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Proofs of the localization and embedding
theorems



Statement of main results



T he localization theorem

Theorem The functor Csx : ShNS(Corgin(k)) — DMET (k) ex-
tends to an exact functor

RC . D_(ShNiS(COI’ﬁn(k))) — DMEﬂ:(/C),
left adjoint to the inclusion DM (k) — D~ (Shyis(Corsin(k))).

RC, identifies DM€ (k) with the localization D~ (Shy;is(Corsin(k))) /A,
where A is the localizing subcategory of D~ (Shyis(Corsin(k)))
generated by complexes

L(X x AY) 2P rexy. X Smyk,



The embedding theorem

Theorem There is a commutative diagram of exact tensor
functors

Kb(Corfin(k)) - D~ (Shpis(Corfin(k)))

| ne.

DMSN (k)  — DMET (k)

such that
1. 2 is a full embedding with dense image.
2. ROW(L(X)) = C«(X).



Now to work. We have:

Theorem (Global PST) Let F* be a complex of PSTs on
Sm/k: FF € C—(PST). Suppose that the cohomology presheaves
h'(F) are homotopy invariant. Then

(1) ForY € Sm/k, H'(Yyis, F}iie) = H' (Yzar, F3.,)
(2) The presheaf Y — H'(Yyis, F¥ic) is homotopy invariant

(1) and (2) follows from the PST theorem using the spectral
sequence:

ES? = HP(Y;, hi(F),) = HPTI(Y;, F;), T = Nis, Zar.



Al-homotopy

The inclusions ig,i1 : Speck — Al give maps of PST's ig,iq :
1 — L(Al).

Definition Two maps of PST's f,g: F — G are Al-homotopic
if there is a map

h:FR LAY - F
with f = ho(ild®ig), g=ho (id®i7).

The usual definition gives the notion of Al-homotopy equiva-
lence.

These notions extend to complexes by allowing chain homo-
topies.



Example p*: F — Cn(F) is an Al-homotopy equivalence:
n = 1 is the crucial case since C1(C,,_1(F)) = Cr(F).
We have the homotopy inverse i : C1(F) — F.

To define a homotopy h : C1(F) @ L(AY) — C{(F) between prig
and id:

Hom(C1(F) ® L(AY), C1(F))
= Hom(Hom(L(AY), F), Hom(L(AY) @ L(A1), F))

so we need a map u: Al x Al — AL

Taking u(x,y) = xy works.



Lemma The inclusion F = Cy(F) — C«(F) is an Al-homotopy
equivalence.

Proof. Let Fy be the ‘constant” complex, F, .= F, d, = 0, id.
F — Fy is a chain homotopy equivalence.

Fyx — C«(F") is an Al-homotopy equivalence by the Example.



Al-homotopy and Extps

Lemma Let F,G be in Shyis(Corsin(k)), with G homotopy in-

variant. Then id ® p« : F ® L(A) — F induces an isomorphism
Ext™(F,G) — Ext™(F @ L(AY), Q).

Here Ext is in Shyis(Corgin(k)).

Proof. For FF = L(X), we have
Eth(L(X)a G) = Hn(XNi57 G)7
SO the statement translates to:
p* 1 H"(XpNis, @) — HY(X x Ak, G)
iIs an isomorphism. This follows from: G strictly homotopy in-
variant and the Leray spectral sequence.

In general: use the left resolution L(F) — F.



Proposition Let f: Fyx — F. be an Al—homotopy equivalence in
C_(ShNiS(COI’fin(k)). T hen

f‘*
HOM p-(Shyis(Corsn (k) (e GInD) = HOM - (1 (Corn i) (1 GD)
is an isomorphism for all G € HI(k).

Theorem (Al-resolution) For G € HI(k), F a PST, we have

Eth(FNi&G) = HomD—(ShNiS(Corﬁn(k)))(C*(F)Ni&G[n])
for all n. Hence:

Ext'(Fyis,,G) =0 for 0 <i<n and all G € HI(k)
< hNIS(F) =0 for 0 <i <n.

Proof. The Al—homotopy equivalence F' — Cx(F') induces an
Al-homotopy equivalence Fyis — Cx(F)pis.



