

SMR/1840-22

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Pure motives II: applications and conjectures

Marc Levine Universitaet Duisburg-Essen, Germany

Mixed motives and cycle complexes, I

School on Algebraic *K*-theory and its applications ICTP-May 14-26, 2007

Marc Levine

Outline:

- Proofs of the localization and embedding theorems
- Cycle complexes
- Bivariant cycle cohomology

Proofs of the localization and embedding theorems

Statement of main results

The localization theorem

Theorem The functor C_* : Sh^{Nis}(Cor_{fin}(k)) $\rightarrow DM_{-}^{\text{eff}}(k)$ extends to an exact functor

 $\mathbf{R}C_*: D^-(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k))) \to DM^{\mathsf{eff}}_-(k),$

left adjoint to the inclusion $DM_{-}^{\text{eff}}(k) \rightarrow D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k))).$

 $\mathbf{R}C_*$ identifies $DM^{\text{eff}}_{-}(k)$ with the localization $D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k)))/\mathcal{A}$, where \mathcal{A} is the localizing subcategory of $D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k)))$ generated by complexes

$$L(X \times \mathbb{A}^1) \xrightarrow{L(p_1)} L(X); \quad X \in \mathbf{Sm}/k.$$

The embedding theorem

Theorem There is a commutative diagram of exact tensor functors

such that

1. i is a full embedding with dense image.

2. $\mathbf{R}C_*(L(X)) \cong C_*(X)$.

Now to work. We have:

Theorem (Global PST) Let F^* be a complex of PSTs on Sm/k: $F \in C^-(PST)$. Suppose that the cohomology presheaves $h^i(F)$ are homotopy invariant. Then

(1) For
$$Y \in \mathbf{Sm}/k$$
, $\mathbb{H}^{i}(Y_{\mathsf{Nis}}, F^{*}_{\mathsf{Nis}}) \cong \mathbb{H}^{i}(Y_{\mathsf{Zar}}, F^{*}_{\mathsf{Zar}})$

(2) The presheaf $Y \mapsto \mathbb{H}^{i}(Y_{Nis}, F^{*}_{Nis})$ is homotopy invariant

(1) and (2) follows from the PST theorem using the spectral sequence:

$$E_2^{p,q} = H^p(Y_\tau, h^q(F)_\tau) \Longrightarrow \mathbb{H}^{p+q}(Y_\tau, F_\tau), \tau = \text{Nis}, \text{Zar}.$$

\mathbb{A}^1 -homotopy

The inclusions i_0, i_1 : Spec $k \to \mathbb{A}^1$ give maps of PST's i_0, i_1 : $1 \to L(\mathbb{A}^1)$.

Definition Two maps of PST's $f, g : F \to G$ are \mathbb{A}^1 -homotopic if there is a map

$$h: F \otimes L(\mathbb{A}^1) \to F$$

with $f = h \circ (id \otimes i_0)$, $g = h \circ (id \otimes i_1)$.

The usual definition gives the notion of \mathbb{A}^1 -homotopy equivalence.

These notions extend to complexes by allowing chain homotopies. **Example** $p^*: F \to C_n(F)$ is an \mathbb{A}^1 -homotopy equivalence:

n = 1 is the crucial case since $C_1(C_{n-1}(F)) = C_n(F)$.

We have the homotopy inverse $i_0^* : C_1(F) \to F$.

To define a homotopy $h : C_1(F) \otimes L(\mathbb{A}^1) \to C_1(F)$ between $p^*i_0^*$ and id:

Hom $(C_1(F) \otimes L(\mathbb{A}^1), C_1(F))$ = Hom $(\mathcal{H}om(L(\mathbb{A}^1), F), \mathcal{H}om(L(\mathbb{A}^1) \otimes L(\mathbb{A}^1), F))$ so we need a map $\mu : \mathbb{A}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$.

Taking $\mu(x,y) = xy$ works.

Lemma The inclusion $F = C_0(F) \rightarrow C_*(F)$ is an \mathbb{A}^1 -homotopy equivalence.

