

SMR/1840-28

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Uniqueness of bP^n

Charles Weibel Rutgers University, Piscataway, USA

5 Lecture 5: Uniqueness of βP^n

The purpose of this lecture is to prove Theorem 5.1, which replaces the unproven "Theorem 2.1" in [MC/l]. As before, k is a field of characteristic 0, and P^n is the cohomology operation of bidegree $(2n(\ell - 1), n(\ell - 1))$ referred to in Lecture 2. (The n of this lecture is unrelated to the n in the norm residue homomorphism of the Bloch-Kato conjecture.)

Note that the Bockstein β is a derivation, βP^n is additive and commutes with simplicial suspension Σ by [RPO]. Thus by axiom 2.2(2), if $y \in H^{2n,n}(X, \mathbb{Z}/\ell)$ then $P^n(y) = y^{\ell}$ and:

$$\beta P^n(\Sigma y) = \Sigma \beta(P^n y) = \Sigma \beta(y^\ell) = \ell \Sigma \beta(y) = 0.$$

Thus βP^n satisfies (1) and (2) of the following uniqueness theorem.

Theorem 5.1. Let ϕ : $H^{2n+1,n}(-,\mathbb{Z}) \to H^{2n\ell+2,n\ell}(-,\mathbb{Z}/\ell)$ be a cohomology operation such that for all X and all $x \in H^{2n+1,n}(X,\mathbb{Z})$:

1.
$$\phi(bx) = b\phi(x)$$
 for $b \in \mathbb{Z}$;

2. If
$$x = \Sigma y$$
 for $y \in H^{2n,n}(X,\mathbb{Z})$ then $\phi(x) = 0$.

Then ϕ is a multiple of βP^n .

Remark 5.1.1. In topology, βP^n is the image of a cohomology operation $H^{2n+1,n}(-,\mathbb{Z}) \to H^{2n\ell+2,n\ell}(-,\mathbb{Z})$. We will see the relevance of this in the next Lecture.

We saw in Lecture 2 (2.6) that the cohomology operations described in Theorem 5.1 correspond to elements of $H^{**}(BK_n, \mathbb{Z}/\ell)$. We saw in Lecture 4 (see 4.8) that a complete description of this cohomology is possible, but it is messy for n > 1. To cut down on the bookkeeping in the proof of 5.1, it is useful to introduce the notion of *scalar weight*.

The multiplicative action of the monoid (\mathbb{Z}, \times) on the sheaf of \mathbb{Z} -modules $K_n = u\mathbb{L}^n$ and $BK_n = u\mathbb{L}^n[1]$ defines an action of \mathbb{Z}/ℓ^{\times} on $H^{**}(K_n, \mathbb{Z}/\ell)$ and $H^{**}(BK_n, \mathbb{Z}/\ell)$, at least when n > 0. The induced representations of $(\mathbb{Z}/\ell)^{\times}$ decompose the cohomology into the direct sum of its isotypical pieces, corresponding to the irreducible representations $\mathbb{Z}/\ell, \mu_{\ell}, \mu_{\ell}^{\otimes 2}, \ldots, \mu_{\ell}^{\otimes \ell-2}$. We will say that the isotypical piece corresponding to $\mu_{\ell}^{\otimes s}$ has *scalar weight s*; an element $x \in H^{**}(K_n, \mathbb{Z}/\ell)$ has scalar weight s if $a \cdot x = a^s x$ for all $a \in \mathbb{Z}/\ell$.

Recall from 4.6(b) that $K_n \simeq S^{\infty}(V_n)$, and that $R_{tr}(K_n) \simeq \oplus R_{tr}(\widetilde{S}^i V_n) = \oplus S^i_{tr}(\mathbb{L}^n)$.

Theorem 5.2. Under the decomposition $H^{**}(K_n, \mathbb{Z}/\ell) = \oplus H^{**}(\widetilde{S}^i V_n, \mathbb{Z}/\ell)$, the summands $H^{**}(\widetilde{S}^i V_n, \mathbb{Z}/\ell) \cong \operatorname{Hom}_{\mathbf{DM}}(S^i_{tr} \mathbb{L}^n_R, R(*)[*])$ have scalar weight $i \mod (\ell - 1)$.

