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Outline:

e Properties of bivariant cycle cohomology

e Morphisms and cycles

e Duality



Recall from Lecture 5:

Theorem (Global PST) Let F* be a complex of PSTs on
Sm/k: FF € C—(PST). Suppose that the cohomology presheaves
h'(F) are homotopy invariant. Then

(1) ForY € Sm/k, H'(Yyis, F}iie) = H' (Yzar, F3.,)
(2) The presheaf Y — H'(Yyis, F{ic) is homotopy invariant

(1) and (2) follows from the PST theorem using the spectral
sequence:

ES? = HP(Yr, hi(F),) = HPTI(Y;, F;), T = Nis, Zar.



Definition Take X,Y € Sch;. The bivariant cycle cohomology
of Y with coefficients in cycles on X are

Ap (Y, X) = H"(Yegn, Co (28 (X)) cdn)-

A, ;(Y,X) is contravariant in Y and covariant in X (for proper
maps).

We have the natural map

hi (MU (XN(Y) i= Hi(Co(z2M(X))(Y)) — A, 4(Y, X).



The bivariant cycle cohomology A, ;(Y, X) has long exact Mayer-
Vietoris sequence and a blow-up sequence with respect to Y.

Additional properties of A,; require some fundamental results
on the behavior of homotopy invariant PST's with respect to
cdh-sheafification. Additionally, we will heed some essentially
algebro-geometric results comparing different cycle complexes.
These two types of results are:

1. Acyclicity theorems. We have already seen the Nisnhevich
acyclicity theorem:

Theorem Let FF be a PST with Fyjs = 0. Then the Suslin
complex C«(F)z4r is acyclic.



We will also need the cdh version:

Theorem (cdh-acyclity) Assume that k admits resolution of
singularities. For F' a PST with F.qn, = 0, the Suslin complex
C«(F)cqn is acyclic as on Schy,.



The cdh-acyclicity theorem follows from the Nisnevich version
by a hypercovering argument.

Using a hypercovering argument again, and Voevodsky’'s PST
theorem, these results also show that cdh, Nis and Zar cohomol-
ogy of a homotopy invariant PST all agree on smooth varieties:

Theorem (cdh-Nis-Zar) Assume that k admits resolution of
singularities. For U € Sm/k, F* € C~(PST) such that the coho-
mology presheaves of ' are homotopy invariant,

H"(Uzar, FZ4r) = H"(Unis, Fris) = H" (Yedn, Féan)



2. Moving lemmas. The bivariant cohomology A, ; is defined us-
ing cdh-hypercohomology of 289Y so comparing 2894 with other
complexes leads to identification of Ar,i with cdh-hypercohomology
of the other complexes. These comparisions of z?q“i with other
complexes is based partly on a number of very interesting geo-
metric constructions, due to Friedlander-Lawson and Suslin. We
will not discuss these results here, except to mention where they

come in.



Homotopy Bivariant cycle homolopy is homotopy invariant:

Proposition Suppose k admits resolution of singularities. Then
the pull-back map

p* 1 Ani(Y, X) = A (Y x AL X)
IS an isomorphism.

Proof. Using hypercovers and resolution of singularities, we re-
duce to the case of smooth Y.

The cdh-Nis-Zar theorem changes the cdh hypercohomology
defining Am’ to Nisnevich hypercohomology:

A (Y, X) = H (Yyis, Cx (289U (X)) Nis)-



By the global PST theorem, the hypercohomology presheaves
Y - HY(Yis, Cx (289 (XD Nis))

are homotopy invariant.



The geometric comparison theorem

Theorem (Geometric comparison) Suppose k admits reso-
lution of singularities. Take X € Schy. Then the natural map
2CAU(X %) — 2,.(X, %) is a quasi-isomorphism.

This is based on Suslin’s moving lemma, a purely algebro-geometric
construction, in case X is affine. In addition, one needs to use
the cdh techniques to prove a Meyer-Vietoris property for the
complexes z8Ui( X x) (we'll see how this works a bit later).



The geometric duality theorem

Let 28997, X) := Hom(L(Z), 229 (X)). Explicitly:

229 Z, X)(U) = 200 (X)(Z x U).

We have the inclusion 289 (Z, X) — sz‘l_‘ﬂjiimZ(X X 7).

Theorem (Geometric duality) Suppose k admits resolution
of singularities. Take X € Schy, U € Sm/k, quasi-projective
of dimension n.

The inclusion 289 (U, X) — zfﬁ_‘j,i(X x U) induces a quasi-iso-
morphism of complexes on Sm/kz5,:

C*(ZSQUi(U»X))Zar — C*(Zfi%(X x U))zar



The proof for U and X smooth and projective uses the Friedlander-
Lawson moving lemma for “moving cycles in a family’”. The
extension to U smooth quasi-projective, and X general uses the
cdh-acyclicity theorem.



