



SMR/1840-29

## School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

**Constructing the Rost motive** 

Charles Weibel Rutgers University, Piscataway, USA

## 6 Lecture 6

In this lecture, we will construct a Rost motive for  $\underline{a}$  in the sense of Definition 3.4. As we saw in Lecture 3, this suffices to verify the Bloch-Kato conjecture.

Let X be a Rost variety (Definition 3.1), and write  $\mathfrak{X}$  for the simplicial Cech variety associated to X. In 1.5, we produced a nonzero  $\delta \in H^{n,n-1}(\mathfrak{X},\mathbb{Z}/\ell)$ , and used it in Proposition 3.3 to construct a nonzero element  $\mu$  of  $H^{2b+1,b}(\mathfrak{X},\mathbb{Z})$ . Now any  $z \in H^{2b+1,b}(\mathfrak{X})$  can be interpreted as a map  $\mathfrak{X} \to \mathbb{L}^{b}[1]$  in **DM**; tensoring with  $\mathfrak{X}$ , and using  $\mathfrak{X} \otimes \mathfrak{X} \cong \mathfrak{X}$  yields a map  $\mathfrak{X} \to \mathfrak{X} \otimes \mathbb{L}^{b}[1]$ , which we also call z, and fit into a triangle

(6.1) 
$$\mathfrak{X} \otimes \mathbb{L}^b \xrightarrow{x} A \xrightarrow{y} \mathfrak{X} \xrightarrow{z} \mathfrak{X} \otimes \mathbb{L}^b[1].$$

Applying  $\Sigma_{i-1} \subset \Sigma_i$  to  $A^{\otimes i}$ , we get a corestriction map  $S^{i-1}(A) \otimes A \to S^i(A)$ . There is also a transfer map tr:  $S^i(A) \to S^{i-1}(A) \otimes A$ , induced by the endomorphism

$$a_1 \otimes \cdots \otimes a_i \longmapsto \Sigma(\cdots \otimes \hat{a}_j \otimes \cdots) \otimes a_j$$

of  $A^{\otimes i}$ . Now  $S^{i}(A) \cong \mathfrak{X} \otimes S^{i}(A)$ . Composing tr with  $1 \otimes y$  yields a map  $u \colon S^{i}(A) \to S^{i-1}(A)$ ; composing  $1 \otimes x$  with corestriction yields a map  $v \colon S^{i-1}(A) \otimes \mathbb{L}^{b} \to S^{i}(A)$ .

**Lemma 6.2.** If  $i < \ell$  and  $1/(\ell - 1)! \in R$ , the maps u and v fit into triangles

(a)  $S^{i-1}(A) \otimes \mathbb{L}^{b} \xrightarrow{v} S^{i}(A) \xrightarrow{S^{i}y} \mathfrak{X} \xrightarrow{s} S^{i-1}(A) \otimes \mathbb{L}^{b}[1].$ (b)  $\mathfrak{X} \otimes \mathbb{L}^{bi} \xrightarrow{S^{i}x} S^{i}(A) \xrightarrow{u} S^{i-1}(A) \xrightarrow{r} \mathfrak{X} \otimes \mathbb{L}^{bi}[1].$ 

*Proof.* This is proven in [MC/l, 3.1] using the slice filtration on  $A^{\otimes i}$ .

Setting  $D = S^{\ell-2}(A)$  and  $M = S^{\ell-1}(A)$ , we see that M satisfies property 3.4(c) of a Rost motive. The composition of s and  $r \otimes 1$  yields a map (for  $i = \ell - 1$ )

$$\phi(z)\colon \mathfrak{X} \xrightarrow{s} D \otimes \mathbb{L}^{b}[1] \xrightarrow{r \otimes 1} \mathfrak{X} \otimes \mathbb{L}^{b\ell}[2] \to \mathbb{L}^{b\ell}[2]$$

i.e., an element of  $H^{2b\ell+2,b\ell}(\mathfrak{X},\mathbb{Z}_{(\ell)})$ . Consider the function  $z\mapsto\phi(z)$ .

**Proposition 6.3.** (Voevodsky) The function  $\phi: H^{2b+1,b}(\mathfrak{X}, \mathbb{Z}) \to H^{2b\ell+2,b\ell}(\mathfrak{X}, \mathbb{Z}_{(\ell)})$  extends to a cohomology operation  $\phi: H^{2b+1,b}(-,\mathbb{Z}) \to H^{2b\ell+2,b\ell}(-,\mathbb{Z}_{(\ell)})$  satisfying

- (a)  $\phi(az) = a^{\ell}\phi(z)$  for  $a \in \mathbb{Z}$ ;
- (b)  $\phi(\Sigma y) = 0$  for  $y \in H^{2b,b}(-,\mathbb{Z})$ .

*Proof.* This is the content of 3.2, 3.5 and 3.6 of [MC/l].