Proof. Let F_* be the "constant" complex, $F_n := F$, $d_n = 0$, id.

 $F \rightarrow F_*$ is a chain homotopy equivalence.

 $F_* \to C_*(F)$ is an \mathbb{A}^1 -homotopy equivalence by the Example.

$\mathbb{A}^1\text{-homotopy}$ and $\mathsf{Ext}_{\mathsf{Nis}}$

Lemma Let F, G be in $Sh_{Nis}(Cor_{fin}(k))$, with G homotopy invariant. Then $id \otimes p_* : F \otimes L(\mathbb{A}^1) \to F$ induces an isomorphism $Ext^n(F,G) \to Ext^n(F \otimes L(\mathbb{A}^1),G).$ Here Ext is in $Sh_{Nis}(Cor_{fin}(k))$.

Proof. For F = L(X), we have

 $\operatorname{Ext}^n(L(X),G) \cong H^n(X_{\operatorname{Nis}},G),$

so the statement translates to:

$$p^*: H^n(X_{\mathsf{Nis}}, G) \to H^n(X \times \mathbb{A}^1_{\mathsf{Nis}}, G)$$

is an isomorphism. This follows from: G strictly homotopy invariant and the Leray spectral sequence.

In general: use the left resolution $\mathcal{L}(F) \to F$.

Proposition Let $f : F_* \to F'_*$ be an \mathbb{A}^1 -homotopy equivalence in $C^-(Sh_{Nis}(Cor_{fin}(k)))$. Then

 $\operatorname{Hom}_{D^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k)))}(F_{*},G[n]) \xrightarrow{f^{*}} \operatorname{Hom}_{D^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k)))}(F'_{*},G[n])$ is an isomorphism for all $G \in HI(k)$.

Theorem (A¹-resolution) For $G \in HI(k)$, F a PST, we have $Ext^{n}(F_{Nis}, G) \cong Hom_{D^{-}(Sh_{Nis}(Cor_{fin}(k)))}(C_{*}(F)_{Nis}, G[n])$ for all n. Hence:

 $\mathsf{Ext}^{i}(F_{\mathsf{Nis}}, G) = 0 \text{ for } 0 \le i \le n \text{ and all } G \in HI(k)$ $\Leftrightarrow h_{i}^{\mathsf{Nis}}(F) = 0 \text{ for } 0 \le i \le n.$

Proof. The \mathbb{A}^1 -homotopy equivalence $F \to C_*(F)$ induces an \mathbb{A}^1 -homotopy equivalence $F_{Nis} \to C_*(F)_{Nis}$.

Nisnevich acyclicity theorem A very important consequence of the $\mathbb{A}^1\text{-}\text{resolution}$ theorem is

Theorem Let F be a PST such that $F_{Nis} = 0$. Then $C_*(F)_{Nis}$ and $C_*(F)_{Zar}$ are acyclic complexes of sheaves.

Proof. We need to show that

$$h_i^{\mathsf{Nis}}(F) = 0 = h_i^{\mathsf{Zar}}(F)$$

for all *i*. The vanishing of the $h_i^{Nis}(F)$ follows from the \mathbb{A}^1 -resolution theorem.

Since $h_i(F)$ is a homotopy invariant PST, it follows from the PST theorem that

$$h_i^{\operatorname{Zar}}(F) = h_i^{\operatorname{Nis}}(F)$$

hence $h_i^{\operatorname{Zar}}(F) = 0$.

The localization theorem

Theorem The functor C_* extends to an exact functor $\mathbf{R}C_*: D^-(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k))) \to DM^{\mathsf{eff}}_-(k),$

left adjoint to the inclusion $DM_{-}^{\text{eff}}(k) \rightarrow D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k))).$

 $\mathbf{R}C_*$ identifies $DM_-^{\text{eff}}(k)$ with the localization $D^-(Sh_{Nis}(Cor_{fin}(k)))/\mathcal{A}$, where \mathcal{A} is the localizing subcategory of $D^-(Sh_{Nis}(Cor_{fin}(k)))$ generated by complexes

$$L(X \times \mathbb{A}^1) \xrightarrow{L(p_1)} L(X); \quad X \in \mathbf{Sm}/k.$$

