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Proofs of the localization and embedding
theorems



Statement of main results



The localization theorem

Theorem The functor C∗ : ShNis(Corfin(k)) → DMeff− (k) ex-

tends to an exact functor

RC∗ : D−(ShNis(Corfin(k))) → DMeff− (k),

left adjoint to the inclusion DMeff− (k) → D−(ShNis(Corfin(k))).

RC∗ identifies DMeff− (k) with the localization D−(ShNis(Corfin(k)))/A,

where A is the localizing subcategory of D−(ShNis(Corfin(k)))

generated by complexes

L(X × A1)
L(p1)−−−−→ L(X); X ∈ Sm/k.



The embedding theorem

Theorem There is a commutative diagram of exact tensor

functors

Kb(Corfin(k))
L−→ D−(ShNis(Corfin(k)))

q

⏐⏐⏐�

⏐⏐⏐�RC∗

DMeff
gm(k) −→

i
DMeff− (k)

such that

1. i is a full embedding with dense image.

2. RC∗(L(X)) ∼= C∗(X).



Now to work. We have:

Theorem (Global PST) Let F ∗ be a complex of PSTs on

Sm/k: F ∈ C−(PST ). Suppose that the cohomology presheaves

hi(F ) are homotopy invariant. Then

(1) For Y ∈ Sm/k, Hi(YNis, F
∗
Nis)

∼= Hi(YZar, F
∗
Zar)

(2) The presheaf Y �→ Hi(YNis, F
∗
Nis) is homotopy invariant

(1) and (2) follows from the PST theorem using the spectral

sequence:

E
p,q
2 = Hp(Yτ , hq(F )τ) =⇒ Hp+q(Yτ , Fτ), τ = Nis,Zar.



A1-homotopy

The inclusions i0, i1 : Spec k → A1 give maps of PST’s i0, i1 :
1 → L(A1).

Definition Two maps of PST’s f, g : F → G are A1-homotopic
if there is a map

h : F ⊗ L(A1) → F

with f = h ◦ (id ⊗ i0), g = h ◦ (id ⊗ i1).

The usual definition gives the notion of A1-homotopy equiva-
lence.

These notions extend to complexes by allowing chain homo-
topies.



Example p∗ : F → Cn(F ) is an A1-homotopy equivalence:

n = 1 is the crucial case since C1(Cn−1(F )) = Cn(F ).

We have the homotopy inverse i∗0 : C1(F ) → F .

To define a homotopy h : C1(F ) ⊗ L(A1) → C1(F ) between p∗i∗0
and id:

Hom(C1(F ) ⊗ L(A1), C1(F ))

= Hom(Hom(L(A1), F ), Hom(L(A1) ⊗ L(A1), F ))

so we need a map µ : A1 × A1 → A1.

Taking µ(x, y) = xy works.



Lemma The inclusion F = C0(F ) → C∗(F ) is an A1-homotopy

equivalence.

Proof. Let F∗ be the “constant” complex, Fn := F , dn = 0, id.

F → F∗ is a chain homotopy equivalence.

F∗ → C∗(F ) is an A1-homotopy equivalence by the Example.



A1-homotopy and ExtNis

Lemma Let F, G be in ShNis(Corfin(k)), with G homotopy in-
variant. Then id ⊗ p∗ : F ⊗ L(A1) → F induces an isomorphism

Extn(F, G) → Extn(F ⊗ L(A1), G).

Here Ext is in ShNis(Corfin(k)).

Proof. For F = L(X), we have

Extn(L(X), G) ∼= Hn(XNis, G),

so the statement translates to:

p∗ : Hn(XNis, G) → Hn(X × A1
Nis, G)

is an isomorphism. This follows from: G strictly homotopy in-
variant and the Leray spectral sequence.

In general: use the left resolution L(F ) → F .



Proposition Let f : F∗ → F ′∗ be an A1-homotopy equivalence in
C−(ShNis(Corfin(k)). Then

HomD−(ShNis(Corfin(k)))
(F∗, G[n])

f∗
−→ HomD−(ShNis(Corfin(k)))

(F ′∗, G[n])

is an isomorphism for all G ∈ HI(k).

Theorem (A1-resolution) For G ∈ HI(k), F a PST, we have

Extn(FNis, G) ∼= HomD−(ShNis(Corfin(k)))
(C∗(F )Nis, G[n])

for all n. Hence:

Exti(FNis, , G) = 0 for 0 ≤ i ≤ n and all G ∈ HI(k)
⇔ hNis

i (F ) = 0 for 0 ≤ i ≤ n.

