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Recall from Lecture 5:

Theorem (Global PST) Let F ∗ be a complex of PSTs on

Sm/k: F ∈ C−(PST ). Suppose that the cohomology presheaves

hi(F ) are homotopy invariant. Then

(1) For Y ∈ Sm/k, Hi(YNis, F
∗
Nis)

∼= Hi(YZar, F
∗
Zar)

(2) The presheaf Y �→ Hi(YNis, F
∗
Nis) is homotopy invariant

(1) and (2) follows from the PST theorem using the spectral

sequence:

E
p,q
2 = Hp(Yτ , hq(F )τ) =⇒ Hp+q(Yτ , Fτ), τ = Nis,Zar.



Definition Take X, Y ∈ Schk. The bivariant cycle cohomology

of Y with coefficients in cycles on X are

Ar,i(Y, X) := H−i(Ycdh, C∗(zequi
r (X))cdh).

Ar,i(Y, X) is contravariant in Y and covariant in X (for proper

maps).

We have the natural map

hi(z
equi
r (X))(Y ) := Hi(C∗(zequi

r (X))(Y ))→ Ar,i(Y, X).



The bivariant cycle cohomology Ar,i(Y, X) has long exact Mayer-

Vietoris sequence and a blow-up sequence with respect to Y .

Additional properties of Ar,i require some fundamental results

on the behavior of homotopy invariant PST’s with respect to

cdh-sheafification. Additionally, we will need some essentially

algebro-geometric results comparing different cycle complexes.

These two types of results are:

1. Acyclicity theorems. We have already seen the Nisnevich

acyclicity theorem:

Theorem Let F be a PST with FNis = 0. Then the Suslin

complex C∗(F )Zar is acyclic.



We will also need the cdh version:

Theorem (cdh-acyclity) Assume that k admits resolution of

singularities. For F a PST with Fcdh = 0, the Suslin complex

C∗(F )cdh is acyclic as on Schk.



The cdh-acyclicity theorem follows from the Nisnevich version

by a hypercovering argument.

Using a hypercovering argument again, and Voevodsky’s PST

theorem, these results also show that cdh, Nis and Zar cohomol-

ogy of a homotopy invariant PST all agree on smooth varieties:

Theorem (cdh-Nis-Zar) Assume that k admits resolution of

singularities. For U ∈ Sm/k, F ∗ ∈ C−(PST ) such that the coho-

mology presheaves of F are homotopy invariant,

Hn(UZar, F
∗
Zar)

∼= Hn(UNis, F
∗
Nis)

∼= Hn(Ycdh, F ∗cdh)



2. Moving lemmas. The bivariant cohomology Ar,i is defined us-

ing cdh-hypercohomology of zequi
r , so comparing zequi

r with other

complexes leads to identification of Ar,i with cdh-hypercohomology

of the other complexes. These comparisions of zequi
r with other

complexes is based partly on a number of very interesting geo-

metric constructions, due to Friedlander-Lawson and Suslin. We

will not discuss these results here, except to mention where they

come in.



Homotopy Bivariant cycle homolopy is homotopy invariant:

Proposition Suppose k admits resolution of singularities. Then

the pull-back map

p∗ : Ar,i(Y, X)→ Ar,i(Y × A1, X)

is an isomorphism.

Proof. Using hypercovers and resolution of singularities, we re-

duce to the case of smooth Y .

The cdh-Nis-Zar theorem changes the cdh hypercohomology

defining Ar,i to Nisnevich hypercohomology:

Ar,i(Y, X) = Hi(YNis, C∗(zequi
r (X)Nis).



By the global PST theorem, the hypercohomology presheaves

Y �→ Hi(YNis, C∗(zequi
r (X)Nis))

are homotopy invariant.



The geometric comparison theorem

Theorem (Geometric comparison) Suppose k admits reso-

lution of singularities. Take X ∈ Schk. Then the natural map

zequi(X, ∗)→ zr(X, ∗) is a quasi-isomorphism.

This is based on Suslin’s moving lemma, a purely algebro-geometric

construction, in case X is affine. In addition, one needs to use

the cdh techniques to prove a Meyer-Vietoris property for the

complexes zequi(X, ∗) (we’ll see how this works a bit later).



The geometric duality theorem

Let zequi
r (Z, X) := Hom(L(Z), zequi

r (X)). Explicitly:

zequi
r (Z, X)(U) = zequi

r (X)(Z × U).

