
SMR/1840-35

School and Conference on Algebraic K-Theory and its Applications

Alexander Rosenberg

14 May - 1 June, 2007

IHES, Bures-sur-Yvette, France

Comparison theorems for higher K-theory: reduction by resolution,
additivity, devissage



Lecture 5. Comparison theorems for higher K-theory: reduction by reso-
lution, additivity, devissage. Towards some applications.

In the first four sections, we fix a left exact subcategory of the left exact category
(Esp∗r ,L

∗
es) of right exact ’spaces’, or a left exact subcategory of the left exact category

Espr
k of k-linear right exact ’spaces’ endowed with the induced left exact structure. The

higher K-functors are computed as satellites of the restriction of the functor K0 to this left
exact subcategory.

1. Reduction by resolution.

1.1. Proposition. Let (CX ,EX) be a right exact category with initial objects and
CY its fully exact subcategory such that

(a) If M ′ −→M −→M ′′ is a conflation with M ∈ ObCY , then M ′ ∈ ObCY .
(b) For any M ′′ ∈ ObCX , there exists a deflation M −→M ′′ with M ∈ ObCY .

Then the morphism K•(Y,EY ) −→ K•(X, EX) is an isomorphism.

Proof. The first part of the argument of 1.1 shows that if CY is a fully exact subcat-
egory of a right exact category (CX ,EX) satisfying the condition (b) and F0 is a functor
from Espop

r to a category with filtered limits such that F0(Y,EY ) −→ F0(X, EX) is an
isomorphism, then Sn

−F0(Y,EY ) −→ Sn
−F0(X, EX) is an isomorphism for all n ≥ 0.

The condition (a) is used only in the proof that K0(Y,EY ) −→ K0(X, EX) is an
isomorphism.

1.2. Proposition. Let (CX ,EX) and (CZ ,EZ) be right exact categories with initial
objects and T = (Ti, di | i ≥ 0) an ’exact’ ∂∗-functor from (CX ,EX) to (CZ ,EZ). Let CY

be the full subcategory of CX generated by T -acyclic objects (that is objects V such that
Ti(V ) is an initial object of CZ for i ≥ 1). Assume that for every M ∈ ObCX , there is
a deflation P −→ M with P ∈ ObCY , and that Tn(M) is an initial object of CZ for n
sufficiently large. Then the natural map K•(Y,EY ) −→ K•(X, EX) is an isomorphism.

Proof. The assertion is deduced from 1.1 in the usual way (see [Q]).

1.3. Proposition. Let (CX ,EX) be a right exact category with initial objects; and
let

Ker(f ′)
β′
1−−−→ Ker(f)

α′
1−−−→ Ker(f ′′)

k′
⏐⏐� k

⏐⏐�
⏐⏐� k′′

Ker(α1)
β1−−−→ A1

α1−−−→ A′′
1

f ′
⏐⏐� f

⏐⏐�
⏐⏐� f ′′

Ker(α2)
β2−−−→ A2

α2−−−→ A′′
2

(3)

be a commutative diagram (determined by its lower right square) such that Ker(k′′) and
Ker(β2) are trivial. Then

(a) The upper row of (3) is ’exact’, and the morphism β′
1 is the kernel of α′

1.
(b) Suppose, in addition, that the arrows f ′, α1 and α2 in (3) are deflations and

(CX ,EX) has the following property:
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(#) If M
e−→ N is a deflation and M

p−→ M an idempotent morphism (i.e. p2 = p)
which has a kernel and such that the composition e ◦ p is a trivial morphism, then the

composition of the canonical morphism Ker(p)
k(p)
−−−→M and M

e−→ N is a deflation.
Then the upper row of (3) is a conflation.

1.4. Proposition. Let (CX ,EX) be a right exact category with initial objects having
the property (#) of 1.3. Let CY be a fully exact subcategory of a right exact category
(CX ,EX) which has the following properties:

(a) If N −→M −→ L is a conflation in (CX ,EX) and N, M are objects of CY , then
L belongs to CY too.

(b) For any deflation M −→ L with L ∈ ObCY , there exist a deflation M−→ L with
M∈ ObCY and a morphism M−→M such that the diagram

M
↙ ↘

M −−−→ L
commutes.

(c) If P, M are objects of CY and P −→ x is a morphism to initial object, then
P

∐M exists (in CX) and the sequence P −→ P
∐M −→ M (where the left arrow

is the canonical coprojection and the right arrow corresponds to the M id−→ M and the
composition of P −→ x −→M) is a conflation.