Proof. It suffices to prove

1. For each $F \in Sh_{Nis}(Cor_{fin}(k))$, $F \to C_*(F)$ is an isomorphism in $D^-(Sh_{Nis}(Cor_{fin}(k)))/A$.

2. For each $T \in DM_{-}^{\text{eff}}(k)$, $B \in \mathcal{A}$, Hom(B,T) = 0.

Indeed: (1) implies $DM_{-}^{\text{eff}}(k) \rightarrow D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k)))/\mathcal{A}$ is surjective on isomorphism classes.

(2) implies $DM_{-}^{\text{eff}}(k) \rightarrow D^{-}(Sh_{\text{Nis}}(Cor_{\text{fin}}(k)))/\mathcal{A}$ is fully faithful, hence an equivalence.

(1) again implies the composition

 $D^{-}(Sh_{Nis}(Cor_{fin}(k))) \rightarrow D^{-}(Sh_{Nis}(Cor_{fin}(k)))/\mathcal{A} \rightarrow DM_{-}^{eff}(k)$ sends F to $C_{*}(F)$. To prove: 2. For each $T \in DM^{\text{eff}}_{-}(k)$, $B \in \mathcal{A}$, Hom(B,T) = 0.

A is generated by complexes $I(X) := L(X \times \mathbb{A}^1) \xrightarrow{L(p_1)} L(X)$.

But $\operatorname{Hom}(L(Y),T) \cong \mathbb{H}^{0}(Y_{\operatorname{Nis}},T)$ for $T \in D^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k)))$ and

 $\mathbb{H}^*(X,T) \cong \mathbb{H}^*(X \times \mathbb{A}^1,T)$

since T is in $DM_{-}^{\text{eff}}(k)$, so Hom(I(X), T) = 0.

To prove: 1. For each $F \in Sh_{Nis}(Cor_{fin}(k))$, $F \to C_*(F)$ is an isomorphism in $D^-(Sh_{Nis}(Cor_{fin}(k)))/\mathcal{A}$.

First: \mathcal{A} is a \otimes -ideal: $A \in \mathcal{A}, B \in D^{-}(Sh_{Nis}(Cor_{fin}(k))) \Longrightarrow A \otimes B \in \mathcal{A}.$

A is localizing, so can take A = I(X), B = L(Y). But then $A \otimes B = I(X \times Y)$.

Second: $F_* \to C_*(F)$ is a term-wise \mathbb{A}^1 -homotopy equivalence and $F \to F_*$ is an iso in $D^-(Sh_{Nis}(Cor_{fin}(k)))$, so it suffices to show:

For each $F \in Sh_{Nis}(Cor_{fin}(k))$, $id \otimes i_0 = id \otimes i_1 : F \to F \otimes \mathbb{A}^1$ in $D^-(Sh_{Nis}(Cor_{fin}(k)))/\mathcal{A}$.

To show: For each $F \in Sh_{Nis}(Cor_{fin}(k))$, $id \otimes i_0 = id \otimes i_1 : F \to F \otimes \mathbb{A}^1$ in $D^-(Sh_{Nis}(Cor_{fin}(k)))/\mathcal{A}$.

For this: $i_0 - i_1 : L(\operatorname{Spec} k) \to L(\mathbb{A}^1)$ goes to 0 after composition with $L(\mathbb{A}^1) \to L(\operatorname{Spec} k)$, so lifts to a map $\phi : L(\operatorname{Spec} k) \to I(\mathbb{A}^1)$.

Thus $\mathrm{id} \otimes i_0 - \mathrm{id} \otimes i_1 : F \to F \otimes L(\mathbb{A}^1)$ lifts to $\mathrm{id} \otimes \phi : F \to F \otimes I(\mathbb{A}^1) \in \mathcal{A}$.

The embedding theorem

Theorem There is a commutative diagram of exact tensor functors

such that

1. i is a full embedding with dense image.

2. $\operatorname{RC}_*(L(X)) \cong C_*(X)$.