We have the inclusion zequi
r (Z, X)→ zequi

r+dimZ(X × Z).

Theorem (Geometric duality) Suppose k admits resolution

of singularities. Take X ∈ Schk, U ∈ Sm/k, quasi-projective

of dimension n.

The inclusion zequi
r (U, X) → zequi

r+n(X × U) induces a quasi-iso-

morphism of complexes on Sm/kZar:

C∗(zequi
r (U, X))Zar → C∗(zequi

r+n(X × U))Zar



The proof for U and X smooth and projective uses the Friedlander-

Lawson moving lemma for “moving cycles in a family”. The

extension to U smooth quasi-projective, and X general uses the

cdh-acyclicity theorem.



The cdh comparison and duality theorems

Theorem (cdh comparison) Suppose k admits resolution of

singularities. Take X ∈ Schk. Then for U smooth and quasi-

projective, the natural map

hi(z
equi
r (X))(U)→ Ar,i(U, X)

is an isomorphism.

Theorem (cdh duality) Suppose k admits resolution of singu-

larities. Take X, Y ∈ Schk, U ∈ Sm/k of dimension n. There is a

canonical isomorphism

Ar,i(Y × U, X)→ Ar+n,i(Y, X × U).



To prove the cdh comparison theorem, first use the cdh-Nis-Zar

theorem to identify

H−i
Zar(U, C∗(zequi

r (X)))
∼−→ H−i

cdh(U, C∗(zequi
r (X))) =: Ar,i(U, X)

Next, if V1, V2 are Zariski open in U , use the geometric duality

theorem to identify the Mayer-Vietoris sequence

C∗(zequi
r (X))(V1 ∪ V2)→ C∗(zequi

r (X))(V1)⊕ C∗(zequi
r (X))(V2)

→ C∗(zequi
r (X))(V1 ∩ V2)

with what you get by applying C∗(−)(Spec k) to

0→ zequi
r+d(X × (V1 ∪ V2))→ zequi

r+d(X × V1)⊕ zequi
r+d(X × V2)

→ zequi
r+d(X × (V1 ∩ V2))

d = dimU .



But this presheaf sequence is exact, and cokercdh = 0. The

cdh-acyclicity theorem thus gives us the distinguished triangle

C∗(zequi
r+d(X × (V1 ∪ V2)))Zar

→ C∗(zequi
r+d(X × V1))Zar ⊕ C∗(zequi

r+d(X × V2))Zar

→ C∗(zequi
r+d(X × (V1 ∩ V2)))Zar →

Evaluating at Spec k, we find that our original Mayer-Vietoris

sequence for C∗(zequi
r (X)) was in fact a distinguished triangle.



The Mayer-Vietoris property for C∗(zequi
r (X)) then formally im-

plies that

hi(C∗(zequi
r (X)))(U)→ H−i

Zar(U, C∗(zequi
r (X))) = Ar,i(U, X)

is an isomorphism.

The proof of the cdh-duality theorem is similar, using the geo-

metric duality theorem.



cdh-descent theorem

Theorem (cdh-descent) Suppose k admits resolution of sin-
gularities. Take Y ∈ Schk.
(1) Let U ∪ V = X be a Zariski open cover of X ∈ Schk. There
is a long exact sequence

. . .→ Ar,i(Y, U ∩ V )→ Ar,i(Y, U)⊕Ar,i(Y, V )

→ Ar,i(Y, X)→ Ar,i−1(Y, U ∩ V )→ . . .

(2) Let Z ⊂ X be a closed subset. There is a long exact sequence

. . .→ Ar,i(Y, Z)→ Ar,i(Y, X)→ Ar,i(Y, X \ Z)→ Ar,i−1(Y, Z)→ . . .

(3) Let p � i : X ′ � F → X be an abstract blow-up. There is a
long exact sequence

. . .→ Ar,i(Y, p−1(F ))→ Ar,i(Y, X ′)⊕Ar,i(Y, F )

→ Ar,i(Y, X)→ Ar,i−1(Y, p−1(F ))→ . . .



Proof. For (1) and (3), the analogous properties are obvious in

the “first variable”, so the theorem follows from duality.

