
SMR/1840-4

School and Conference on Algebraic K-Theory and its Applications

Alexander Vishik

14 May - 1 June, 2007

University of Nottingham, UK

Quadratic forms and their invariants



Lecture 1

Quadratic forms and their invariants

Let k be a field of characteristic different from 2.
Let V be some finite dimensional vector space over k. Quadratic form on

V is a map q : V → k which is a diagonal part of some symmetric bilinear
form Bq : Vq × Vq → k. That is, q(v) = Bq(v, v). It is easy to see that under
our characteristic assumption Bq can be reconstructed from q uniquely.

The form is called nondegenerate if the respective symmetric bilinear form
is, in other words, if no vector in V is orthogonal to the whole V : V ⊥ = 0.

Under our assumptions, each quadratic form is diagonalisable, that is,
one can choose the coordinates x1, . . . , xn on V so that q((x1, . . . , xn)) =
a1x

2
1 + . . . + anx2

n for certain a1, . . . , an ∈ k∗. We will denote such form
〈a1, . . . , an〉, and sometimes will call ai-the eigenvalues.

Warning: in the contrast to the case of linear transformation, these
“eigenvalues” are not defined uniquely, so in some other orthogonal coordi-
nates the same form can be presented by 〈b1, . . . , bn〉 for completely different
set b1, . . . , bn ∈ k∗. Try this on the example 〈1,−1〉 and 〈a,−a〉, where a ∈ k∗

(hint: show that both of them are isomorphic to the form xy).
On the set of quadratic forms have two operations: + and ·
(q1, V1)+(q2, V2) := (q1 ⊥ q2, V1⊕V2), where (q1 ⊥ q2)((v1, v2)) = q1(v1)+

q2(v2), and
(q1, V1)·(q2, V2) := (q1⊗q2, V1⊗V2), where (q1⊗q2)(v1⊗v2) = q1(v1)·q2(v2).

Definition 0.1 Define W̃ (k) - the Grothendieck-Witt ring of k as the Grothendieck
group (group completion) of the monoid of isomorphism classes of nondegen-
erate quadratic forms over k with respect to operation +. Notice, that the
operations + and · naturally descend to W̃ (k) and supply it with the structure
of the commutative ring.

Why to study quadratic forms?
Let me give you several reasons why quadratic forms can be interesting.
1) Connected to K-theory.
More precisely, to Milnors K-theory and motivic cohomology.
Consider form H =< 1,−1 > called elementary hyperbolic form. It is an

easy observation, that for arbitrary quadratic form q, H · q = H ⊥ . . . ⊥ H

(the number of copies = dim(q)). Thus the image of the map Z ·H → W̃ (k)

is an ideal in W̃ (k).
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Definition 0.2 Define W (k) - the Witt ring of k as the quotien W̃ (k)/Z ·H.

Inside W (k) one has the ideal I of even-dimensional forms (notice that
the dimension modulo 2 is well-defined on W (k)). This ideal gives rise to the
multiplicative filtration

W (k) ⊃ I ⊃ I2 ⊃ I3 ⊃ . . . ,

and one can consider the associated graded ring

grI•(W (k)) := W (k)/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . .

This ring is basically of “the same size” as W (k), but with the operations +
and · somewhat damaged (some information is lost).

Milnors “Conjecture” on quadratic forms relates our graded ring
with the ring called Milnors K-theory, where the latter is defined as follows.
Consider k∗ as an abelian group = Z-module. Let TZ(k∗) be the tenzor
algebra of this module over Z, that is:

TZ(k∗) = Z ⊕ (k∗) ⊕ (k∗ ⊗Z k∗) ⊕ (k∗ ⊗Z k∗ ⊗Z k∗) ⊕ . . . .

Definition 0.3 Milnor K-theory of k is defined as a quotient of the tenzor
algebra above by the explicite quaratic relations:

KM
∗ (k) := TZ(k∗)/(a ⊗ (1 − a), a ∈ k∗\1).

Milnors conjecture on quadratic forms states that KM
∗ (k)/2 is naturally

isomorphic to grI•(W (k)). And Milnors K-theory is a particular case of mo-
tivic cohomology. So, our ring can be also interpreted as⊕n Hn,n

M (Spec(k), Z/2)
(notice, that in algebraic geometry, in contrast to topology, the cohomology
are numbered by two integers, as opposed to one). If one uses also Beilinson-
Lichtenbaum “Conjecture” (which follows from the Milnors one, and so is set-
tled), one can see that the knowledge of quadratic forms over k gives one the
comlete knowledge of motivic cohomology of a point with Z/2-coefficients.