Lemma 5.3. If R(q)[p] is a summand of $S_{tr}^m(\mathbb{L}^n)$, and $m \equiv s \mod (\ell-1)$ for $0 \leq s < \ell-1$, then:

- (a) $q \ge ns$, with equality iff $m < \ell$
- (b) $q \ge n(\ell 1)$ if s = 0, with equality iff $m = \ell 1$.
- (c) $p \ge 2q \ge 2n$

Proof. Recall from Theorem 4.16 that $R(q)[p] = \mathbb{L}^{q}[b]$ for $b \ge 0$, so p = 2q + b. Hence (a) and (b) imply (c). If $m < \ell$ then $S_{tr}^{m}(\mathbb{L}^{n}) = \mathbb{L}^{mn}$ and q = mn by 4.7.1. This yields the 'if' parts. To prove the 'only if' parts of (1) and (2), suppose that $m \ge \ell$ and write $m = \sum m_{i}\ell^{i}$, noting that $\sum m_{i} > m_{0}$, $\sum m_{i} \equiv m \mod (\ell - 1)$. We also have $q \ge (\sum m_{i})n + (\ell - 1)$ by Proposition 4.8. Since $\sum m_{i} \ge s$, we have q > ns. If s = 0 then $\sum m_{i} \ge \ell - 1$ and we have $q \ge (n+1)(\ell-1)$.

Remark 5.3.1. These are the equations (2.6), (2.7) and (2.8) of [MC/l], strengthened to inequalities when $m \ge \ell$.

We now turn to the cohomology of $K_n \land \ldots \land K_n$ in scalar weight 1. The following presentation is due to Voevodsky and is taken from [MC/l].

Lemma 5.4. The scalar weight s = 1 part of $H^{p,q}(K_n^{\wedge r}, \mathbb{Z}/\ell)$ vanishes if $q < n\ell$ and $r \ge 2$, and also if $q = n\ell$ and $p < 2n\ell$.

Proof. ([MC/l, 2.7 and 2.8]) By 4.13, 4.11 and 5.2 it suffices to consider $x_1 \otimes \cdots \otimes x_r$ where the x_i are in Hom $(S_{tr}^{a_i} \mathbb{L}^n, R(q_i)[p_i])$, $\Sigma p_i = p$, $\Sigma q_i = q$ and $\Sigma a_i \equiv 1 \mod (\ell - 1)$. If $q < n\ell$ then $a_i \not\equiv 0$ by 5.3(b) and we must have $\Sigma a_i \ge \ell$, which is excluded by 5.3(a) as $q \ge n\Sigma a_i$. This establishes the case $q < n\ell$. When $q = n\ell$, the vanishing comes from 5.3(c).

We now analyze the motivic cohomology $H^{2n\ell+2,n\ell}(BK_n, \mathbb{Z}/\ell)$, where BK_n is the simplicial classifying space $[r] \mapsto (K_n)^r$.

$$* := K_n \equiv K_n \times K_n \cdots$$

There is a standard spectral sequence for the cohomology of a simplicial space with coefficients in $\mathbb{Z}/\ell(n\ell)$; for BK_n it has

(5.5)
$$E_1^{r,s} = \widetilde{H}^{s,n\ell}(K_n^{\wedge r}, \mathbb{Z}/\ell) \Longrightarrow H^{r+s,n\ell}(BK_n, \mathbb{Z}/\ell).$$

For $n \ge 1$, the spectral sequence converges because $K_n^{\wedge r}$ is *nr*-fold *T*-connected so that $E_1^{r,s} = 0$ for $r > \ell$. This in turn follows from the fact [RPO, 3.7] that K_n is *n*-fold *T*-connected, together the Künneth formula 4.13. (This is the argument of [MC/l, 2.6].)