Proof. The A1-homotopy equivalence F → C∗(F ) induces an
A1-homotopy equivalence FNis → C∗(F )Nis.



Nisnevich acyclicity theorem A very important consequence of
the A1-resolution theorem is

Theorem Let F be a PST such that FNis = 0. Then C∗(F )Nis
and C∗(F )Zar are acyclic complexes of sheaves.

Proof. We need to show that

hNis
i (F ) = 0 = hZar

i (F )

for all i. The vanishing of the hNis
i (F ) follows from the A1-

resolution theorem.

Since hi(F ) is a homotopy invariant PST , it follows from the
PST theorem that

hZar
i (F ) = hNis

i (F )

hence hZar
i (F ) = 0.



The localization theorem

Theorem The functor C∗ extends to an exact functor

RC∗ : D−(ShNis(Corfin(k))) → DMeff− (k),

left adjoint to the inclusion DMeff− (k) → D−(ShNis(Corfin(k))).

RC∗ identifies DMeff− (k) with the localization D−(ShNis(Corfin(k)))/A,

where A is the localizing subcategory of D−(ShNis(Corfin(k)))

generated by complexes

L(X × A1)
L(p1)−−−−→ L(X); X ∈ Sm/k.



Proof. It suffices to prove

1. For each F ∈ ShNis(Corfin(k)), F → C∗(F ) is an isomorphism
in D−(ShNis(Corfin(k)))/A.

2. For each T ∈ DMeff− (k), B ∈ A, Hom(B, T ) = 0.

Indeed: (1) implies DMeff− (k) → D−(ShNis(Corfin(k)))/A is sur-
jective on isomorphism classes.

(2) implies DMeff− (k) → D−(ShNis(Corfin(k)))/A is fully faithful,
hence an equivalence.

(1) again implies the composition

D−(ShNis(Corfin(k))) → D−(ShNis(Corfin(k)))/A → DMeff− (k)

sends F to C∗(F ).



To prove: 2. For each T ∈ DMeff− (k), B ∈ A, Hom(B, T ) = 0.

A is generated by complexes I(X) := L(X × A1)
L(p1)−−−−→ L(X).

But Hom(L(Y ), T ) ∼= H0(YNis, T ) for T ∈ D−(ShNis(Corfin(k)))

and

H∗(X, T ) ∼= H∗(X × A1, T )

since T is in DMeff− (k), so Hom(I(X), T ) = 0.



To prove: 1. For each F ∈ ShNis(Corfin(k)), F → C∗(F ) is an

isomorphism in D−(ShNis(Corfin(k)))/A.

First: A is a ⊗-ideal: A ∈ A, B ∈ D−(ShNis(Corfin(k))) =⇒
A ⊗ B ∈ A.

A is localizing, so can take A = I(X), B = L(Y ). But then

A ⊗ B = I(X × Y ).

Second: F∗ → C∗(F ) is a term-wise A1-homotopy equivalence

and F → F∗ is an iso in D−(ShNis(Corfin(k))), so it suffices to

show:

For each F ∈ ShNis(Corfin(k)), id ⊗ i0 = id ⊗ i1 : F → F ⊗ A1 in

D−(ShNis(Corfin(k)))/A.



To show: For each F ∈ ShNis(Corfin(k)), id ⊗ i0 = id ⊗ i1 : F →
F ⊗ A1 in D−(ShNis(Corfin(k)))/A.

For this: i0− i1 : L(Spec k) → L(A1) goes to 0 after composition

with L(A1) → L(Spec k), so lifts to a map φ : L(Spec k) → I(A1).

Thus id⊗i0−id⊗i1 : F → F⊗L(A1) lifts to id⊗φ : F → F⊗I(A1) ∈
A.



The embedding theorem

Theorem There is a commutative diagram of exact tensor

functors

Kb(Corfin(k))
L−→ D−(ShNis(Corfin(k)))⏐⏐⏐�

⏐⏐⏐�RC∗

DMeff
gm(k) −→

i
DMeff− (k)

such that

1. i is a full embedding with dense image.

2. RC∗(L(X)) ∼= C∗(X).



Proof of the embedding theorem.

We already know that RC∗(L(X)) ∼= C∗(L(X)) = C∗(X).

To show that i : DMeff
gm(k) → DMeff− (k) exists:

DMeff− (k) is already pseudo-abelian. Using the localization the-
orem, we need to show that the two types of complexes we in-
verted in Kb(Corfin(k)) are already inverted in D−(ShNis(Corfin(k)))/A.

Type 1. [X ×A1] → [X]. This goes to L(X ×A1) → L(X), which
is a generator in A.