For (2), the presheaf sequence

0→ zequi
r (Z)→ zequi

r (X)→ zequi
r (X \ U)

is exact and cokercdh = 0. The cdh-acyclicity theorem says that

applying C∗(−)cdh to the above sequence yields a distinguished

triangle.



Localization for Mc
gm

Continuing the argument for (2), the cdh-Nis-Zar theorem shows

that the sequence

0→ C∗(zequi
r (Z))Nis → C∗(zequi

r (X))Nis → C∗(zequi
r (X \ U))Nis

canonically defines a distinguished triangle in DMeff− (k). Taking

r = 0 gives

Theorem (Localization) Suppose k admits resolution of sin-

gularities. Let i : Z → X be a closed immersion in Schk with

complement j : U → X. Then there is a canonical distinguished

triangle in DMeff− (k)

Mc
gm(Z)

i∗−→Mc
gm(X)

j∗−→Mc
gm(U)→Mc

gm(Z)[1]



Corollary Suppose k admits resolution of singularities. For each

X ∈ Schk, Mc
gm(X) is in DMeff

gm(k) ⊂ DMeff− (k).

Proof. We proceed by induction on dimX. First assume X ∈
Sm/k. By resolution of singularities, we can find a smooth projec-

tive X̄ containing X as a dense open subscheme. Since the com-

plement D := X̄ \X has dimD < dim, Mc
gm(D) is in DMeff

gm(k).

Mc
gm(X̄) = Mgm(X̄) since X̄ is for proper. The localization

distinguished triangle shows Mc
gm(X) is in DMeff

gm(k).

For arbitrary X, take a stratification X∗ of X by closed sub-

schemes with Xi \ Xi−1. The localization triangle and the case

of smooth X gives the result.



A computation

Proposition Mc
gm(An) ∼= Z(n)[2n]

Proof. For Z projective Mc
gm(Z) = Mgm(Z). The localization

sequence gives the distinguished triangle

Mgm(Pn−1)→Mgm(Pn)→Mc
gm(An)→Mgm(Pn−1)[1]

Then use the projective bundle formula:

Mgm(Pn) = ⊕n
i=0Z(i)[2i]

Mgm(Pn−1) = ⊕n−1
i=0Z(i)[2i].



Corollary (Duality) For X, Y ∈ Schk, n = dimY we have a
canonical isomorphism

CHr+n(X × Y, i) ∼= Ar,i(Y, X)

Proof. For U ∈ Sm/k, quasi-projective, we have the quasi-
isomorphisms

C∗(zequi
r+n(X × U))(Spec k) = zequi

r+n(X × U, ∗)→ zr+n(X × U, ∗)

C∗(zequi
r (U, X))(Spec k)→ C∗(zequi

r+n(X × U))(Spec k)

and the isomorphisms

Ar,i(U, X)→ Ar+n,i(Spec k, X × U)← hi(z
equi
r+n(X × U))(Spec k)

This gives the isomorphism

CHr+n(X × U, i)→ Ar,i(U, X).



One checks this map is natural with respect to the localization

sequences for CHr+n(X ×−, i) and Ar,i(−, X).

Given Y ∈ Schk, there is a filtration by closed subsets

∅ = Y−1 ⊂ Y0 ⊂ . . . ⊂ Ym = Y

with Yi \ Yi−1 ∈ Sm/k and quasi-projective (k is perfect), so this

extends the result from U ∈ Sm/k, quasi-projective, to Y ∈ Schk.



Corollary Suppose k admits resolution of singularities. For
X, Y ∈ Schk we have
(1) (homotopy)The projection p : X × A1 → X induces an iso-
morphism p∗ : Ar,i(Y, X)→ Ar+1,i(Y, X × A1).

(2) (suspension) The maps i0 : X → X × P1, p : X × P1 → X
induce an isomorphism

Ar,i(Y, X)⊕Ar−1,i(Y, X)
i∗+p∗−−−−→ Ar,i(Y, X × P1)

(3)(cosuspension) There is a canonical isomorphism

Ar,i(Y × P1, X) ∼= Ar,i(Y, X)⊕Ar+1,i(Y, X)

(4) (localization) Let i : Z → U be a codimension n closed em-
bedding in Sm/k. Then there is a long exact sequence

. . .→ Ar+n,i(Z, X)→ Ar,i(U, X)
j∗−→ Ar,i(U \ Z, X)

→ Ar+n,i−1(Z, X)→ . . .