The relevant part of the spectral sequence looks like this, using Lemma 5.4:

$$\begin{array}{cccc} 0 & & \\ & 0 & H^{2n\ell+1,n\ell}(K_n) \to & \\ s = 2n\ell & 0 & H^{2n\ell,n\ell}(K_n) \to H^{2n\ell,n\ell}(K_n \wedge K_n) \to H^{2n\ell,n\ell}(K_n^{\wedge 3}) \to & \\ & 0 & 0 & (\text{nothing in scalar weight 1 below here}) \end{array}$$

Recall from [RPO, 3.7] that $H^{2n,n}(K_n, \mathbb{Z}/\ell) \cong \mathbb{Z}/\ell$ on the fundamental class α .

Example 5.5.1. $\gamma = \{(\alpha \otimes 1 + 1 \otimes \alpha)^{\ell} - \alpha^{\ell} \otimes 1 - 1 \otimes \alpha^{\ell}\}/\ell = \alpha^{\ell-1} \otimes \alpha + \dots + \alpha \otimes \alpha^{\ell-1}$ is an element of $H^{2n\ell,n\ell}(K_n \wedge K_n, \mathbb{Z}/\ell)$. A calculation shows that $d_1^{2,2n\ell}$ maps γ to zero in $H^{2n\ell,n\ell}(K_n \wedge K_n, \mathbb{Z}/\ell)$. (Formally this follows from $\delta(\alpha^{\ell}) = -\ell\gamma$ and $\delta^2 = 0$).

Lemma 5.6. ([MC/l, 2.9]) Let D_r denote the subset of elements of scalar weight one in $H^{2n\ell,n\ell}(K_n^{\wedge r}, \mathbb{Z}/\ell)$. Then D_r is the \mathbb{Z}/ℓ -vector space generated by monomials of the form $\alpha^{i_1} \wedge \ldots \wedge \alpha^{i_r}$, where $i_1 + \cdots + i_r = \ell$ and each $i_j > 0$.

Proof. The monomials are linearly independent by the Künneth formula 4.13. Lemma 5.4 implies that D_r is generated by elements of the form $x_1 \otimes \cdots \otimes x_r$ where the $x_i \in$ Hom $(S^{a_i} \mathbb{L}^n, R(q_i)[p_i])$. By 5.3(b), at most one x_i can have scalar weight 0, and only if r = 2.

If r = 2 and $a_1 \equiv 0$ then $a_2 \equiv 1$. Then by 3.4(a, b) we must have $q_1 = n(\ell - 1)$ and $q_2 = n$, and $p_i = 2q_i$. By 3.4(b) and (4.7) we must have $x_1 = \alpha^{\ell-1}$ and $x_2 = \alpha$. Thus we are reduced to the case in which all $a_i \neq 0 \mod (\ell - 1)$. By 5.3(a, c) and $q = n\ell$ we must have $\Sigma a_i = \ell$, $q_i = na_i$ and $p_i = 2q_i$. Since $S_{tr}^{a_i}(\mathbb{L}^n) = \mathbb{L}^{na_i}$ by (4.7) we must have $x_i = \alpha^{a_i}$ up to scalars.

Proof of Theorem 5.1: (Voevodsky) We regard ϕ as an element of $H^{2n\ell+2,n\ell}(BK_n, \mathbb{Z}/\ell)$. Condition 5.1(1) says that ϕ has scalar weight one. Condition 5.1(2) says that ϕ (like βP^n) is in the kernel of the map

$$H^{2n\ell+2,n\ell}(BK_n,\mathbb{Z}\ell) \to H^{2n\ell+2,n\ell}(\Sigma K_n,\mathbb{Z}\ell) = H^{2n\ell+1,n\ell}(K_n,\mathbb{Z}/\ell)$$

defined by the inclusion of ΣK_n as the degree one part of BK_n . That is, ϕ and βP^n lie in the kernel of the edge map in the spectral sequence (5.5).

Voevodsky observes in [MC/l] that, by a formal calculation of Lazard [3, 1.21], the kernel of $E_1^{2,2n\ell} \to E_1^{3,2n\ell}$ is \mathbb{Z}/ℓ in scalar weight one, on the cycle γ displayed in 5.5.1. Since βP^n represents a nonzero element of $H^{2n\ell+2,n\ell}(BK_n, \mathbb{Z}/\ell)$ by [1] and [RPO], it follows that every such element ϕ must be a multiple of βP^n .