Type 2. ([U ∩ V ] → [U ] ⊕ [V ]) → [U ∪ V ]. The sequence

0 → L(U ∩ V ) → L(U) ⊕ L(V ) → L(U ∪ V ) → 0

is exact as Nisnevich sheaves (N.B. not as Zariski sheaves), hence
the map is inverted in D−(ShNis(Corfin(k))).



To show that i is a full embedding:

We need show show that L−1(A) is the thick subcategory gen-

erated by cones of maps of Type 1 and Type 2.

The proof uses results of Ne’eman on compact objects in trian-

gulated categories.

To show that i has dense image: This uses the canonical left

resolution L(F ) → F .



Cycle complexes

We introduce various cycle complexes and describe their main

properties.

Our goal is to describe the morphisms in DMeff
gm(k) using alge-

braic cycles, more precisely, as the homology of a cycle complex.



Bloch’s cycle complex

A face of ∆n := Spec k[t0, . . . , tn]/
∑

i ti − 1 is a closed subset

defined by ti1 = . . . = tis = 0.

Definition X ∈ Schk. zr(X, n) ⊂ zr+n(X × ∆n) is the subgroup

generated by the closed irreducible W ⊂ X × ∆n such that

dimW ∩ X × F ≤ r + dimF

for all faces F ⊂ ∆n.

If X is equi-dimensional over k of dimension d, set

zq(X, n) := zd−q(X, n).



Let δn
i : ∆n → ∆n+1 be the inclusion to the face ti = 0.

The cycle pull-back δn∗
i is a well-defined map

δn∗
i : zr(X, n + 1) → zr(X, n)

Definition Bloch’s cycle complex zr(X, ∗) is zr(X, n) in degree
n, with differential

dn :=
n+1∑

i=0

(−1)iδn∗
i : zr(X, n + 1) → zr(X, n)

Bloch’s higher Chow groups are

CHr(X, n) := Hn(zr(X, ∗)).
For X locally equi-dimensional over k, we have the complex
zq(X, ∗) and the higher Chow groups CHq(X, n).



A problem with functoriality

Even for X ∈ Sm/k, the complex zq(X, ∗) is only functorial for

flat maps, and covariantly functorial for proper maps (with a

shift in q). This complex is NOT a complex of PST’s.

This is corrected by a version of the the classical Chow’s moving

lemma for cycles modulo rational equivalence.

Products

There is an external product zq(X, ∗)⊗zq′(Y, ∗) → zq+q′(X×kY, ∗),
induced by taking products of cycles. For X smooth, this induces

a cup product, using δ∗X.



Properties of the higher Chow groups

(1) Homotopy
p∗ : zr(X, ∗) → zr+1(X × A1, ∗) is a quasi-isomorphism for X ∈
Schk.

(2) Localization amd Mayer-Vietoris
For X ∈ Schk, let i : W → X be a closed subset with complement
j : U → X. Then

zr(W, ∗) i∗−→ zr(X, ∗) j∗−→ zr(U, ∗)
canonically extends to a distinguished triangle in D−(Ab). Sim-
ilarly, if X = U ∪ V , U, V open in X, the sequence

zr(X, ∗) → zr(U, ∗) ⊕ zr(V, ∗) → zr(U ∩ V, ∗)
canonically extends to a distinguished triangle in D−(Ab).



(3) K-theory

For X regular, there is a functorial Chern character isomorphism

ch : Kn(X)Q → ⊕qCHq(X, n)Q

identifying CHq(X, n)Q with the weight q eigenspace Kn(X)(q)

for the Adams operations.

(4) Classical Chow groups

CHn(X,0) = CHn(X).

(5) Weight one

For X ∈ Sm/k, CH1(X,1) = H0(X, O∗
X), CH1(X,0) = H1(X, O∗

X) =
Pic(X), CH1(X, n) = 0 for n > 1.

The proof localization property uses a different type of moving
lemma (Bloch’s moving by blowing up faces).



Equi-dimensional cycles

Definition Fix X ∈ Schk. For U ∈ Sm/k let zequi
r (X)(U) ⊂

z(X × U) be the subgroup generated by the closed irreducible

W ⊂ X × U such that W → U is equi-dimensional with fibers of

dimension r (or empty).

Remark The standard formula for composition of correspon-

dences makes zequi
r (X) a PST; in fact zequi

r (X) is a Nisnevich

sheaf with transfers.



Definition The complex of equi-dimensional cycles is

zequi
r (X, ∗) := C∗(zequi

r (X))(Spec k).