Proof. These all follow from the corresponding properties of

CH∗(−, ∗) and the duality corollary:

(1) from homotopy

(2) and (3) from the projective bundle formula

(4) from the localization sequence.



Morphisms and cycles

We describe how morphisms in DMeff
gm(k) can be realized as al-

gebraic cycles.

We assume throughout that k admits resolution of singularities.



Bivariant cycle cohomology reappears The cdh-acyclicity the-

orem relates the bivariant cycle cohomology (and hence higher

Chow groups) with the morphisms in DMeff
gm(k).

Theorem For X, Y ∈ Schk r ≥ 0, i ∈ Z, there is a canonical

isomorphism

Hom
DMeff− (k)(Mgm(Y )(r)[2r + i], Mc

gm(X)) ∼= Ar,i(Y, X).



Proof. First use cdh hypercovers to reduce to Y ∈ Sm/k.

For r = 0, the embedding theorem and localization theorem,

together with the cdh-Nis-Zar theorem gives an isomorphism

Hom
DMeff− (k)(C∗(Y )[i], Cc∗(X)) ∼= H−i(YNis, C∗(zequi

0 (X))Nis)

∼= H−i(Ycdh, C∗(zequi
0 (X))cdh) = A0,i(Y, X).

To go to r > 0, use the case r = 0 for Y × (P1)r:

Hom
DMeff− (k)(C∗(Y × (P1)r)[i], Cc∗(X)) ∼= A0,i(Y × (P1)r, X).

By the cosuspension isomorphism Ar,i(Y, X) is a summand of

A0,i(Y × (P1)r, X); by the definition of Z(1), Mgm(Y )(r)[2r] is a

summand of Mgm(Y × (P1)r). One checks the two summands

match up.



Effective Chow motives

Corollary Sending a smooth projective variety X of dimension
n to Mgm(X) extends to a full embedding i : CHMeff(k)op →
DMeff

gm(k), CHMeff(k) := effective Chow motives,

i(h(X)(−r)) = Mgm(X)(r)

Proof. For X and Y smooth and projective

Hom
DMeff

gm(k)(Mgm(Y ), Mgm(X)) = A0,0(Y, X)

∼= AdimY,0(Spec k, Y ×X)
∼= CHdimY (Y ×X)
∼= CHdimX(X × Y )

= HomCHMeff(k)(X, Y ).



One checks that sending a ∈ CHdimX(X×Y ) to the correspond-

ing map

[ta] : Mgm(Y )→Mgm(X)

satisfies [t(b ◦ a)] = [ta] ◦ [tb].



The Chow ring reappears

Corollary For Y ∈ Schk, equi-dimensional over k, i ≥ 0, j ∈ Z,
CHi(Y, j) ∼= Hom

DMeff
gm(k)(Mgm(Y ), Z(i)[2i− j]). That is

CHi(Y, j) ∼= H2i−j(Y, Z(i)).

Take i ≥ 0. Then Mc
gm(Ai) ∼= Z(i)[2i] and

H2i−j(Y, Z(i)) = Hom
DMeff− (k)(Mgm(Y )[j], Mc

gm(Ai))

∼= A0,j(Y, Ai)
∼= AdimY,j(Spec k, Y × Ai)

= CHdimY (Y × Ai, j)

= CHi(Y × Ai, j)
∼= CHi(Y, j)



Remark Combining the Chern character isomorphism

ch : Kj(Y )(i) ∼= CHi(Y, j)Q

(for Y ∈ Sm/k) with our isomorphism CHi(Y, j) ∼= H2i−j(Y, Z(i))

identifies rational motivic cohomology with weight-graded K-

theory:

H2i−j(Y, Q(i)) ∼= Kj(Y )(i).

Thus motivic cohomology gives an integral version of weight-

graded K-theory, in accordance with conjectures of Beilinson on

mixed motives.



Corollary (cancellation) For A, B ∈ DMeff
gm(k) the map

−⊗ id : Hom(A, B)→ Hom(A(1), B(1))

is an isomorphism. Thus

DMeff
gm(k)→ DMgm(k)

is a full embedding.

Corollary For Y ∈ Schk, n, i ∈ Z, set

Hn(Y, Z(i)) := HomDMgm(k)(Mgm(Y ), Z(i)[n]).

Then Hn(Y, Z(i)) = 0 for i < 0 and for n > 2i.