Let CYn be a full subcategory of CX generated by all objects L having a CY -resolution
of the length ≤ n. And set CY∞ =

⋃
n≥0 CYn

. Then CYn
is a fully exact subcategory of

(CX ,EX) for all n ≤ ∞ and the natural morphisms

K•(Y,EY ) ∼−→ K•(Y1,EY1)
∼−→ . . . ∼−→ K•(Yn,EYn

) ∼−→ K•(Y∞,EY∞)

are isomorphisms for all n ≥ 0.

1.5. Proposition. Let (CX ,EX) be a right exact category with initial objects having
the property (#) of 1.3. Let CY be a fully exact subcategory of a right exact category
(CX ,EX) satisfying the conditions (a) and (c) of 1.4. Let M ′ −→ M −→ M ′′ be a
conflation in (CX ,EX), and let P ′ −→ M ′, P ′′ −→ M ′′ be CY -resolutions of the length
n ≥ 1. Suppose that resolution P ′′ −→M ′ is projective. Then there exists a CY -resolution
P −→ M of the length n such that Pi = P ′

i

∐P ′′
i for all i ≥ 1 and the splitting ’exact’

sequence P ′ −→ P −→ P ′′ is an ’exact’ sequence of complexes.

2. Additivity of ’characteristic’ filtrations.

2.1. Characteristic ’exact’ filtrations and sequences.

2.1.1. The right exact ’spaces’ (Xn,EXn
). For a right exact exact ’space’ (X, EX),

let CXn
be the category whose objects are sequences Mn −→Mn−1 −→ . . . −→M0 of n

morphisms of EX , n ≥ 1, and morphisms between sequences are commutative diagrams

Mn −−−→ Mn−1 −−−→ . . . −−−→ M0

fn

⏐⏐� fn−1

⏐⏐� . . .
⏐⏐� f0

M ′
n −−−→ M ′

n−1 −−−→ . . . −−−→ M ′
0
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Notice that if x is an initial object of the category CX , then x −→ . . . −→ x is an
initial object of CXn

.
We denote by EXn the class of all morphisms (fi) of the category CXn such that

fi ∈ EX for all 0 ≤ i ≤ n.

2.1.1.1. Proposition. (a) The pair (CXn
,EXn

) is a right exact category.
(b) The map which assigns to each right exact ’space’ (X, EX) the right exact ’space’

(Xn,EXn
) extends naturally to an ’exact’ endofunctor of the left exact category (Espr,Les)

of right ’exact’ ’spaces’ which induces an ’exact’ endofunctor Pn of its exact subcategory
(Esp∗r ,L

∗
es).

Proof. The argument is left to the reader.

2.1.2. Proposition. (Additivity of ’characteristic’ filtrations) Let (CX ,EX) and

(CY ,EY ) be right exact categories with initial objects and f∗
n

tn−→ f∗
n−1

tn−1−→ . . .
t1−→ f∗

0 a
sequence of deflations of ’exact’ functors from (CX ,EX) to (CY ,EY ) such that the functors
k∗i = Ker(t∗i ) are ’exact’ for all 1 ≤ i ≤ n. Then K•(fn) = K•(f0) +

∑
1≤i≤n

K•(ki).

Proof. The argument uses facts on kernels (see Appendix A to Lecture 3).

2.1.3. Corollary. Let (CX ,EX) and (CY ,EY ) be right exact categories with initial
objects and g∗ −→ f∗ −→ h∗ a conflation of ’exact’ functors from (CX ,EX) to (CY ,EY ).
Then K•(f) = K•(g) + K•(h).

2.1.4. Corollary. (Additivity for ’characteristic’ ’exact’ sequences) Let

f∗n −→ f∗n−1 −→ . . . −→ f∗1 −→ f∗0

be an ’exact’ sequence of ’exact’ functors from (CX ,EX) to (CY ,EY ) which map initial
objects to initial objects. Suppose that f∗1 −→ f∗0 is a deflation and f∗n −→ f∗n−1 is the kernel
of f∗n−1 −→ f∗n−2. Then the morphism

∑
0≤i≤n

(−1)iK•(fi) from K•(X, EX) to K•(Y,EY ) is

equal to zero.