**Corollary 6.4.** The mod- $\ell$  reduction  $\bar{\phi}$  of  $\phi$ , regarded as a motivic cohomology operation  $H^{2b+1,b}(-,\mathbb{Z}) \to H^{2b\ell+2,b\ell}(-,\mathbb{Z}/\ell)$ , is a multiple of  $\beta P^b$ .

*Proof.* Combine Theorem 5.1 and Proposition 6.3.

**Remark 6.4.1.** It is easy to show that  $\bar{\phi} \neq 0$ , so that  $\bar{\phi}(x) = c\beta P^b(\bar{x})$  for a nonzero  $c \in \mathbb{Z}/\ell$ .

**Lemma 6.5.** There are maps  $\lambda \colon \mathbb{Z}_{tr}(X) \to S^{\ell-1}(A)$  such that the inclusion  $\iota \colon X \to \mathfrak{X}$ factors in **DM** as:

$$\mathbb{Z}_{tr}(X) \xrightarrow{\lambda} S^{\ell-1}(A) \xrightarrow{S^{\ell-1}y} \mathfrak{X}.$$

*Proof.* (Voevodsky) [MC/l, 5.11] Applying  $\operatorname{Hom}_{\mathbf{DM}}(\mathbb{Z}_{\operatorname{tr}}X, -)$  to the triangle (6.1) defining A yields the exact sequence

$$\operatorname{Hom}(X,A) \xrightarrow{y} \operatorname{Hom}(X,\mathfrak{X}) \xrightarrow{z} \operatorname{Hom}(X,\mathbb{L}^{b}[1]) = 0;$$

the group on the right vanishes since it equals  $H^{2b+1,b}(X,\mathbb{Z}) = 0$ . Hence  $\iota$  factors through some  $\lambda_1 \colon \mathbb{Z}_{tr} X \to A$ . Similarly, triangle 6.2(b) yields exact sequences

$$\operatorname{Hom}(X, S^{i}(A)) \xrightarrow{u} \operatorname{Hom}(X, S^{i-1}(A)) \to \operatorname{Hom}(X, \mathfrak{X} \otimes \mathbb{L}^{bi}[1]) = 0.$$

The group on the right is  $H^{2bi+1,bi}(X,\mathbb{Z}) = 0$ . By induction, there are maps  $\lambda_i \colon \mathbb{Z}_{tr}(X) \to S^i(A)$  for  $i \leq \ell - 1$  such that  $\lambda_{i-1} = u\lambda_i$ . By the construction of  $u, yu^i = S^i y \colon S^i(A) \to \mathfrak{X}$ .  $\Box$ 

Recall from 2.3.1 that  $\operatorname{Hom}_{\mathbf{DM}}(\mathbb{L}^d, \mathbb{Z}_{\operatorname{tr}}(X)) = H_{2d,d}(X, \mathbb{Z}) \cong H^0(X, \mathbb{Z})$  by duality, so there is a fundamental class  $\tau \colon \mathbb{L}^d \to \mathbb{Z}_{\operatorname{tr}}(X)$ . Since  $\mathfrak{X} \otimes X \cong X$ , we may also view  $\tau$  as a map from  $\mathfrak{X} \otimes \mathbb{L}^d$  to  $\mathbb{Z}_{\operatorname{tr}}(X)$ .

**Proposition 6.6.** The composition  $\mathfrak{X} \otimes \mathbb{L}^d \xrightarrow{\tau} \mathbb{Z}_{tr}(X) \xrightarrow{\lambda} S^{\ell-1}(A)$  is not divisible by  $\ell$ .

*Proof.* (Voevodsky [MC/l, 5.12]) By the definition of  $\phi$  in terms of the map s of 6.2(a), the restriction  $S^{\ell-1}y^*(\phi)$  of  $\phi$  to  $S^{\ell-1}(A)$  is zero. By 6.4.1,  $\beta P^b$  also vanishes on  $S^{\ell-1}(A)$ . Since the  $Q_i$  anticommute we have  $Q_i(\mu) = 0$  for  $i \leq n-2$ .

Consider the element  $\alpha = Q_{n-1}(\mu) \in H^{b\ell+2,b\ell}(\mathfrak{X}, \mathbb{Z}/\ell)$ . By 3.3,  $\alpha \neq 0$ , and  $Q_{n-1}(\alpha) = 0$ as  $Q_i^2 = 0$ . By the definition of  $Q_{n-1}$  we have

$$\alpha = Q_{n-1}(\mu) = Q_{n-2}(P^{\ell^{n-2}}(\mu)) = \dots = \beta P^b(\mu),$$

so  $(S^{\ell-1}y)^*(\alpha) = \beta P^n((S^{\ell-1}y)^*\mu) = 0$  in  $H^{b\ell+2,b\ell}(S^{\ell-1}(A), R)$ . By the Motivic Degree Theorem of [MC/l, 4.4], applied to the factorization in Lemma 6.5, the existence of  $\alpha \neq 0$  implies the mod- $\ell$  reduction of the map  $\lambda \tau : \mathfrak{X} \otimes \mathbb{L}^d \to S^{\ell-1}(A)$  is nonzero.