Proof of the embedding theorem.

We already know that $\mathbf{R}C_*(L(X)) \cong C_*(L(X)) = C_*(X)$.

To show that $i: DM_{gm}^{eff}(k) \to DM_{-}^{eff}(k)$ exists:

 $DM_{-}^{\text{eff}}(k)$ is already pseudo-abelian. Using the localization theorem, we need to show that the two types of complexes we inverted in $K^{b}(\text{Cor}_{\text{fin}}(k))$ are already inverted in $D^{-}(\text{Sh}_{\text{Nis}}(\text{Cor}_{\text{fin}}(k)))/\mathcal{A}$.

Type 1. $[X \times \mathbb{A}^1] \to [X]$. This goes to $L(X \times \mathbb{A}^1) \to L(X)$, which is a generator in \mathcal{A} .

Type 2. $([U \cap V] \rightarrow [U] \oplus [V]) \rightarrow [U \cup V]$. The sequence

 $0 \to L(U \cap V) \to L(U) \oplus L(V) \to L(U \cup V) \to 0$

is exact as Nisnevich sheaves (N.B. *not* as Zariski sheaves), hence the map is inverted in $D^{-}(Sh_{Nis}(Cor_{fin}(k)))$.

To show that i is a full embedding:

We need show show that $L^{-1}(\mathcal{A})$ is the thick subcategory generated by cones of maps of Type 1 and Type 2.

The proof uses results of Ne'eman on compact objects in triangulated categories.

To show that *i* has dense image: This uses the canonical left resolution $\mathcal{L}(F) \to F$.

Cycle complexes

We introduce various cycle complexes and describe their main properties.

Our goal is to describe the morphisms in $DM_{gm}^{eff}(k)$ using algebraic cycles, more precisely, as the homology of a cycle complex.

Bloch's cycle complex

A face of $\Delta^n := \operatorname{Spec} k[t_0, \ldots, t_n] / \sum_i t_i - 1$ is a closed subset defined by $t_{i_1} = \ldots = t_{i_s} = 0$.

Definition $X \in \operatorname{Sch}_k$. $z_r(X, n) \subset z_{r+n}(X \times \Delta^n)$ is the subgroup generated by the closed irreducible $W \subset X \times \Delta^n$ such that

 $\dim W \cap X \times F \leq r + \dim F$

for all faces $F \subset \Delta^n$.

If X is equi-dimensional over k of dimension d, set

$$z^q(X,n) := z_{d-q}(X,n).$$

Let $\delta_i^n : \Delta^n \to \Delta^{n+1}$ be the inclusion to the face $t_i = 0$.

The cycle pull-back δ_i^{n*} is a well-defined map

$$\delta_i^{n*}$$
: $z_r(X, n+1) \rightarrow z_r(X, n)$

Definition Bloch's cycle complex $z_r(X, *)$ is $z_r(X, n)$ in degree n, with differential

$$d_n := \sum_{i=0}^{n+1} (-1)^i \delta_i^{n*} : z_r(X, n+1) \to z_r(X, n)$$

Bloch's higher Chow groups are

$$\mathsf{CH}_r(X,n) := H_n(z_r(X,*)).$$

For X locally equi-dimensional over k, we have the complex $z^q(X,*)$ and the higher Chow groups $CH^q(X,n)$.

A problem with functoriality

Even for $X \in Sm/k$, the complex $z^q(X, *)$ is only functorial for *flat* maps, and covariantly functorial for proper maps (with a shift in q). This complex is NOT a complex of PST's.

This is corrected by a version of the the classical *Chow's moving lemma* for cycles modulo rational equivalence.

Products

There is an external product $z^q(X,*) \otimes z^{q'}(Y,*) \to z^{q+q'}(X \times_k Y,*)$, induced by taking products of cycles. For X smooth, this induces a cup product, using δ_X^* .

Properties of the higher Chow groups

(1) **Homotopy**

 p^* : $z_r(X,*) \to z_{r+1}(X \times \mathbb{A}^1,*)$ is a quasi-isomorphism for $X \in$ Sch_k.

