the functor CX′
q∗
−→ CX satisfies the condition (ii) of 3.2.1, is a left exact

structure on the category Espr/Y.

3.2.3. Proposition. Let Y = (Y,EY ) be a right exact ’space’, and let I be a left exact
structure on the category Espr/Y which is coarser than LY

es,r (cf. 3.2.2). Then the universal
∂∗-functor KY

• = (KY
i , di | i ≥ 0) from the left exact category (Espr/Y, IY) to the category

Z−mod of abelian groups is ’exact’; i.e. for any conflation (X, ξ)
q−→ (X ′, ξ′)

cq−→ (X ′′, ξ′′),
the associated long sequence

. . .
KY

1 (q)

−−−→ KY
1 (X, ξ)

d0−−−→ KY
0 (X ′′, ξ′′)

KY
0 (cq)

−−−→ KY
0 (X ′, ξ′)

KY
0 (q)

−−−→ KY
0 (X, ξ) −−−→ 0

is exact.

Proof. Since the left exact structure IY is coarser than LY
es, it satisfies the condition

(#) of 3.2.1. Therefore, by 3.2.1, for any conflation (X, ξ)
q−→ (X ′, ξ′)

cq−→ (X ′′, ξ′′) of the
left exact category (Esp∗r/Y, IY), the sequence

KY
0 (X ′′, ξ′′)

KY
0 (cq)

−−−→ KY
0 (X ′, ξ′)

KY
0 (q)

−−−→ KY
0 (X, ξ) −−−→ 0

of Z-modules is exact. Therefore, by [Lecture III, 3.5.4.1], the universal ∂∗-functor KY
• =

(KY
i , di | i ≥ 0) from (Esp∗r/Y, IY)op to Z−mod is ’exact’.

The following proposition can be regarded as a machine for producing universal ’exact’
K-functors.

3.2.4. Proposition. Let Y = (Y,EY ) be a right exact ’space’, (CS, IS) a left
exact category with final objects, and F a functor CS −→ Espr/Y which maps conflations
of (CS, IS) to conflations of the left exact category (Espr/Y,LY

es,r). Then there exists a
(unique up to isomorphism) universal ∂∗-functor KS,F

• = (KS,F
i , di | i ≥ 0) from the right

exact category (CS, IS)op to Z−mod whose zero component, KS,F
0 , is the composition of

the functor Cop
S

Fop

−−−→ Espr/Yop and the functor KY
0 .

The ∂∗-functor KS,F
• is ’exact’.

Proof. The existence of the ∂∗-functor KS,F
• follows, by [Lecture III, 3.3.2], from the

completeness (– existence of limits of small diagrams) of the category Z−mod of abelian
groups. The main thrust of the proposition is the ’exactness’ of KS,F

• .
By hypothesis, the functor F maps conflations to conflations. Therefore, it follows

from 3.2.1 that for any conflation X −→ X′ −→ X′′ of the left exact category (CS, IS),
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the sequence of abelian groups KS,F
0 (X′′) −→ KS,F

0 (X′) −→ KS,F
0 (X) −→ 0 is exact. By

[Lecture III, 3.5.4.1], this implies the ’exactness’ of the ∂∗-functor KY
• .

3.3. The ’absolute’ case. Let |Cat∗|o denote the subcategory of the category
|Cat|o of ’spaces’ whose objects are ’spaces’ represented by categories with initial objects
and morphisms are those morphisms of ’spaces’ whose inverse image functors map initial
objects to initial objects. The category |Cat∗|o is pointed: it has a canonical zero (that is
both initial and final) object, x, which is represented by the category with one (identical)
morphism. Thus, the initial objects of the category |Cat|o of all ’spaces’ are zero objects
of the subcategory |Cat∗|o.

Each morphism X
f−→ Y of the category |Cat∗|o has a cokernel, Y

cf−→ C(f), where
the category CC(f) representing the ’space’ C(f) is the kernel Ker(f∗) of the functor f∗.
By definition, Ker(f∗) is the full subcategory of the category CY generated by all objects
of CY which the functor f∗ maps to initial objects. The inverse image functor c∗f of the
canonical morphism cf is the natural embedding Ker(f∗) −→ CY .

Let Esp∗r denote the category formed by right exact ’spaces’ with initial objects and
those morphisms of right exact ’spaces’ whose inverse image functor is ’exact’ and maps
initial objects to initial objects. The category Esp∗r is pointed and the forgetfull functor

Esp∗r
J∗

−−−→ |Cat∗|o, (X, EX) �−→ X,

is a left adjoint to the canonical full embedding |Cat∗|o J∗−→ Esp∗r which assigns to every
’space’ X the right exact category (X, Iso(CX)). Both functors, J∗ and J∗, map zero
objects to zero objects.

Let x be a zero object of the category Esp∗r . Then Esp∗r/x is naturally isomorphic to
Esp∗r and the relative K0-functor Kx

0 coincides with the functor K0.