Proof. The assertion follows from 2.1.3 by induction.
A more conceptual proof goes along the lines of the argument of 2.1.2. Namely, we

assign to each right exact category (CY ,EY ) the right exact category (CY e
n
,EY e

n
) whose

objects are ’exact’ sequences L = (Ln −→ Ln−1 −→ . . . −→ L1 −→ L0), where L1 −→ L0

is a deflation and Ln −→ Ln−1 is the kernel of Ln−1 −→ Ln−2. This assignment defines
an endofunctor Pe

n of the category Esp∗r of right exact ’spaces’ with initial objects, and
maps L 	−→ Li determine morphisms Pe

n −→ IdEsp∗
r
. The rest of the argument is left to

the reader.

3. Infinitesimal ’spaces’. Devissage.

3.1. The Gabriel multiplication in right exact categories. Fix a right exact
category (CX ,EX) with initial objects. Let T and S be subcategories of the category CX .
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The Gabriel product S • T is the full subcategory of CX whose objects M fit into a
conflation L

g−→M
h−→ N such that L ∈ ObS and N ∈ ObT.

3.1.1. Proposition. Let (CX , EX) be a right exact category with initial objects. For
any subcategories A, B, and D of the category CX , there is the inclusion

A • (B • D) ⊆ (A • B) • D.

Proof. An exercise on kernels and cartesian squares.

3.1.2. Corollary. Let (CX ,EX) be an exact category. Then the Gabriel multiplica-
tion is associative.

Proof. Let A, B, and D be subcategories of CX . By 3.1.1, we have the inclusion
A • (B • D) ⊆ (A • B) • D. The opposite inclusion holds by duality, because (A • B)op =
Bop • Aop.

3.2. The infinitesimal neighborhoods of a subcategory. Let (CX ,EX) be a
right exact category with initial objects. We denote by OX the full subcategory of CX

generated by all initial objects of CX . For any subcategory B of CX , we define subcategories
B(n) and B(n), 0 ≤ n ≤ ∞, by setting B(0) = OX = B(0), B(1) = B = B(1), and

B(n) = B(n−1) • B for 2 ≤ n <∞; and B(∞) =
⋃
n≥1

B(n);

B(n) = B • B(n−1) for 2 ≤ n <∞; and B(∞) =
⋃
n≥1

B(n)

It follows that B(n) = B(n) for n ≤ 2 and, by 3.1.1, B(n) ⊆ B(n) for 3 ≤ n ≤ ∞.
We call the subcategory B(n+1) the upper nth infinitesimal neighborhood of B and the

subcategory B(n+1) the lower nth infinitesimal neighborhood of B. It follows that B(n+1)

is the strictly full subcategory of CX generated by all M ∈ ObCX such that there exists a
sequence of arrows

M0

j1−−−→ M1

j2−−−→ . . .
jn−−−→ Mn = M

with the property: M0 ∈ ObB, and for each n ≥ i ≥ 1, there exists a deflation Mi
ei−→ Ni

with Ni ∈ ObB such that Mi−1
ji−→Mi

ei−→ Ni is a conflation.
Similarly, B(n+1) is a strictly full subcategory of CX generated by all M ∈ ObCX such

that there exists a sequence of deflations

M = Mn

en−−−→ . . .
e2−−−→ M1

e1−−−→ M0

such that M0 and Ker(ei) are objects of B for 1 ≤ i ≤ n.

3.2.1. Note. It follows that B(n) ⊆ B(n+1) for all n ≥ 0, if B contains an initial
object of the category CX .
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3.3. Fully exact subcategories of a right exact category. Fix a right exact
category (CX , EX). A subcategory A of CX is a fully exact subcategory of (CX , EX) if
A • A = A.

3.3.1. Proposition. Let (CX , EX) be a right exact category with initial objects. For
any subcategory B of CX , the subcategory B(∞) is the smallest fully exact subcategory of
(CX , EX) containing B.

Proof. Let A be a fully exact subcategory of the right exact category (CX ,EX), i.e.
A = A • A. Then B(∞) ⊆ A, iff B is a subcategory of A.

On the other hand, it follows from 3.1.1 and the definition of the subcategories B(n)

(see 3.2) that B(n) • B(m) ⊆ B(m+n) for any nonnegative integers n and m. In particular,
B(∞) = B(∞) • B(∞), that is B(∞) is a fully exact subcategory of (CX , EX) containing B.