(2) Localization amd Mayer-Vietoris

For $X \in \operatorname{Sch}_k$, let $i : W \to X$ be a closed subset with complement $j : U \to X$. Then

$$z_r(W,*) \xrightarrow{i_*} z_r(X,*) \xrightarrow{j^*} z_r(U,*)$$

canonically extends to a distinguished triangle in $D^{-}(Ab)$. Similarly, if $X = U \cup V$, U, V open in X, the sequence

$$z_r(X,*) \to z_r(U,*) \oplus z_r(V,*) \to z_r(U \cap V,*)$$

canonically extends to a distinguished triangle in $D^{-}(Ab)$.

(3) *K*-theory

For X regular, there is a functorial *Chern character isomorphism*

$$ch: K_n(X)_{\mathbb{Q}} \to \oplus_q \mathsf{CH}^q(X, n)_{\mathbb{Q}}$$

identifying $CH^q(X,n)_{\mathbb{Q}}$ with the weight q eigenspace $K_n(X)^{(q)}$ for the Adams operations.

(4) Classical Chow groups $CH^n(X, 0) = CH^n(X).$

(5) Weight one For $X \in \text{Sm}/k$, $\text{CH}^{1}(X, 1) = H^{0}(X, \mathcal{O}_{X}^{*})$, $\text{CH}^{1}(X, 0) = H^{1}(X, \mathcal{O}_{X}^{*}) = \text{Pic}(X)$, $\text{CH}^{1}(X, n) = 0$ for n > 1.

The proof localization property uses a different type of moving lemma (Bloch's moving by blowing up faces).

Equi-dimensional cycles

Definition Fix $X \in \operatorname{Sch}_k$. For $U \in \operatorname{Sm}/k$ let $z_r^{\operatorname{equi}}(X)(U) \subset z(X \times U)$ be the subgroup generated by the closed irreducible $W \subset X \times U$ such that $W \to U$ is equi-dimensional with fibers of dimension r (or empty).

Remark The standard formula for composition of correspondences makes $z_r^{\text{equi}}(X)$ a PST; in fact $z_r^{\text{equi}}(X)$ is a Nisnevich sheaf with transfers.

Definition The complex of equi-dimensional cycles is $z_r^{\text{equi}}(X,*) := C_*(z_r^{\text{equi}}(X))(\text{Spec }k).$

Explicitly: $z_r^{\text{equi}}(X, n)$ is the subgroup of $z_{r+n}(X \times \Delta^n)$ generated by irreducible W such that $W \to \Delta^n$ is equi-dimensional with fiber dimension r. Thus:

There is a natural inclusion

$$z_r^{\mathsf{equi}}(X,*) \to z_r(X,*).$$

Note. $z_0^{\text{equi}}(X)(Y) \subset \mathcal{Z}(Y \times X)$ is the subgroup generated by integral closed subschemes $W \subset Y \times X$ just that $W \to Y$ is *quasi-finite* and dominant over some component of Y.

Write $C^c_*(X)$ for $C_*(z_0^{\text{equi}}(X))$.

Since $z_r^{equi}(X)$ is a Nisnevich sheaf with transfers, $C_*^c(X)$ defines an object $M_{qm}^c(X)$ of $DM_{-}^{eff}(k)$.

 $X \mapsto M^c_{gm}(X)$ is covariantly functorial for *proper* maps and contravariantly functorial for *flat maps of relative dimension 0* (e.g. open immersions). Similarly, we can define the PST L(X) for $X \in \mathbf{Sch}_k$ by L(X)(Y) = the cycles on $X \times Y$, finite over X. This gives the object

$$M_{\mathsf{gm}}(X) := C_*(X) := C_*(L(X))$$

of $DM_{-}^{\text{eff}}(k)$, covariantly functorial in X, extending the definition of M_{gm} from \mathbf{Sm}/k to \mathbf{Sch}_k .

