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6 Lecture 6

In this lecture, we will construct a Rost motive for a in the sense of Definition 3.4. As we

saw in Lecture 3, this suffices to verify the Bloch-Kato conjecture.

Let X be a Rost variety (Definition 3.1), and write X for the simplicial Čech variety

associated to X. In 1.5, we produced a nonzero δ ∈ Hn,n−1(X, Z/�), and used it in Proposi-

tion 3.3 to construct a nonzero element µ of H2b+1,b(X, Z). Now any z ∈ H2b+1,b(X) can be

interpreted as a map X → L
b[1] in DM; tensoring with X, and using X ⊗ X ∼= X yields a

map X → X ⊗ L
b[1], which we also call z, and fit into a triangle

(6.1) X ⊗ L
b x
−→ A

y
−→ X

z
−→ X ⊗ L

b[1].

Applying Σi−1 ⊂ Σi to A⊗i, we get a corestriction map Si−1(A) ⊗A → Si(A). There is also

a transfer map tr : Si(A) → Si−1(A) ⊗ A, induced by the endomorphism

a1 ⊗ · · · ⊗ ai �−→ Σ(· · · ⊗ âj ⊗ · · · ) ⊗ aj

of A⊗i. Now Si(A) ∼= X⊗Si(A). Composing tr with 1⊗y yields a map u : Si(A) → Si−1(A);

composing 1 ⊗ x with corestriction yields a map v : Si−1(A) ⊗ L
b → Si(A).

Lemma 6.2. If i < � and 1/(� − 1)! ∈ R, the maps u and v fit into triangles

(a) Si−1(A) ⊗ L
b v
−→ Si(A)

Siy
−→ X

s
−→ Si−1(A) ⊗ L

b[1].

(b) X ⊗ L
bi Six

−→ Si(A)
u

−→ Si−1(A)
r

−→ X ⊗ L
bi[1].

Proof. This is proven in [MC/l, 3.1] using the slice filtration on A⊗i.

Setting D = S�−2(A) and M = S�−1(A), we see that M satisfies property 3.4(c) of a Rost

motive. The composition of s and r ⊗ 1 yields a map (for i = � − 1)

φ(z) : X
s

−→ D ⊗ L
b[1]

r⊗1
−→ X ⊗ L

b�[2] → L
b�[2]

i.e., an element of H2b�+2,b�(X, Z(�)). Consider the function z �→ φ(z).
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Proposition 6.3. (Voevodsky) The function φ : H2b+1,b(X, Z) → H2b�+2,b�(X, Z(�)) extends

to a cohomology operation φ : H2b+1,b(−, Z) → H2b�+2,b�(−, Z(�)) satisfying

(a) φ(az) = a�φ(z) for a ∈ Z;

(b) φ(Σy) = 0 for y ∈ H2b,b(−, Z).

Proof. This is the content of 3.2, 3.5 and 3.6 of [MC/l].

Corollary 6.4. The mod–� reduction φ̄ of φ, regarded as a motivic cohomology operation

H2b+1,b(−, Z) → H2b�+2,b�(−, Z/�), is a multiple of βP b.

Proof. Combine Theorem 5.1 and Proposition 6.3.

Remark 6.4.1. It is easy to show that φ̄ �= 0, so that φ̄(x) = cβP b(x̄) for a nonzero c ∈ Z/�.

Lemma 6.5. There are maps λ : Ztr(X) → S�−1(A) such that the inclusion ι : X → X

factors in DM as:

Ztr(X)
λ

−→ S�−1(A)
S�−1y
−→ X.

Proof. (Voevodsky) [MC/l, 5.11] Applying HomDM(ZtrX,−) to the triangle (6.1) defining

A yields the exact sequence

Hom(X, A)
y

−→ Hom(X, X)
z

−→ Hom(X, Lb[1]) = 0;

the group on the right vanishes since it equals H2b+1,b(X, Z) = 0. Hence ι factors through

some λ1 : ZtrX → A. Similarly, triangle 6.2(b) yields exact sequences

Hom(X, Si(A))
u

−→ Hom(X, Si−1(A)) → Hom(X, X ⊗ L
bi[1]) = 0.

The group on the right is H2bi+1,bi(X, Z) = 0. By induction, there are maps λi : Ztr(X) →

Si(A) for i ≤ �−1 such that λi−1 = uλi. By the construction of u, yui = Siy : Si(A) → X.
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Recall from 2.3.1 that HomDM(Ld, Ztr(X)) = H2d,d(X, Z) ∼= H0(X, Z) by duality, so

there is a fundamental class τ : L
d → Ztr(X). Since X ⊗ X ∼= X, we may also view τ as a

map from X ⊗ L
d to Ztr(X).