Explicitly: zequi
r (X, n) is the subgroup of zr+n(X×∆n) generated

by irreducible W such that W → ∆n is equi-dimensional with fiber

dimension r. Thus:

There is a natural inclusion

zequi
r (X, ∗) → zr(X, ∗).



Note. zequi
0 (X)(Y ) ⊂ Z(Y × X) is the subgroup generated by

integral closed subschemes W ⊂ Y ×X just that W → Y is quasi-

finite and dominant over some component of Y .

Write Cc∗(X) for C∗(zequi
0 (X)).

Since zequi
r (X) is a Nisnevich sheaf with transfers, Cc∗(X) defines

an object Mc
gm(X) of DMeff− (k).

X �→ Mc
gm(X) is covariantly functorial for proper maps and con-

travariantly functorial for flat maps of relative dimension 0 (e.g.

open immersions).



Similarly, we can define the PST L(X) for X ∈ Schk by L(X)(Y ) =

the cycles on X × Y , finite over X. This gives the object

Mgm(X) := C∗(X) := C∗(L(X))

of DMeff− (k), covariantly functorial in X, extending the definition

of Mgm from Sm/k to Schk.



Bivariant cycle cohomology



The cdh topology

Definition The cdh site is given by the pre-topology on Schk
with covering families generated by

1. Nisnevich covers

2. p � i : Y � F → X, where i : F → X is a closed immersion,
p : Y → X is proper, and

p : Y \ p−1F → X \ F

is an isomorphism (abstract blow-up).

Remark If k admits resolution of singularities (for finite type k-
schemes and for abstract blow-ups to smooth k-schemes), then
each cdh cover admits a refinement consisting of smooth k-
schemes.



Definition Take X, Y ∈ Schk. The bivariant cycle cohomology

of Y with coefficients in cycles on X are

Ar,i(Y, X) := H−i(Ycdh, C∗(zequi
r (X))cdh).

Ar,i(Y, X) is contravariant in Y and covariant in X (for proper

maps).

We have the natural map

hi(z
equi
r (X))(Y ) := Hi(C∗(zequi

r (X))(Y )) → Ar,i(Y, X).



Mayer-Vietoris and blow-up sequences

Since Zariski open covers and abstract blow-ups are covering

families in the cdh topology, we have a Mayer-Vietoris sequence

for U, V ⊂ Y :

. . . → Ar,i(U ∪ V, X) → Ar,i(U, X) ⊕ Ar,i(V, X)

→ Ar,i(U ∩ V, X) → Ar,i−1(U ∪ V, X) → . . .

and for p � i : Y ′ � F → Y :

. . . → Ar,i(Y, X) → Ar,i(Y
′, X) ⊕ Ar,i(F, X)

→ Ar,i(p
−1(F ), X) → Ar,i−1(Y, X) → . . .



Additional properties of Ar,i require some fundamental results
on the behavior of homotopy invariant PST’s with respect to
cdh-sheafification. Additionally, we will need some essentially
algebro-geometric results comparing different cycle complexes.
These two types of results are:

1. Acyclicity theorems. We have already seen the Nisnevich
acyclicity theorem:

Theorem Let F be a PST F with FNis = 0. Then the Suslin
complex C∗(F )Zar is acyclic.

We will also need the cdh version:

Theorem (cdh-acyclity) Assume that k admits resolution of
singularities. For F a PST with Fcdh = 0, the Suslin complex
C∗(F )Zar is acyclic.



This result transforms sequences of PST’s which become short
exact after cdh-sheafification, into distinguished triangles after
applying C∗(−)Zar.

Using a hypercovering argument and Voevodsky’s PST theorem,
these results also show that cdh, Nis and Zar cohomology of a
homotopy invariant PST all agree on smooth varieties:

Theorem (cdh-Nis-Zar) Assume that k admits resolution of
singularities. For U ∈ Sm/k, F ∗ ∈ C−(PST ) such that the coho-
mology presheaves of F are homotopy invariant,

Hn(UZar, F
∗
Zar)

∼= Hn(UNis, F
∗
Nis)

∼= Hn(Ycdh, F ∗
cdh)

We will derive the important consequences of the cdh acyclicity
theorem for bivariant cohomology in the next lecture.



2. Moving lemmas. The bivariant cohomology Ar,i is defined us-

ing cdh-hypercohomology of zequi
r , so comparing zequi

r with other

complexes leads to identification of Ar,i with cdh-hypercohomology

of the other complexes. These comparisions of zequi
r with other

complexes is based partly on a number of very interesting geo-

metric constructions, due to Friedlander-Lawson and Suslin. We

will not discuss these results here, except to mention where they

come in.