Bivariant cycle cohomology

The cdh topology

Definition The cdh site is given by the pre-topology on \mathbf{Sch}_k with covering families generated by

1. Nisnevich covers

2. $p \amalg i : Y \amalg F \to X$, where $i : F \to X$ is a closed immersion, $p : Y \to X$ is proper, and

$$p: Y \setminus p^{-1}F \to X \setminus F$$

is an isomorphism (abstract blow-up).

Remark If k admits resolution of singularities (for finite type k-schemes and for abstract blow-ups to smooth k-schemes), then each cdh cover admits a refinement consisting of *smooth* k-schemes.

Definition Take $X, Y \in \mathbf{Sch}_k$. The *bivariant cycle cohomology* of Y with coefficients in cycles on X are

$$A_{r,i}(Y,X) := \mathbb{H}^{-i}(Y_{\mathsf{cdh}}, C_*(z_r^{\mathsf{equi}}(X))_{\mathsf{cdh}}).$$

 $A_{r,i}(Y,X)$ is contravariant in Y and covariant in X (for proper maps).

We have the natural map

 $h_i(z_r^{\mathsf{equi}}(X))(Y) := H_i(C_*(z_r^{\mathsf{equi}}(X))(Y)) \to A_{r,i}(Y,X).$

Mayer-Vietoris and blow-up sequences

Since Zariski open covers and abstract blow-ups are covering families in the cdh topology, we have a Mayer-Vietoris sequence for $U, V \subset Y$:

$$\dots \to A_{r,i}(U \cup V, X) \to A_{r,i}(U, X) \oplus A_{r,i}(V, X)$$
$$\to A_{r,i}(U \cap V, X) \to A_{r,i-1}(U \cup V, X) \to \dots$$

and for $p \amalg i : Y' \amalg F \to Y$:

$$\dots \to A_{r,i}(Y,X) \to A_{r,i}(Y',X) \oplus A_{r,i}(F,X)$$
$$\to A_{r,i}(p^{-1}(F),X) \to A_{r,i-1}(Y,X) \to \dots$$

Additional properties of $A_{r,i}$ require some fundamental results on the behavior of homotopy invariant PST's with respect to cdh-sheafification. Additionally, we will need some essentially algebro-geometric results comparing different cycle complexes. These two types of results are:

1. Acyclicity theorems. We have already seen the Nisnevich acyclicity theorem:

Theorem Let F be a PST F with $F_{Nis} = 0$. Then the Suslin complex $C_*(F)_{Zar}$ is acyclic.

We will also need the cdh version:

Theorem (cdh-acyclity) Assume that k admits resolution of singularities. For F a PST with $F_{cdh} = 0$, the Suslin complex $C_*(F)_{Zar}$ is acyclic.

This result transforms sequences of PST's which become short exact after cdh-sheafification, into distinguished triangles after applying $C_*(-)_{Zar}$.

Using a hypercovering argument and Voevodsky's PST theorem, these results also show that cdh, Nis and Zar cohomology of a homotopy invariant PST all agree on smooth varieties:

Theorem (cdh-Nis-Zar) Assume that k admits resolution of singularities. For $U \in \text{Sm}/k$, $F^* \in C^-(PST)$ such that the cohomology presheaves of F are homotopy invariant,

$$\mathbb{H}^{n}(U_{\mathsf{Zar}}, F_{\mathsf{Zar}}^{*}) \cong \mathbb{H}^{n}(U_{\mathsf{Nis}}, F_{\mathsf{Nis}}^{*}) \cong \mathbb{H}^{n}(Y_{\mathsf{cdh}}, F_{\mathsf{cdh}}^{*})$$

We will derive the important consequences of the cdh acyclicity theorem for bivariant cohomology in the next lecture.

2. Moving lemmas. The bivariant cohomology $A_{r,i}$ is defined using cdh-hypercohomology of z_r^{equi} , so comparing z_r^{equi} with other complexes leads to identification of $A_{r,i}$ with cdh-hypercohomology of the other complexes. These comparisions of z_r^{equi} with other complexes is based partly on a number of very interesting geometric constructions, due to Friedlander-Lawson and Suslin. We will not discuss these results here, except to mention where they come in.