3.4. Cofiltrations. Fix a right exact category (CX ,EX) with initial objects. A
cofiltration of the length n+1 of an object M is a sequence of deflations

M = Mn

en−−−→ . . .
e2−−−→ M1

e1−−−→ M0. (1)

The cofiltration (1) is said to be equivalent to a cofiltration

M = M̃m

ẽn−−−→ . . .
ẽ2−−−→ M̃1

ẽ1−−−→ M̃0

if m = n and there exists a permutation σ of {0, . . . , n} such that Ker(ei) � Ker(̃eσ(i))
for 1 ≤ i ≤ n and M0 � M̃0.

The following assertion is a version (and a generalization) of Zassenhouse’s lemma.

3.4.1. Proposition. Let (CX ,EX) have the following property:
(‡) for any pair of deflations M1

t1←−M
t2−→M2, there is a commutative square

M
t1−−−→ M1

t2

⏐⏐�
⏐⏐� p2

M2

p1−−−→ M3

of deflations such that the unique morphism M −→M1 ×M3 M2 is a deflation.

Then any two cofiltrations of an object M have equivalent refinements.

3.5. Devissage.

3.5.1. Proposition. (Devissage for K0.) Let ((X, EX), Y ) be an infinitesimal
’space’ such that (X, EX) has the following property (which appeared in 3.4.1):

(‡) for any pair of deflations M1
t1←−M

t2−→M2, there is a commutative square

M
t1−−−→ M1

t2

⏐⏐�
⏐⏐� p2

M2

p1−−−→ M3

5



of deflations such that the unique morphism M −→M1 ×M3 M2 is a deflation.
Then the natural morphism

K0(Y,EY ) −−−→ K0(X, EX) (1)

is an isomorphism.

3.5.2. The ∂∗-functor Ksq
• . Let Les

�
denote the left exact structure on the category

Esp� of Espr (cf. 3.9.4) induced by the (defined in 6.8.3.3) left exact structure Les
sq on

the category Espr of right exact ’spaces’. Let Ksq
i (X, EX) denote the i-th satellite of the

functor K0 with respect to the left exact structure Les
�

.

3.5.3. Proposition. Let ((X, EX), Y ) be an infinitesimal ’space’ such that the right
exact ’space’ (X, EX) has the property (‡) of 3.4.1, the category CX has final objects, and
all morphisms to final objects are deflations. Then the natural morphism

Ksq
i (Y,EY ) −−−→ Ksq

i (X, EX) (8)

is an isomorphism for all i ≥ 0.

Proof. The assertion follows from a general devissage theorem for universal ∂∗-functors
whose zero component satisfy devissage property (like K0, by 3.5.1).

4. An application: K-groups of ’spaces’ with Gabriel-Krull dimension.

4.1. Gabriel-Krull filtration. We recall the notion of the Gabriel filtration of
an abelian category as it is presented in [R, 6.6]. Let CX be an abelian category. The
Gabriel filtration of X assigns to every cardinal α a Serre subcategory CXα of CX which
is constructed as folows:

Set CX0 = O.
If α is not a limit cardinal, then CXα

is the smallest Serre subcategory of CX containing
all objects M such that the localization q∗α−1(M) of M at CXα−1 has a finite length.

If β is a limit cardinal, then CXβ
is the smallest Serre subcategory containing all

subcategories CXα for α < β.
Let CXω denote the smallest Serre subcategory containing all the subcategories CXα .

Clearly the quotient category CX/CXω
has no simple objects.

An object M is said to have the Gabriel-Krull dimension β, if β is the smallest cardinal
such that M belongs to CXβ

.
The ’space’ X has a Gabriel-Krull dimension if X = Xω.

Every locally noetherian abelian category (e.g. the category of quasi-coherent sheaves
on a noetherian scheme, or the category of left modules over a left noetherian associative
algebra) has a Gabriel-Krull dimension.

It follows that for any limit ordinal β, we have K•(Xβ) =
⋃

α<β

K•(Xα). Therefore,

K•(Xω) =
⋃

α∈Orn

K•(Xα), where Orn denotes the set of non-limit ordinals.
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4.2. Reduction via localization. If α is a non-limit ordinal, we have the exact

localization CXα

q∗
α−1−−−→ CXα

/CXα−1 = CXq
α
, hence the corresponding long exact sequence

. . . −→ Kn+1(Xq
α)

dα
n−→ Kn(Xα−1) −→ Kn(Xα) −→ Kn(Xq

α) −→ . . . −→ K0(Xq
α) (1)

of K-groups.