Proposition 6.6. The composition X ⊗ L
d τ
−→ Ztr(X)

λ
−→ S�−1(A) is not divisible by �.

Proof. (Voevodsky [MC/l, 5.12]) By the definition of φ in terms of the map s of 6.2(a), the

restriction S�−1y∗(φ) of φ to S�−1(A) is zero. By 6.4.1, βP b also vanishes on S�−1(A). Since

the Qi anticommute we have Qi(µ) = 0 for i ≤ n − 2.

Consider the element α = Qn−1(µ) ∈ Hb�+2,b�(X, Z/�). By 3.3, α �= 0, and Qn−1(α) = 0

as Q2
i = 0. By the definition of Qn−1 we have

α = Qn−1(µ) = Qn−2(P
�n−2

(µ)) = · · · = βP b(µ),

so (S�−1y)∗(α) = βP n((S�−1y)∗µ) = 0 in Hb�+2,b�(S�−1(A), R). By the Motivic Degree Theo-

rem of [MC/l, 4.4], applied to the factorization in Lemma 6.5, the existence of α �= 0 implies

the mod–� reduction of the map λτ : X ⊗ L
d → S�−1(A) is nonzero.

Because µ : X → X ⊗ L
b[1] is a map between Tate objects, it is self dual (µ = µ∗ ⊗ L

b

under the identification of X with X
∗). It follows that A ∼= A∗ ⊗ L

b. Since Si(M) ∼= (SiM)∗

for every M we also have Si(A) ∼= Si(A)∗ ⊗L
bi. (See [MC/l, 5.7].) For the map λ of 6.5, we

write Dλ for the dual map

Dλ : S�−1(A) ∼= S�−1(A)∗ ⊗ L
d λ∗⊗1
−→ Ztr(X)∗ ⊗ L

d ∼= Ztr(X).

Theorem 6.7. The composition λ◦Dλ is an isomorphism on S�−1(A) (with coefficients Z(�)

or Z/�), and there is an integer c �≡ 0 (mod �) so that the following diagram commutes:

S�−1(A)
λ◦Dλ
−−−→ S�−1(A)

S�−1y

⏐
⏐
�

⏐
⏐
�S�−1y

X
c

−−−→ X.

In particular, S�−1(A) is a direct summand of Rtr(X) for R = Z(�) or Z/�.
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Proof. (Voevodsky [MC/l, 5.15]) From triangle 6.2(b) we have an exact sequence

Hom(X ⊗ L
d, X ⊗ L

d)
S�−1x
−→ Hom(X ⊗ L

d, S�−1A)
u

−→ Hom(X ⊗ L
d, S�−2A) = 0.

c �→ λτ �≡ 0 (mod �)

The fact that the right side is zero follows from the exact sequences of 6.2(a),

Hom(X ⊗ L
d, Si−1A ⊗ L

b)
v

−→ Hom(X ⊗ L
d, SiA) → Hom(X ⊗ L

d, X),

because the outer terms vanish — the right because maps between Tate objects cannot

decrease weight, and the left by induction on i. Hence the map λτ of Proposition 6.6 lifts

to an element c of Z = Hom(X ⊗ L
d, X ⊗ L

d). Since λτ �≡ 0 (mod �) by 6.6, c �≡ 0 (mod �).

Dualizing λτ = (S�−1x)c yields the left square in the following diagram, since S�−1y is dual

to S�−1x and ι is dual to τ : X ⊗ L
d → Ztr(X), so ι ◦ Dλ is dual to λτ .

S�−1(A)
Dλ

−−−→ Ztr(X)
λ

−→ S�−1(A)

S�−1y

⏐
⏐
� ι

⏐
⏐
� ↙S�−1y

X
c

−−−→ X.

The right triangle commutes by Lemma 6.5.

Corollary 6.8. When R = Z(�), the maps λ and Dλ make M = S�−1(A) into a direct

summand of Rtr(X), and the following composition is an isomorphism:

M ∼= M∗ ⊗ L
d λ∗

−→ Rtr(X)∗ ⊗ L
d ∼= Rtr(X)

λ
−→ M.

Indeed, this is just a restatement of Theorem 6.7 in the form of axioms 3.4(a,b) of Lecture

3. Since axiom 3.4(c) holds by Lemma 6.2, M is a Rost motive. We saw in Lecture 3 that

the Bloch-Kato conjecture follows form the existence of a Rost motive, so we are done.
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