Nisnevich acyclicity theorem A very important consequence of
the Al-resolution theorem is

Theorem Let F be a PST such that Fnjs = 0. Then C«(F)Nis
and C«(F)z4 are acyclic complexes of sheaves.

Proof. We need to show that
hNIS(F) = 0 = hF2"(F)

for all i. The vanishing of the ANIS(F) follows from the Al-
resolution theorem.

Since h;(F') is a homotopy invariant PST, it follows from the
PST theorem that

hzZar(F) — hJL\“S(F)
hence h#2"(F) = 0.



The localization theorem

T heorem The functor Cy extends to an exact functor

RC4 : D™ (Shyis(Corfin(k))) — DM (k),
left adjoint to the inclusion DM (k) — D~ (Shyis(Corsin(k))).

RC, identifies DM€ (k) with the localization D~ (Shy;is(Corsin(k))) /A,
where A is the localizing subcategory of D~ (Shyis(Corsin(k)))
generated by complexes

L(X x A1) L), L(X); X €Sm/k.



Proof. It suffices to prove

1. For each F € Shyis(Corsin(k)), F — C«(F') is an isomorphism
in D™ (Shyis(Corfin(k)))/A.

2. For each T € DM€ (k), B e A, Hom(B,T) = 0.

Indeed: (1) implies DM€ (k) — D~ (Shyis(Corsin(k))) /A is sur-
jective on isomorphism classes.

(2) implies DM€ (k) — D= (Shpis(Corsin(k))) /A is fully faithful,
hence an equivalence.
(1) again implies the composition

D~ (Shyis(Corin(k))) — D~ (Shyis(Corsin(k))) /A — DME" (k)
sends F to Ci«(F).



To prove: 2. For each T € DM (k), B e A, Hom(B,T) = 0.

A is generated by complexes I(X) := L(X x Al) L), L(X).

But Hom(L(Y),T) = HO(Yyis, T) for T € D~ (Shyis(Corsin(k)))
and

H*(X,T) & H*(X x AL, T)
since T is in DM€ (k), so Hom(I(X),T) = 0.



To prove: 1. For each F € Shyis(Corgin(k)), F — C«(F') is an
isomorphism in D~ (Shyis(Corsin(k)))/A.

First: A is a ®-ideal: A € A, B € D™ (Shyis(Corsin(k))) —
AQ BeA.

A is localizing, so can take A = I(X), B = L(Y). But then
ARB=I(XxY).

Second: Fy — C«(F) is a term-wise Al-homotopy equivalence
and F' — Fyx is an iso in D~ (Shyis(Corsin(k))), so it suffices to
show:

For each F € Shyis(Corfin(k)), id®ig =id®i; : F — F® Al in
D™ (Shnis(Corsin(k))) /A.



To show: For each F € Shyis(Corsin(k)), id®ig =id®iq : F —
F®A in D=(Shyis(Corgin(k)))/A.

For this: ig—iy : L(Speck) — L(Al) goes to 0 after composition
with L(Al) — L(Speck), so lifts to a map ¢ : L(Speck) — I(AD).

Thus id®ig—id®iy : F — FQL(AL) liftsto id®¢ : F — FRI(AL) €
A.



The embedding theorem

Theorem There is a commutative diagram of exact tensor
functors

Kb(Corfin(k)) - D~ (Shpis(Corfin(k)))

l |Re

DMSN (k)  — DMET (k)

such that
1. 2 is a full embedding with dense image.
2. RO«(L(X)) = C«(X).



Proof of the embedding theorem.
We already know that RC«(L(X)) £ C«(L(X)) = C«(X).
To show that i : DM (k) — DMET (k) exists:

DMEe™(k) is already pseudo-abelian. Using the localization the-
orem, we need to show that the two types of complexes we in-
verted in K(Corfin(k)) are already inverted in D~ (Shyis(Corsin(k)))/A.

Type 1. [X x Al] — [X]. This goes to L(X x Al) — L(X), which

IS a generator in A.