4.3. Reduction by devissage. Suppose that the category CX is noetherian, i.e.
all objects of CX are noetherian. Then the quotient category CXq

α
= CXα

/CXα−1 is
noetherian. Notice that the Krull dimension of Xq

α equals to zero; hence all objects of the
category CXq

α
have a finite length. Let CXq

α,s
denote the full subcategory of CXq

α
generated

by semisimple objects. By devissage, the natural morphism K•(X
q
α,s) −→ K•(Xq

α) is an
isomorphism. If CY is a svelte abelian category whose objects are semisimple of finite
length, then K•(Y ) =

∐
Q∈Spec(Y )

K•(Sp(DQ)), where DQ is the residue skew field of the

point Q of the spectrum of Y , which is the skew field CY (M,M)o of the endomorphisms
of the simple object M such that Q = [M ]. In particular,

K•(Xq
α) =

∐
Q∈Spec(Xq

α)

K•(Sp(DQ))

for every non-limit ordinal α.

5. First definitions of K-theory and G-theory of noncommutative schemes.

The purpose of this section is to sketch the first notions which allow extension of K-
theory and G-theory to noncommutative schemes and more general locally affine ’spaces’.
We consider here only the class of so-called semiseparated locally affine ’spaces’ and schemes
which includes the main examples of noncommutative schemes and locally affine ’spaces’,
starting from quantum flag varieties and noncommutative Grassmannians. Commutative
semiseparated schemes are schemes X whose diagonal moprhism X ∆X−→ X × X is affine.
In particular, every separated scheme is semiseparated.

Semiseparated noncommutative (in particular, commutative) schemes and locally affine
’spaces’ over an affine scheme are particularly convenient, because the category of quasi-
coherent sheaves on them is described by a linear algebra data provided by flat descent.

5.1. Semiseparated schemes. Flat descent. We shall consider semiseparated
schemes and more general locally affine ’spaces’ over an affine scheme, S = Sp(R). These
are pairs (X, f), where X is a ’space’ and f a continuous morphism X −→ S for which
there exists a finite affine cover {Ui

ui−→ X | i ∈ J} such that every morphism ui is flat
and affine. In this case, the corresponding morphism

UJ =
∐
i∈J

Ui
u−→ X
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is fflat (=faithfully flat) and affine. By the (dual version of) Beck’s theorem (Lecture 1,
2.3.1), there is a commutative diagram

CX −−−→ Gu − Comod
u∗ ↘ ↙ û∗

Rfu −mod

where the horizontal arrow is a category equivalence. Here we identify the category CUJ

with the category of Rfu-modules for a ring Rfu over R corresponding (by Beck’s theorem)

to the affine morphism UJ
fu−→ Sp(R) – the monad Ffu on R − mod is isomorphic to

the monad Rfu ⊗R − (see Lecture 1). Since the morphism u is affine, the associated
comonad Gu = (Gu, δu), that is the functor Gu = u∗u∗, is continuous: the composition
u!u∗ is its right adjoint. Therefore, Gu is isomorphic to the tensoring Mu ⊗Rfu

− by an
Rfu-bimodule Mu determined uniquely up to isomorphism. The comonad structure δu

induces a mapM δ̃u−−−→Mu⊗Rfu
Mu which turnesMu into a coalgebra in the monoidal

category of Rfu-bimodules. Thus, the category CX is naturally equivalent to the category

(Mu, δ̃u) − Comod of (Mu, δ̃u). Its objects are pairs (V, V
ζ−→ Mu ⊗Rfu

V ), where V is
a left Rfu-module, which satisfy the usual comodule conditions. The structure morphism

X
f−→ Sp(R) is encoded in the structure object O = f∗(R), or, what is the same, a

comodule structure Rfu
ζfu−→Mu ⊗Rfu

Rfu on the left module Rfu, which we can replace,

thanks to an isomorphism Mu ⊗Rfu
Rfu � Mu, by a morphism Rfu

ζfu−→ Mu satisfying
the natural associativity condition and whose composition with counitM εu−→ Rfu of the
coalgebra (Mu, δ̃u) is the identical morphism.

Thus, Beck’s theorem provides a description of the category of quasi-coherent sheaves
on a semiseparated noncommutative (that is not necessarily commutative) scheme in terms
of linear algebra.