The cdh comparison and duality theorems

Theorem (cdh comparison) Suppose k admits resolution of
singularities. Take X € Schy. Then for U smooth and quasi-
projective, the natural map

hi (2N(X))(U) — A, (U, X)

IS an isomorphism.

Theorem (cdh duality) Suppose k admits resolution of singu-
larities. Take X,Y € Sch;, U € Sm/k of dimension n. There is a
canonical isomorphism

A'r',z'(Y x U, X) — Ar—|—n,i(Y>X x U).



To prove the cdh comparison theorem, first use the cdh-Nis-Zar
theorem to identify

Hz2, (U, Ci (279(X))) = Hg, (U, Cx(279M(X))) =1 A,4(U, X)

Next, if V7,V5 are Zariski open in U, use the geometric duality
theorem to identify the Mayer-Vietoris sequence

Cu(209U(X)) (V1 U V) — Cul(2f (X)) (V1) @ Ca(22 9 (X)) (V)
— Cx(289(X)) (V1 N V2)
with what you get by applying C«(—)(Speck) to
0— zequ'(X x (V1uVy)) — Zequu(X x V1) @ zequ'(X X Vo)
— Zefql_Liil(X x (V1NVy))
d=dimU.



But this presheaf sequence is exact, and coker.gqn = 0. The
cdh-acyclicity theorem thus gives us the distinguished triangle

Cu(25 9% (X x (V1 UV2))) zar
— C*(Z’Siliil(X X V]_))Zar D C*(Zsiliil(X X VQ))Zar
— Ci(z, (X x (V1 NV2)))zar —

Evaluating at Speck, we find that our original Mayer-Vietoris
sequence for Cx(z-'(X)) was in fact a distinguished triangle.



The Mayer-Vietoris property for Cx (289 (X)) then formally im-
plies that

hi(Cy (22U X)) (U) — HSL (U, Cx(z89(X))) = A, 4(U, X)

IS an isomorphism.

The proof of the cdh-duality theorem is similar, using the geo-
metric duality theorem.



cdh-descent theorem

Theorem (cdh-descent) Suppose k admits resolution of sin-
gularities. Take Y & Schy..

(1) Let UUV = X be a Zariski open cover of X € Schy. There
iIs a long exact sequence
= AL, UNV) — A (Y, U) @ A (Y, V)
— AT,i(Ya X) — AT,’i—l(Y7 Un V) AR
(2) Let Z C X be a closed subset. There is a long exact sequence
- T A’I“,i(Ya Z> — A?“,i(YaX) - AT,i(Y7X \ Z) — AT,i—l(Ya Z) .
(3) Let plli : X'II F — X be an abstract blow-up. There is a
long exact sequence
= A (Y, p T () = Ani(YV, X)) @ A (Y, F)
— Api(Y, X) = Api 1 (YV,p H(F) — .



Proof. For (1) and (3), the analogous properties are obvious in
the “first variable”, so the theorem follows from duality.

For (2), the presheaf sequence
0 — 279(2) — 200(X) — 229X\ U)

IS exact and coker-qn = 0. The cdh-acyclicity theorem says that
applying C«(—)cgn to the above sequence yields a distinguished
triangle.



Localization for Mg,

Continuing the argument for (2), the cdh-Nis-Zar theorem shows
that the sequence

0 — Cu(zrM(2))nis — Cx (27 (X)Inis — Cu(ZFI (X \ U))nis

canonically defines a distinguished triangle in DM€ (k). Taking
r = 0 gives

Theorem (Localization) Suppose k admits resolution of sin-
gularities. Let 1 : Z — X be a closed immersion in Sch; with
complement 53 : U — X. Then there is a canonical distinguished
triangle in DM€ (k)

S

MEm(Z) 25 MEm(X) 2o MEm(U) — MEm(2)[1]



Corollary Suppose k admits resolution of singularities. For each
X € Schy, M§n(X) is in DM§H (k) ¢ DMET (k).

Proof. We proceed by induction on dimX. First assume X &
Sm/k. By resolution of singularities, we can find a smooth projec-
tive X containing X as a dense open subscheme. Since the com-
plement D := X \ X has dim D < dim, M§y (D) is in DMSH (k).

M{m(X) = Mgm(X) since X is for proper. The localization
distinguished triangle shows Mgy, (X) is in DMSH (k).

For arbitrary X, take a stratification Xi« of X by closed sub-
schemes with X; \ X;_1. The localization triangle and the case
of smooth X gives the result.



A computation
Proposition M, (A") = Z(n)[2n]
Proof. For Z projective M§y(Z) = Mgm(Z). The localization
sequence gives the distinguished triangle

Mgm(P"™ 1) — Mgm(P™) — M§m(A™) — Mgm(P" 1)[1]
Then use the projective bundle formula:

Mgm(P"™1) = @73 Z(:)[2i].