3.3.1. The left exact structure L∗
es. We denote by L∗

es the canonical left exact
structure Lx

es; it does not depend on the choice of the zero object x. It follows from
the definitions above that L∗

es consists of all morphisms (X, EX)
q−→ (Y,EY ) having the

following properties:

(a) CY
q∗
−→ CX is a localization functor (which is ’exact’), and every arrow of EX is

isomorphic to an arrow of q∗(EY ).
(b) If M

s−→M ′ is an arrow of CY such that q∗(s) is an isomorphism, then [M ]− [M ′]
is an element of KerK0(q)|.

3.3.2. Proposition. Let (CS, IS) be a left exact category, and CS
F−→ Esp∗r

a functor which maps conflations of (CS, IS) to conflations of the left exact category
(Esp∗r ,L

∗
es). Then there exists a (unique up to isomorphism) universal ∂∗-functor KS,F

• =
(KS,F

i , d̃i | i ≥ 0) from (CS, IS)op to Z −mod whose zero component, KS,F
0 , is the com-

position of the functor Cop
S

Fop

−−−→ (Esp∗r )
op and the functor K0.

The ∂∗-functor KS,F
• is ’exact’. In particular, the ∂∗-functor K• = (Ki, di| i ≥ 0)

from (Esp∗r ,L
∗
es) to Z−mod is ’exact’.
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Proof. The assertion is a special case of 3.2.4.

3.4. Universal K-theory of abelian categories. Let Espa
k denote the category

whose objects are ’spaces’ X represented by k-linear abelian categories and morphisms
X

f−→ Y are represented by k-linear exact functors.
There is a natural functor

Espa
k

F−−−→ Esp∗r (1)

which assigns to each object X of the category Espa
k the right exact (actually, exact) ’space’

(X, Est
X), where Est

X is the standard (i.e. the finest) right exact structure on the category

CX , and maps each morphism X
f−→ Y to the morphism (X, Est

X)
f−→ (Y,Est

Y ) of right
exact ’spaces’. One can see that the functor F maps the zero object of the category Espa

k

(represented by the zero category) to a zero object of the category Esp∗r .

3.4.1. Proposition. Let CX and CY be k-linear abelian categories endowed with the

standard exact structure. Any exact localization functor CY
q∗
−→ CX satisfies the conditions

(a) and (b) of 3.3.1.

Proof. In fact, each morphism q∗(M) h̃−→ q∗(N) is of the form q∗(h)q∗(s)−1 for some
morphisms M ′ h−→ N and M ′ s−→ M such that q∗(s) is invertible. The morphism h is a
(unique) composition j ◦ e, where j is a monomorphism and e is an epimorphism. Since the
functor q∗ is exact, q∗(j) is a monomorphism and q∗(e) is an epimorphism. Therefore, h̃ is
an epimorphism iff q∗(j) is an isomorphism. This shows that the condition (a) holds.

Let M
s−→M ′ be a morphism and

0 −→ Ker(s) −→M
s−→M ′ −→ Cok(s) −→ 0

the associated with s exact sequence. Representing s as the composition, j◦e, of a monomor-
phism j and an epimorphism e, we obtain two short exact sequences,

0 −→ Ker(s) −→M
e−→ N −→ 0 and 0 −→ N

j−→M ′ −→ Cok(s) −→ 0,

hence [M ] = [Ker(s)]+[N ] and [M ′] = [N ]+[Cok(s)], or [M ′] = [M ]+[Ker(s)]− [Cok(s)]
in K0(Y ). It follows from the exactness of the functor q∗ that the morphism q∗(s) is an
isomorphism iff Ker(s) and Cok(s) are objects of the category Ker(q∗). Therefore, in this
case, it follows that [M ′] = [M ] modulo Z|Ker(q∗)| in K0(Y ).

3.4.2. Proposition. (a) The class La of all morphisms X
q−→ Y of the category

Espa
k such that CY

q∗
−→ CX is a localization functor, is a left exact structure on Espa

k.

(b) The functor Espa
k

F−−−→ Esp∗r is an ’exact’ functor from the left exact category
(Espa

k,La) to the left exact category (Esp∗r ,L
∗
es). Moreover, La = F−1(L∗

es), that is the left
exact structure La is induced by the left exact structure L∗

es via the functor F.

3.4.3. The universal Grothendieck K-functor. The composition Ka
0 of the

functor
(Espa

k)op
Fop

−−−→ (Esp∗r )
op
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and the functor (Esp∗r )
op

K∗
0−−−→ Z−mod assigns to each object X of the category Espa

k

the abelian group K∗
0 (X, Est

X). It follows from 2.4.2 that the group K∗
0 (X, Est

X) coincides
with the Grothendieck group of the abelian category CX . Therefore, we call Ka

0 the
Grothendieck K0-functor.

3.4.4. Proposition. There exists a universal ∂∗-functor Ka
• = (Ka

i , da
i | i ≥ 0) from

the right exact category (Espa
k,La)op to the category Z−mod whose zero component is the

Grothendieck functor K0. The universal ∂∗-functor Ka
• is ’exact’; that is for any exact

localization X
q−→ X ′, the canonical long sequence

. . .
Ka

1 (q)

−−−→ Ka
1 (X)

da
0 (q)

−−−→ Ka
0 (X ′′)

Ka
0 (cq)

−−−→ Ka
0 (X ′)

Ka
0 (q)

−−−→ Ka
0 (X) −−−→ 0 (3)

is exact.