5.2. The category of vector bundles. Fix a locally affine ’space’ (X, f). We call
an objectM of the category CX a vector bundle if its inverse image, u∗

J(M) is a projective
ΓUJ -module of finite type, or, equivalently, u∗

i (M) is a projective ΓUi-module of finite
type for each i ∈ J . We denote by P(X) the full subcategory of the category CX whose
objects are vector bundles on X.

5.3. The category of coherent objects. We call an objectM of the category CX

coherent if u∗
i (M) is coherent for each i ∈ J . We denote by Coh(X) the full subcategory

of CX generated by coherent objects.

5.3.1. Proposition. (a) The notions of a projective and coherent objects are well
defined.

(b) Coh(X) is a thick subcategory of CX . In particular, it is an abelian category.
(c) P(X) an fully exact (i.e. closed under extensions) subcategory of CX . In particu-

lar, P(X) is an exact category.
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Proof. (a) Semiseparated finite covers form a filtered system: if UJ
uJ−→ X

uI←− ŨI are
fflat and affine, then all arrows in the cartesian square

UJ ×X ŨI −−−→ ŨI⏐⏐� cart
⏐⏐�

UJ −−−→ X

are fflat and affine. This follows from the categorical description of the cartesian product
corresponding to direct image functors of UJ −→ X and Ũ −→ X.

(b) & (c). An exercise for the reader.

5.4. The category of locally affine semiseparated ’spaces’. Let LaffS denote
the subdiagram of the category |Cat|oS of S-’spaces’ whose objects are locally affine quasi-

compact semiseparated S-’spaces’ and morphisms are those morphisms X
f−→ Y of S-

’spaces’ which can be lifted to a morphism of semiseparated covers. More precisely, for
any morphism X

f−→ Y of LaffS and any affine cover UY
πY−→ Y , there is a commutative

diagram

UX

f̃−−−→ UY

πX

⏐⏐�
⏐⏐� πY

X
f−−−→ Y

where the left vertical arrow is an affine cover of X.
One can see that LaffS is a subcategory of |Cat|oS .
For each object (X, f) of LaffS , let XP denote the ’space’ defined by CXP = P(X)

and XC the ’space’ defined by CXC
= Coh(X, f).

5.5. Proposition. The map (X, f) 	−→ XP is a functor from LaffS to the category
Espx whose objects are ’spaces’ represented by exact categories and whose morphisms have
’exact’ inverse image functors.

Proof. In fact, restricted to the affine schemes, the functor takes values in the category
Ex, because an inverse image of (automatically affine) morphism between affine S-’spaces’
maps conflations to conflations. The general case follows from the affine case via affine
covers, because the inverse image functors of the covers are fflat.

5.6. The functor K•. We define the K-theory functor K• as the universal ∂-functor
from the category LaffS semiseparated locally affine ’spaces’ endowed with left exact struc-
ture induced by the functor from LaffS to the category of right exact ’spaces’ which assigns
to every locally affine semiseparated ’space’ the right exact ’space’ represented by the cat-
egory of vector bundles.

5.7. The category LaffflS . We denote this way the subcategory of the category LaffS
of locally affine ’spaces’ formed by flat morphisms.

5.7.1. Proposition. The map (X, f) 	−→ XP is a functor from LaffflS to the category
Espa whose objects are ’spaces’ represented by abelian categories and whose morphisms
have exact inverse image functors.
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Proof. An exercise for the reader.

5.8. The functor G•. We endow the category LaffflS with the left exact structure ĨS)
induced by the standard left exact structure on Espa (inverse image functors of inflations
are exact localizations) via the functor of 5.7.1. We define the ∂-functor G• as the universal
∂-functor from the left exact category (LaffflS , ĨS), whose zero component assigns to every
locally affine semiseparated ’space’ (X, f) the K0-group of the ’space’ represented by the
category of coherent sheaves on (X, f).

5.9. Proposition. Let i 	−→ (Xi, fi) be a filtered projective system of locally affine
S-’spaces’ such that the transition morphisms (Xi, fi) −→ (Xj , fj) are affine, and let
(X, f) = lim(Xi, fi). Then

K•(X, f) � colim(K•(Xi, fi)). (2)

If in addition the transition morphisms are flat, then

G•(X, f) � colim(G•(Xi, fi)). (2′)

Proof. It follows from the assumptions that a filtered projective system of locally affine
S-’spaces’ and affine morphisms induces a filtered inductive system of the exact categories
P(Xi, fi) of vector-bundles. Its colimit, P(X, f) is an exact category whose conflations are
images of conflations of P(Xi, fi). Whence the isomorphism (2).