Corollary The full embedding CHMeff(k)op → DMeff
gm(k) ex-

tends to a full embedding

Mgm : CHM(k)op → DMgm(k).



Proof of the cancellation theorem.

The Gysin distinguished triangle for for Mgm shows that DMeff
gm(k)

is generated by Mgm(X), X smooth and projective. So, we may

assume A = Mgm(Y )[i], B = Mgm(X), X and Y smooth and

projective, i ∈ Z.

Then Mgm(X) = Mc
gm(X) and Mgm(X)(1)[2] = Mc

gm(X × A1).

Thus:

Hom(Mgm(Y )(1)[i], Mgm(X)(1)) ∼= A1,i(Y, X × A1)
∼= A0,i(Y, X)
∼= Hom(Mgm(Y )[i], Mgm(X))



For the second corollary, supposes i < 0. Cancellation implies

H2i−j(Y, Z(i)) = Hom
DMeff

gm(k)(Mgm(Y )(−i)[j − 2i], Z)

= A−i,j(Y,Spec k)

= AdimY−i,j(Spec k, Y )

= H−j(C∗(zequi
dimY−i(Y ))(Spec k)).

Since dimY − i > dimY , zequi
dimY−i(Y ) = 0.

If i ≥ 0 but n > 2i, then Hn(Y, Z(i)) = CHi(Y,2i− n) = 0.



Duality

We describe the duality involution

∗ : DMgm(k)→ DMgm(k)op,

assuming k admits resolution of singularities.



A reduction

Proposition Let D be a tensor triangulated category, S a subset

of the objects of D. Suppose

1. Each M ∈ S has a dual M∗.

2. D is equal to the smallest full triangulated subcategory of D

containing S and closed under isomorphisms in D.

Then each object in D has a dual, i.e. D is a rigid tensor trian-

gulated category.



Idea of proof For M ∈ S, we have the unit and trace

δM : 1→M∗ ⊗M, εM : M ⊗M∗ → 1

satisfying

(ε⊗ idM) ◦ (idM ⊗ δ) = idM, (idM∗ ⊗ ε) ◦ (δ ⊗ idM∗) = idM∗

Show that, if you have such δ, ε for M1, M2 in a distinguished

triangle

M1
a−→M2 →M3 →M1[1]

you can construct δ3, ε3 with M∗3 fitting in a distinguished triangle

M∗3 →M∗2
a∗−→M∗1 →M∗3[1]



Duality for X projective

Proposition For X ∈ SmProj/k, r ∈ Z, Mgm(X)(r) ∈ DMgm(k)

has a dual (Mgm(X)(r))∗.

We use the full embedding CHM(k)op ↪→ DMgm(k) sending

h(X)(−r) to Mgm(X)(r), and the fact that h(X)(−r) has a dual

in CHM(k).



Proposition Suppose k admits resolution of singularities. Then

DMgm(k) is the smallest full triangulated subcategory of DMgm(k)

containing the Mgm(Y )(r) for Y ∈ SmProj/k, r ∈ Z and closed

under isomorphisms in DMgm(k).



Proof. Take X ∈ Sm/k. By resolution of singularities, there is a
smooth projective X̄ containing X as a dense open subscheme,
such that D := X̄ −X is a strict normal crossing divisor:

D = ∪m
i=1Di

with each Di smooth codimension one on X̄ and each intersec-
tion: I = {i1, . . . , ir}

DI := Di1 ∩ . . . ∩Dir

is smooth of codimension r.

Then X̄ and each Di1 ∩ . . .∩Dir is in SmProj/k. So Mgm = Mc
gm

for all these.

The Gysin triangle for W ⊂ Y both smooth, n = codimY W ,

Mgm(Y \W )→Mgm(Y )→Mgm(W )(n)[2n]→Mgm(Y \W )[1],



and induction on dimX and descending induction on r shows

that

Mgm(X̄ \ ∪|I|=rDI)

is in the category generated by the Mgm(Y )(r), Y ∈ SmProj/k,

r ∈ Z.



Theorem Suppose k admits resolution of singularities. Then

DMgm(k) is a rigid tensor triangulated category.

Note. In fact, one can show that (after embedding in DMeff− (k))

Mgm(X)∗ = Mc
gm(X)(−dX)[−2dX]



The End



Thank you!