Proof. By 3.4.2(b), the functor Espa
k

F−−−→ Esp∗r is an ’exact’ functor from the left
exact category (Espa

k,La) to the left exact category (Esp∗r ,L
∗
es) which maps the zero object

of the category Espa
k (– the ’space’ represented by the zero category) to a zero object of

the category Esp∗r . Therefore, F maps conflations to conflations.
The assertion follows now from 3.3.2.1 applied to the functor F.

3.4.5. The universal ∂∗-functor Ka
• and the Quillen’s K-theory. For a ’space’

X represented by a svelte k-linear abelian category CX , we denote by KQ
i (X) the i-th

Quillen’s K-group of the category CX . For each i ≥ 0, the map X �−→ KQ
i (X) extends

naturally to a functor

(Espa
k)op

KQ
i−−−→ Z−mod

It follows from the Quillen’s localization theorem [Q, 5.5] that for any exact localization

X
q−→ X ′ and each i ≥ 0, there exists a connecting morphism KQ

i+1(X)
dQ

i (q)

−−−→ KQ
0 (X ′′),

where CX′′ = Ker(q∗), such that the sequence

. . .
KQ

1 (q)

−−−→ KQ
1 (X)

dQ
0 (q)

−−−→ KQ
0 (X ′′)

KQ
0 (cq)

−−−→ KQ
0 (X ′)

KQ
0 (q)

−−−→ KQ
0 (X) −−−→ 0 (4)

is exact. It follows (from the proof of the Quillen’s localization theorem) that the con-
necting morphisms dQ

i (q), i ≥ 0, depend functorially on the localization morphism q. In
other words, KQ

• = (KQ
i , dQ

i | i ≥ 0) is an ’exact’ ∂∗-functor from the left exact category
(Espa

k,La)op to the category Z−mod of abelian groups.
Naturally, we call the ∂∗-functor KQ

• the Quillen’s K-functor.
Since Ka

• = (Ka
i , da

i | i ≥ 0) is a universal ∂∗-functor from (Espa
k,La)op to Z −mod,

the identical isomorphism KQ
0 −→ Ka

0 extends uniquely to a ∂∗-functor morphism

KQ
•

ϕQ
•−−−→ Ka

• . (5)

4. The universal K-theory of exact categories. Let Espe
k denote the subcate-

gory of the category Esp∗r whose objects are ’spaces’ represented by svelte exact k-linear
categories and inverse image of morphisms are k-linear functors.
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There is a natural functor
Espe

k

Fr−−−→ Esp∗r (1)

which maps objects and morphisms of the category Espe
k to the corresponding objects and

morphisms of the category Esp∗r .

4.1. Proposition. The functor Espe
k

Fr−−−→ Esp∗r preserves cocartesian squares and
maps the zero object of the category Espe

k to the zero object of the category Esp∗r .

Proof. The argument is similar to that of 7.5.2(b). Details are left to the reader.

4.2. Corollary. The class of morphisms Le
k = F−1

r (L∗
es) is a left exact structure on

the category Espe
k and Fr is an ’exact’ functor from the left exact category (Espe

k,Le
k) to

the left exact category (Esp∗r ,L
∗
es).

The composition Ke
0 of the inclusion functor

(Espa
k)op

Fop

−−−→ (Esp∗r )
op

and the functor (Esp∗r )
op

K∗
0−−−→ Z−mod assigns to each object X of the category Espa

k

the abelian group K∗
0 (X, Est

X) which coincides with the Quillen’s group K0 of the exact
category (CX ,EX).

4.3. Proposition. There exists a universal ∂∗-functor Ke
• = (Ke

i , d
e
i | i ≥ 0) from

the right exact category (Espe
k,Le)op to the category Z − mod whose zero component is

the functor Ke
0. The universal ∂∗-functor Ke

• is ’exact’; that is for any exact localization
(X, EX)

q−→ (X ′,EX′) which belongs to Le, the canonical long sequence

Ke
1(X.EX)

Ke
1 (q)

←−−− Ke
1(X

′,EX′)
Ke

1 (cq)

←−−− Ke
0(X

′′,EX′′)
de
1(q)

←−−− . . .

de
0(q)

⏐⏐�
Ke

0(X
′′,EX′′)

Ke
0 (cq)

−−−→ Ke
0(X

′,EX′)
Ke

0 (q)

−−−→ Ke
0(X, EX) −−−→ 0

(4)

is exact.

Proof. The functor Espe
k

F−−−→ Esp∗r is an ’exact’ functor from the left exact category
(Espe

k,Le) to the left exact category (Esp∗r ,L
∗
es) which maps the zero object of the category

Espe
k (– the ’space’ represented by the zero category) to a zero object of the category Esp∗r .

Therefore, F maps conflations to conflations. It remains to apply 3.3.2.
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