2) Related to stable homotopy groups of spheres. In a sense, it is just the
sharpened version of the reason 1).

One of the most important questions in topology (central to the mathe-
matics as a whole) is the study of stable homotopy groups of spheres. Homo-
topy groups of spheres πn(Sm) count the continuous maps Sn → Sm up to
homotopy (two maps are called homotopic, if you can continuously “pull” one
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into the other). There is a suspension operation Σ such that Σ(Sn) = Sn+1;
being a functor, it acts also on the homotopy classes of maps and provides
a group homomorphism πn(Sn) → πn+1(S

m+1). The stable homotopy groups
are defined as

πs
n(S0) := lim

N→∞
πn+N(SN).

Computation of these groups was performed only for small number of n.
In algebraic geometry both homotpy and homology groups are numer-

ated by two integers (the world here is more complicated - there are two
suspensions).

It was proven by F.Morel that the Grothendieck-Witt ring of quadratic
forms over k describes the (0, 0) stable homotopy group of spheres:

W̃ (k)
naturally

∼= πs
0,0(S

0).

So, studying quadratic forms we study the homotopy groups of spheres,
and the experience obtained here in the end could prove usefull back in the
topological world.

3) Quadrics give examples of homogeneous variaties.
To each quadratic form q one can asign the respective projective quadric

Q ⊂ P(Vq) given by the equation q = 0. If q is nondegenerate, the respec-
tive quadratic hypersurface will be smooth (no singularities). The group of
orthogonal linear transformation preserving the form q (denoted O(q)) acts
naturally on Q, and the action is transitive in certain sense. Thus, Q is a
projective homogeneous variety for the algebraic group O(q). Other homo-
geneous varieties for other algebraic groups behave in many respects similar
to the ones for the orthogonal group. Hence, studying the quadrics we get
certain insight into the behavior of other homogeneous varieties. Useful to
mention, that all such varieties are somewhat trivial over algebraically closed
field, and so here we are dealing with the pure extract of the effects which
distinguish arbitrary field from the algebraically closed one (can be then used
to extend the results on some other more complicated varieties from the case
of algebraically closed field to that of arbitrary one).

Connection to K-theory

If you just have some arbitrary form at your disposal it is not very easy
to see much K-theory in it. But some forms are better than others, and with
the good forms the connection is well-visible. The best such forms are Pfister
forms.

Pfister forms
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Definition 0.4 Let a ∈ k∗. The 1-fold Pfister form 〈〈a〉〉 is the 2-dimensional
form 〈1,−a〉.

If now a1, . . . , an ∈ k∗, then n-fold Pfister form 〈〈a1, . . . , an〉〉 is the product
〈〈a1〉〉 ⊗ . . . ⊗ 〈〈an〉〉.

Examples:

n = 1 〈〈a〉〉 = Nrmk
√

a/k - the norm map from the the quadratic extension.

n = 2 〈〈a, b〉〉 = NrdQuat({a,b},k)/k - the reduced norm map in the Quaternion
algebra.

n = 3 〈〈a, b, c〉〉 = NrdO({a,b,c},k)/k - the reduced norm map in the Octonian
algebra.

In all three cases we have an algebra structure on the underlying vector
space of quadratic form, that is a bilinear operation ∗ : V × V → V such
that

q(x ∗ y) = q(x) · q(y)

(although, for n = 2 the operation is not commutative, and for n = 3 not
even associative).

For n > 3 it is still possible to define such an operation ∗, but it will not
be bilinear, but only linear in the 1-st coordinate, and rational in the 2-nd.
And Pfister forms are the only forms for which such multiplicativity holds (if
you demand this property not just over k but also over all extensions F/k).

The quadratic form q is called isotropic if it represents zero nontrivially
(that is, there is v �= 0, such that q(v) = 0). This property is equivalent to the
fact that H is a direct summand in our form: q = H ⊥ q′. For each quadratic
form q there is unique anisotropic form qan such that q = H ⊥ . . . ⊥ H ⊥ qan,
and the number of hyperbolic summands iW (q) is called the Witt index (of
course, it is also uniquely determined). The forms for which dim(qan) � 1
(almost nothing left) are called completely split. Notice that the form is
anisotropic if and only if the respective projective quadric Q has no k-rational
points at all.