Corollary (Duality) For X,Y € Schy, n = dimY we have a
canonical isomorphism

CHr—i-n(X XY,i) = Ar,i(YaX)

Proof. For U € Sm/k, quasi-projective, we have the quasi-
iIsomorphisms

Cu(229(X x U))(Speck) = 289U (X x U, *) — 2,40 (X x U, %)

Cu (2801 (U, X)) (Speck) — Cu(2594(X x U))(Speck)

and the isomorphisms
Ay (U, X) = Apyp i(Speck, X x U) — hi(2£9% (X x U))(Speck)
This gives the isomorphism

CH?”—I—?”L(X X U77’) - AT,i(UaX)°



One checks this map is natural with respect to the localization
sequences for CH, 4, (X x —,i) and A, ;(—, X).

Given Y € Sch,, there is a filtration by closed subsets

=Y 1CYyC...CYn=Y

with Y; \ Y;_1 € Sm/k and quasi-projective (k is perfect), so this
extends the result from U € Sm/k, quasi-projective, to Y € Schy..



Corollary Suppose k admits resolution of singularities. For
X,Y € Sch; we have

(1) (homotopy) The projection p : X x Al — X induces an iso-
morphism p* 1 A, ; (Y, X) — Apyq,;(Y, X x Al).

(2) (suspension) The maps ig : X — X x P!, p: X xP! - X
induce an isomorphism
Ay (Y, X) © Apm1,i(Y, X) 25 A, (Y, X x PL)
(3)(cosuspension) There is a canonical isomorphism
Api(Y x P X) 2 A (Y, X) @ Ay (Y, X)

(4) (localization) Leti: Z — U be a codimension n closed em-
bedding in Sm/k. Then there is a long exact sequence

- Ar—l—n,i(zaX) — Ar,i(UaX) S Ar,i(U \ Z,X)
— Ar—i—n,i—l(ZaX) AR



Proof. These all follow from the corresponding properties of
CH*(—,*) and the duality corollary:

(1) from homotopy
(2) and (3) from the projective bundle formula

(4) from the localization sequence.



Morphisms and cycles

We describe how morphisms in DMgfﬁ(k) can be realized as al-
gebraic cycles.

We assume throughout that k& admits resolution of singularities.



Bivariant cycle cohomology reappears T he cdh-acyclicity the-
orem relates the bivariant cycle cohomology (and hence higher
Chow groups) with the morphisms in DM§H (k).

Theorem For XY € Schy r > 0, ¢« € Z, there is a canonical
iIsomorphism

HOM 1 ett (g (Mam (Y ) () [2r + ], M§in (X)) 2 A, 5(Y, X).



Proof. First use cdh hypercovers to reduce to Y € Sm/k.

For » = 0O, the embedding theorem and localization theorem,
together with the cdh-Nis-Zar theorem gives an isomorphism

HomDMEﬂ’(k)(C*(Y) [Z]a Cg(X)) = H_i(YNiS7 C*(Z(e)QUi(X))NiS)
2= H"(Yegh, C« (262" (X)) can) = Ao (Y, X).
To go to r > 0, use the case r =0 for Y x (P1)":
Hom 1,y refr () (Ci (Y X (PHM[E], CLX)) 2 Ag (Y x (PH)", X).

By the cosuspension isomorphism A, ;(Y,X) is a summand of
Ao (Y x (PYH)", X); by the definition of Z(1), Mgm(Y)(r)[2r] is a
summand of Mgm(Y x (P1)"). One checks the two summands
match up.



Effective Chow motives

Corollary Sending a smooth projective variety X of dimension
n to Mgm(X) extends to a full embedding i : CHM®™(k)°P —
DM (k), CHM® (k) := effective Chow motives,

i(h(X)(=r)) = Mgm(X)(r)

Proof. For X and Y smooth and projective

HOM b preft (1) (Mam(Y), Mgm (X)) = Ao o(Y, X)
= Adimy,0(Speck,Y x X)
= CHgimy (Y x X)
~ CHIMX (X x V)
= HomCHMefF(k)(Xa Y).



One checks that sending a € CHYMX (X x V) to the correspond-
ing map

[ta] : Mgm(Y) — Mgm(X)
satisfies [t(bo a)] = [ta] o ['b].



The Chow ring reappears

Corollary For Y € Schy, equi-dimensional over k, i > 0, j € Z,
CHY(Y, j) = HomDMeff(k)(Mgm(Y),Z(’i)[Q’i —4]). That is
am

CHY(Y, j) & H> (Y, Z()).