If, in addition, the transition morphisms are flat, then the inverse image functors of
the transition functors induce exact functors between categories of coherent objects. This
implies the isomorphism (2’).

5.10. Regular locally affine ’spaces’. For a locally affine S-’space’ (X, f), we
denote by H(X, f) the full subcategory of the category Coh(X, f) which have a P(X)-
resolution.

5.10.1. Proposition. (a) H(X, f) is a fully exact subcategory of the category
Coh(X, f). In particular, it is an exact category.

(b) Set H(X, f) = CXH
. The embedding of categories P(X, f) ↪→ H(X, f) induces an

isomorphism K•(X, f) def= K•(XP) ∼−→ K•(XH).

Proof. (a) By a standard argument.
(b) The fact is a consequence of the Resolution Theorem.

5.10.2. Definition. A locally affine ’space’ is called regular if H(X, f) = Coh(X, f).

Thus, if (X, f) is a regular locally affine ’space’, then K•(X, f) = G•(X, f).

5.10.3. Remark. If (X, f) is an affine S-’space’, then the regularity coincides with
the usual notion of regularity of rings (S is assumed to be affine). Similarly, if (X, f) is an
S-’space’ corresponding to a commutative scheme.

The notion of H(X, f) is local in the following sense:
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5.10.4. Proposition. Let (X, f) be a locally affine S-’space’. The following condi-
tions on an object M of CX are equivalent:

(a) M belongs to H(X, f);
(b) u∗

i (M) belongs to H(Ui, fui) for some finite cover {Ui
ui−→ X | i ∈ J} of (X, f)

and for all i ∈ J ;
(c) u∗

i (M) belongs to H(Ui, fui) for some finite cover {Ui
ui−→ X | i ∈ J} of (X, f)

and for all i ∈ J .

Proof. Obviously, (c) ⇒ (b). In the rest of the argument, one can assume that the
covers consist of one fflat affine morphism. The assertion follows from the fact that such
covers form a filtered system. Details are left as an exercise.

5.10.5. Examples. The quantum flag varieties and the corresponding twisted quan-
tum D-schemes [LR] are examples of regular schemes. Noncommutative Grassmannians
[KR1], [KR3] are examples of regular locally affine ’spaces’ which are not schemes.

6. Remarks on K-theory and quantized enveloping algebras. In a sense,
the standard K-theory based on the category of vector bundles, or G-theory based on the
category of all coherent sheaves, do not give much valuable information from the point of
view of representation theory. For instance, if g is a finite-dimensional Lie algebra over
a field k, then K•(U(g)) � K•(k) and, similarly, K•(An(k)) � K•(k), where An(k) is
the n-th Weyl algebra over k. This indicates that one should study K-theory of other
subcategories of the category of U(g)-modules. The subcategory which received the most
attention in seventies and the beginning of eighties was the category O = O(g) of repre-
sentations of a semi-simple (or reductive) Lie algebra g introduced by I.M. Gelfand and his
collaborators. The highlight of its study was Kazhdan-Lusztig conjecture and, the most
important, its prove, which led to the reformulation of the representation theory of reduc-
tive algebraic groups in terms of D-modules and D-schemes making it a part of (actually
noncommutative) algebraic geometry, even before this science emerged.

The main basic fact which allowed to reduce the problems of representation theory
to the study of D-modules on flag varieties is the Beilinson-Bernstein localization theorem
which says that the global section functor induces an equivalence between the category of
D-modules on the flag variety of a reductive Lie algebra g over a field of zero characteristic
and the category of U(g)-modules with trivial central character (and its twisted version).
Harish-Chandra modules and their different generalizations turned out to be holonomic
D-modules. As a result, holonomic modules on flag varieties became the main object of
study of representation theory of reductive algebraic groups.

On the other hand, the notions of quantum flag variety and the appropriate categories
of twisted D-modules were introduced in [LR]. And it was established a quantum version
of Beilinson-Bernstein localization theorem [LR], [T], which reduces the study of represen-
tations of the quantized enveloping algebra Uq(g) to the study of twisted D-modules on
quantum flag variety, like in the classical case. The notion of a holonomic D-module is
extended to the setting of noncommutative algebraic geometry [R4]. In particular, there
exists a notion of a quantum holonomic D-module.

All initial ingredients are present and the area of research is wide open.
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