The Main Property of Pfister forms is:

Pfister form is isotropic ⇔ it is completely split

Sometimes two sets of parameters a1, . . . , an and b1, . . . , bn define the
same (isomorphic) Pfister form. It appeares that this happens iff there is an
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equality of the respective pure symbols {a1, . . . , an} = {b1, . . . , bn} as elements
of KM

n (k)/2 (pure symbol {c1, . . . , cm} is just the product {c1} · . . . · {cm} of
elements of degree 1 in KM

∗ (k), where KM
1 is naturally identified with k∗).

Thus, the Pfister form depends only on pure symbol (which is also recon-
structed from the form uniquely) , and we can denote it as 〈〈α〉〉, for pure
symbol α ∈ KM

n (k)/2.
The Milnor map in the isomorphism from the Milnor “Conjecture”

KM
∗ (k)/2

φ
→ grI•(W (k))

is defined as identity on 0-degree component (isomorpic to Z/2), is given by
φ({a}) = 〈〈a〉〉(mod.I2) on the component of degree 1, and then uniquely
extended as a homomorphism of algebras (the left algebra is generated by
the first degree component, and it is not difficult to see that φ respects our
explicite quadratic relations a ⊗ (1 − a)). Thus under the Milnor map the
pure symbols goes to the respective Pfister forms (modulo In+1).

In a meantime, we observe that to each Pfister form we can assign two
invariants:

foldness = n, and pure symbol α ∈ KM
n (k)/2,

from which the form itself can be reconstructed.
But Pfister forms live only in dimension of the form 2n. What about other

dimensions? In any dimension there is a “substitute” for the Pfister form,
which, may be, not as good as the Pfister form itself, but still is the best
thing one can find there. These are so-called excellent forms. To construct
an excellent form of dimension d, one has start by presenting d in the form
2r1 − 2r2 + 2r3 − . . . ± 2rs, where r1 > r2 > . . . > rs−1 > rs + 1 � 1 (one can
easily check that there is 1−1 correspondence between N and such sequences).
then for each 1 � i � s one has to choose pure symbol αi ∈ KM

ri
(k)/2 in such

a way that αs divides αs−1 divides ... divides α1. Notice that β = {b1, . . . , bl}
divides α = {a1, . . . , am} in KM

∗ (k)/2 if and only if our symbols have other
presentations: β = {c1, . . . , cl} and α = {c1, . . . , cl, dl+1, . . . , dm}.

In particular, if β divides α, then 〈〈β〉〉 is naturally a subform of 〈〈α〉〉
(since 〈1〉 is a subform of 〈〈dl+1, . . . , dm〉〉). In particular, in our situation,
〈〈α1〉〉 ⊃ 〈〈α2〉〉 ⊃ . . . ⊃ 〈〈αs〉〉. Using this fact and the decreesing induction
on r one can define the form 〈〈αr〉〉 − 〈〈αr+1〉〉+ . . .± 〈〈αs〉〉 as a subform (and
a direct summand) of 〈〈αr〉〉 orthogonal to 〈〈αr+1〉〉 − . . . ∓ 〈〈αs〉〉. It follows
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from the definition that the dimension of the obtained form will be exactly
d = 2r1 − 2r2 + . . . ± 2rs.

Examples:

d = 2n : then excellent form is just the Pfister form

d = 5 : the form 〈1,−c, ac, bc,−abc〉 is excellent, a, b, c,∈ k∗. r1 = 3, r2 =
2, r3 = 0, α1 = {a, b, c}, α2 = {a, b}, α3 = 1 = {∅}.

d = 6 : the form 〈〈a〉〉 · 〈−b,−c, bc〉 is excellent. r1 = 3, r2 = 1, α1 = {a, b, c},
α2 = {a}.

We observe that each excellent form produces invariants (which determine
it, in turn): numbers r1, . . . , rs, and pure symbols α1 ∈ KM

r1
(k)/2,. . .,αs ∈

KM
rs

(k)/2.
So, as the first approximation we can expect that each quadratic form pro-

duces a series of invariants living in the groups of the type K0, K1, K2, . . .,
where invariants of type K0 are discrete invariants taking values in the dis-
crete groups (collection of integers), and the invariants of type K1, K2, etc.
... are taking values in more and more “continuous groups” (where we count
K2 more continuous than K1).
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