Because  $\mu: \mathfrak{X} \to \mathfrak{X} \otimes \mathbb{L}^{b}[1]$  is a map between Tate objects, it is self dual  $(\mu = \mu^{*} \otimes \mathbb{L}^{b})$ under the identification of  $\mathfrak{X}$  with  $\mathfrak{X}^{*}$ ). It follows that  $A \cong A^{*} \otimes \mathbb{L}^{b}$ . Since  $S^{i}(M) \cong (S^{i}M)^{*}$ for every M we also have  $S^{i}(A) \cong S^{i}(A)^{*} \otimes \mathbb{L}^{bi}$ . (See [MC/l, 5.7].) For the map  $\lambda$  of 6.5, we write  $D\lambda$  for the dual map

$$D\lambda\colon S^{\ell-1}(A)\cong S^{\ell-1}(A)^*\otimes \mathbb{L}^d \xrightarrow{\lambda^*\otimes 1} \mathbb{Z}_{\mathrm{tr}}(X)^*\otimes \mathbb{L}^d\cong \mathbb{Z}_{\mathrm{tr}}(X).$$

**Theorem 6.7.** The composition  $\lambda \circ D\lambda$  is an isomorphism on  $S^{\ell-1}(A)$  (with coefficients  $\mathbb{Z}_{(\ell)}$  or  $\mathbb{Z}/\ell$ ), and there is an integer  $c \not\equiv 0 \pmod{\ell}$  so that the following diagram commutes:

In particular,  $S^{\ell-1}(A)$  is a direct summand of  $R_{tr}(X)$  for  $R = \mathbb{Z}_{(\ell)}$  or  $\mathbb{Z}/\ell$ .

*Proof.* (Voevodsky [MC/l, 5.15]) From triangle 6.2(b) we have an exact sequence

$$\operatorname{Hom}(\mathfrak{X} \otimes \mathbb{L}^{d}, \mathfrak{X} \otimes \mathbb{L}^{d}) \xrightarrow{S^{\ell-1}x} \operatorname{Hom}(\mathfrak{X} \otimes \mathbb{L}^{d}, S^{\ell-1}A) \xrightarrow{u} \operatorname{Hom}(\mathfrak{X} \otimes \mathbb{L}^{d}, S^{\ell-2}A) = 0.$$
$$c \qquad \mapsto \quad \lambda \tau \not\equiv 0 \pmod{\ell}$$

The fact that the right side is zero follows from the exact sequences of 6.2(a),

$$\operatorname{Hom}(\mathfrak{X}\otimes\mathbb{L}^{d},S^{i-1}A\otimes\mathbb{L}^{b})\xrightarrow{v}\operatorname{Hom}(\mathfrak{X}\otimes\mathbb{L}^{d},S^{i}A)\to\operatorname{Hom}(\mathfrak{X}\otimes\mathbb{L}^{d},\mathfrak{X}),$$

because the outer terms vanish — the right because maps between Tate objects cannot decrease weight, and the left by induction on *i*. Hence the map  $\lambda \tau$  of Proposition 6.6 lifts to an element *c* of  $\mathbb{Z} = \operatorname{Hom}(\mathfrak{X} \otimes \mathbb{L}^d, \mathfrak{X} \otimes \mathbb{L}^d)$ . Since  $\lambda \tau \not\equiv 0 \pmod{\ell}$  by 6.6,  $c \not\equiv 0 \pmod{\ell}$ . Dualizing  $\lambda \tau = (S^{\ell-1}x)c$  yields the left square in the following diagram, since  $S^{\ell-1}y$  is dual to  $S^{\ell-1}x$  and  $\iota$  is dual to  $\tau \colon \mathfrak{X} \otimes \mathbb{L}^d \to \mathbb{Z}_{\operatorname{tr}}(X)$ , so  $\iota \circ D\lambda$  is dual to  $\lambda \tau$ .

The right triangle commutes by Lemma 6.5.

**Corollary 6.8.** When  $R = \mathbb{Z}_{(\ell)}$ , the maps  $\lambda$  and  $D\lambda$  make  $M = S^{\ell-1}(A)$  into a direct summand of  $R_{tr}(X)$ , and the following composition is an isomorphism:

$$M \cong M^* \otimes \mathbb{L}^d \xrightarrow{\lambda^*} R_{tr}(X)^* \otimes \mathbb{L}^d \cong R_{tr}(X) \xrightarrow{\lambda} M$$

Indeed, this is just a restatement of Theorem 6.7 in the form of axioms 3.4(a,b) of Lecture 3. Since axiom 3.4(c) holds by Lemma 6.2, M is a Rost motive. We saw in Lecture 3 that the Bloch-Kato conjecture follows form the existence of a Rost motive, so we are done.