Take ¢ > 0. Then ngm(Az) Z.(1)[2i] and
H2I (Y, Z(i)) = Hom p,, refr 1y (Mam (Y) [5], MGm (A7)

= Ag (Y, A

= Adimy,;(Speck,Y x A")
= CHgimy (Y x A%, )

= CH"(Y x A", %)

= CH'(Y, 4)



Remark Combining the Chern character isomorphism
ch: K;(Y)® 2 CH(Y, j)g

(for Y € Sm/k) with our isomorphism CHU (Y, ) & H2I(Y, Z(i))
identifies rational motivic cohomology with weight-graded K-
theory:

H27I(Y,Q(i)) & K;(Y)D.

Thus motivic cohomology gives an integral version of weight-
graded K-theory, in accordance with conjectures of Beilinson on
mixed motives.



Corollary (cancellation) For A, B € DM§I (k) the map
—®id: Hom(A,B) — Hom(A(1), B(1))
s an isomorphism. Thus

DMEN (k) — DMgm (k)

is a full embedding.

Corollary ForY € Schy, n,i € Z, set

H™Y,7Z(1)) := HomDMgm(k)(Mgm(Y),Z(i)[n]).
Then H*(Y,Z(1)) = 0 for i < 0 and for n > 2i.



Corollary The full embedding CHM®" (k)P — DM (k) ex-
tends to a full embedding

Mgm : CHM(]C)OD — DMgm(kJ)



Proof of the cancellation theorem.

The Gysin distinguished triangle for for Mgm shows that DMg, (k)
is generated by Mgm(X), X smooth and projective. So, we may
assume A = Mgm((Y)[i], B = Mgm(X), X and Y smooth and
projective, i € Z.

Then Mgm(X) = M§m(X) and Mgm(X)(1)[2] = M§n(X x Al).
Thus:

Hom(Mgm(Y)(1)[i], Mgm(X)(1)) = A1 (Y, X x A1)
= A (Y, X)



For the second corollary, supposes 7 < 0. Cancellation implies

H2 (Y, 2(3)) = Hom pysefr 1y (Mgm (Y ) (=) [j — 2i], Z)
= A_Z-J-(Y, Speck)
= Adimy—i j(Speck,Y)
= HI(C.(zS',__(Y))(Speck)).
equi

Since dimY —i >dimY, zj,y_,(Y)=0.

If s > 0 but n > 24, then H™(Y,Z(:)) = CH(Y,2i —n) = 0.



Duality

We describe the duality involution
*: DMgm(k) — DMgm(k)°P,

assuming k admits resolution of singularities.



A reduction

Proposition LetD be a tensor triangulated category, § a subset
of the objects of D. Suppose

1. Each M € 8§ has a dual M*.

2. D is equal to the smallest full triangulated subcategory of D
containing 8§ and closed under isomorphisms in D.

Then each object in D has a dual, i.e. D is a rigid tensor trian-
gulated category.



Idea of proof For M € §, we have the unit and trace
5M:]l—>M*®M, GM:M®M*—>]1
satisfying

(e®idy) o (idy ®6) = idy, (idys®e)o (§®idys) = idys

Show that, if you have such ¢,e for My, M, in a distinguished
triangle

M- 4, My — M3 — M [1]

you can construct é3, ez with M3 fitting in a distinguished triangle

Mék — M; ﬂ Mf — Mék[l]



Duality for X projective

Proposition For X € SmProj/k, r € Z, Mgm(X)(r) € DMgm(k)
has a dual (Mgm(X)(r))*.

We use the full embedding CHM (k)®P — DMgm(k) sending
H(X)(—r) to Mgm(X)(r), and the fact that h(X)(—r) has a dual
in CHM (k).



Proposition Suppose k admits resolution of singularities. Then
DMgm(k) is the smallest full triangulated subcategory of D Mgm(k)
containing the Mgm(Y )(r) for Y € SmProj/k, r € Z and closed
under isomorphisms in DMgm(k).



Proof. Take X € Sm/k. By resolution of singularities, there is a
smooth projective X containing X as a dense open subscheme,
such that D := X — X is a strict normal crossing divisor:

D = U= D;
with each D; smooth codimension one on X and each intersec-
tion: I ={iq1,...,%r}

D[ = D;

iy MN...ND;

r

is smooth of codimension r.

Then X and each D;, N...ND;, isin SmProj/k. So Mgm = M§n
for all these.

The Gysin triangle for W C Y both smooth, n = codimy W,
Mgm(Y \ W) — Mgm(Y) — Mgm(W)(n)[2n] — Mgm(Y \ W)[1],



and induction on dimX and descending induction on r shows
that

Mgm(X \ Uj7j=,Dr)

is in the category generated by the Mgm(Y)(r), Y € SmProj/k,
r € 7.



Theorem Suppose k admits resolution of singularities. Then
DMgm(k) is a rigid tensor triangulated category.

Note. In fact, one can show that (after embedding in DME& (k))

Mgm(X)* = Mgm(X)(—dx)[-2dx]



The End



T hank you!