Type 2. ([UNV] — [U] @ [V]) — [UUV]. The sequence
0—-L(UNV)> L)@ L(V) - LUUV) =0

is exact as Nisnevich sheaves (N.B. not as Zariski sheaves), hence
the map is inverted in D~ (Shyis(Corsin(k))).



To show that ¢ is a full embedding:

We need show show that L=1(A) is the thick subcategory gen-
erated by cones of maps of Type 1 and Type 2.

The proof uses results of Ne’eman on compact objects in trian-
gulated categories.

To show that ¢ has dense image: This uses the canonical left
resolution L(F) — F.



Cycle complexes

We introduce various cycle complexes and describe their main
properties.

Our goal is to describe the morphisms in DMSI (k) using alge-
braic cycles, more precisely, as the homology of a cycle complex.



Bloch’s cycle complex

A face of A™ := Speckltg,...,tn]/>;t; — 1 is a closed subset
defined by tiy = ... =t;, = 0.

Definition X € Schy. z-(X,n) C z,4,(X x A™) is the subgroup
generated by the closed irreducible W C X x A™ such that

dmiWNX x F<r4+dmkF

for all faces F C A™.

If X is equi-dimensional over k of dimension d, set

(X, n) 1= z4_,(X,n).



Let 67 : A™ — A™T1 be the inclusion to the face t; = 0.

The cycle pull-back 5?* is a well-defined map

6tz (X,n+ 1) — 2z(X,n)

Definition Bloch's cycle complex z.(X,*) is z-(X,n) in degree
n, with differential
n—+1 _
dn = Y (=1)'6]": z+(X,n+ 1) — z(X, n)
i=0
Bloch’s higher Chow groups are

CHy(X,n) ;= Hp(zr(X, %)).

For X locally equi-dimensional over k, we have the complex
29(X,*) and the higher Chow groups CH?Y(X,n).



A problem with functoriality

Even for X € Sm/k, the complex z9(X,*) is only functorial for
flat maps, and covariantly functorial for proper maps (with a
shift in ¢). This complex is NOT a complex of PST's.

This is corrected by a version of the the classical Chow’s moving
lemma for cycles modulo rational equivalence.

Products

There is an external product z9(X, *)®zq/(Y, *) — zq+q/(X XY, %),
induced by taking products of cycles. For X smooth, this induces
a cup product, using d%.



Properties of the higher Chow groups

(1) Homotopy
p* 1z (X, %) — 2z.11(X x Al %) is a quasi-isomorphism for X ¢
SChk.

(2) Localization amd Mayer-Vietoris
For X € Schy, let 2 : W — X be a closed subset with complement

7:U— X. Then
2 (W, %) 25 20(X, %) Lo 20 (U, %)

canonically extends to a distinguished triangle in D~ (Ab). Sim-
larly, it X =U UV, U,V open in X, the sequence

ZT(X7 *) — ZT(U) *) @ ZT(V) *) — ZT(U M V7 *)

canonically extends to a distinguished triangle in D~ (Ab).



(3) K-theory
For X regular, there is a functorial Chern character isomorphism

identifying CHY(X,n)gp with the weight g eigenspace Kn (X))@
for the Adams operations.

(4) Classical Chow groups
CH™(X,0) = CH"(X).

(5) Weight one
For X € Sm/k, CH1(X,1) = HO(X,0%), CH1(X,0) = H}(X,0%) =
Pic(X), CH(X,n) =0 for n > 1.

The proof localization property uses a different type of moving
lemma (Bloch’s moving by blowing up faces).



Equi-dimensional cycles

Definition Fix X € Sch,. For U € Sm/k let 89 (X)(U) C
2(X x U) be the subgroup generated by the closed irreducible
W C X x U such that W — U is equi-dimensional with fibers of
dimension r (or empty).

Remark The standard formula for composition of correspon-
dences makes z9Y'(X) a PST; in fact 2% (X) is a Nisnevich
sheaf with transfers.



Definition The complex of equi-dimensional cycles is

22U X %) 1= Cu(289Y (X)) (Speck).

Explicitly: 229Y(X,n) is the subgroup of zr 40 (X X A™) generated
by irreducible W such that W — A" is equi-dimensional with fiber
dimension r. Thus:

There is a natural inclusion

qum(X) *) — ZT(X) *)



Note. z8M(X)(Y) ¢ Z(Y x X) is the subgroup generated by
integral closed subschemes W C Y x X just that W — Y is quasi-
finite and dominant over some component of Y.

Write CS(X) for Cx(280(X)).

Since 289 (X) is a Nisnevich sheaf with transfers, CS(X) defines
an object Mgy (X) of DMET(k).

X — Mgm(X) is covariantly functorial for proper maps and con-
travariantly functorial for flat maps of relative dimension 0 (e.g.
open immersions).



Similarly, we can define the PST L(X) for X € Sch; by L(X)(Y) =
the cycles on X x Y, finite over X. This gives the object

of DME™(k), covariantly functorial in X, extending the definition
of Mgm from Sm/k to Schy.



Bivariant cycle cohomology



The cdh topology

Definition The cdh site is given by the pre-topology on Schy
with covering families generated by

1. Nisnevich covers

2. pl::YIOF — X, where : : FF — X Is a closed immersion,
p.Y — X is proper, and
p:Y\p lF > X\F

is an isomorphism (abstract blow-up).

Remark If k£ admits resolution of singularities (for finite type k-
schemes and for abstract blow-ups to smooth k-schemes), then
each cdh cover admits a refinement consisting of smooth k-
schemes.



Definition Take X,Y € Sch;. The bivariant cycle cohomology
of Y with coefficients in cycles on X are

Ap (Y, X) = H"(Yegn, Co (28 (X)) cdn)-

A, ;(Y,X) is contravariant in Y and covariant in X (for proper
maps).

We have the natural map

hi (MU (XN(Y) i= Hi(Co(z2M(X))(Y)) — A, 4(Y, X).



Mayer-Vietoris and blow-up sequences

Since Zariski open covers and abstract blow-ups are covering
families in the cdh topology, we have a Mayer-Vietoris sequence

for U,V CY:

- Ar,i(U uv,X) — Ar,z’(Ua X) @ Ar,i(va X)
— A, (UNV,X) - A, 1(UUV,X) — ...

and for plI:: Y'IIF — Y

- T AT,i(YaX) - Ar,i(YlaX) > A?“,i(F7X)
— A (0 HF), X)) — A 1 (Y, X) — .



Additional properties of A,; require some fundamental results
on the behavior of homotopy invariant PST’s with respect to
cdh-sheafification. Additionally, we will need some essentially
algebro-geometric results comparing different cycle complexes.
These two types of results are:

1. Acyclicity theorems. We have already seen the Nisnevich
acyclicity theorem:

Theorem Let F be a PST F with Fyis = 0. Then the Suslin
complex Cx(F) 74, is acyclic.

We will also need the cdh version:

Theorem (cdh-acyclity) Assume that k admits resolution of
singularities. For F' a PST with F-qn = 0, the Suslin complex
C«(F)z4r is acyclic.



This result transforms sequences of PST's which become short
exact after cdh-sheafification, into distinguished triangles after
applying C«(—)zar-

Using a hypercovering argument and Voevodsky's PST theorem,
these results also show that cdh, Nis and Zar cohomology of a
homotopy invariant PST all agree on smooth varieties:

Theorem (cdh-Nis-Zar) Assume that k admits resolution of
singularities. For U € Sm/k, F* € C~(PST) such that the coho-
mology presheaves of F' are homotopy invariant,

H"(Uzar, FZ5r) = H"(Unis, Fris) = H"(Yedns Fégn)

We will derive the important consequences of the cdh acyclicity
theorem for bivariant cohomology in the next lecture.



2. Moving lemmas. The bivariant cohomology A, ; is defined us-
ing cdh-hypercohomology of 289Y so comparing 2894 with other
complexes leads to identification of Ar,i with cdh-hypercohomology
of the other complexes. These comparisions of z?q“i with other
complexes is based partly on a number of very interesting geo-
metric constructions, due to Friedlander-Lawson and Suslin. We
will not discuss these results here, except to mention where they

come in.





