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The standard conjectures



We would like to think of our functor

h: SmProj/k°® — Mpom(k)

as the "“universal Weil cohomology”. What is lacking:

e We have the “total cohomology” h(X), we would like the in-
dividual cohomologies §"(X).

e Other “higher level” properties of cohomology are missing,
e.g., Lefschetz theorems.

® ~Lom could depend on the choice of Weil cohomology.
e Mnom(k) is not a category of vector spaces, but it is at least

pseudo-abelian. It would be nice if it were an abelian category.
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Kunneth projectors

Fix a Weil cohomology H* and an X € SmProj/k. By the
Kunneth formula, we have

H*(X x X) = H*(X) ® H*(X)
SO
H2IX (X x X)(dy) = &% H(X) ©@ H2X7(X)(dx)
By Poincaré duality, H2dx—n(X)(dX) = H™"(X)V, so

H2X (X x X)(dx) = -2 HM(X) @ H(X)V
= @"‘dX Hom j (H™(X), H"(X)).



H2X (X x X)(dx) = &% H™(X) @ H(X)V
= @de Hom g (H™(X), H™(X)).

This identifies H29x (X x X)(dx) with the vector space of graded
K-linear maps f: H*(X) — H*(X) and writes

2dx
dpsxy= > ™x.g 7T €H'(X)®H"(X)".

n=0

The term
77”'}(71{  HY(X) — H*(X)

is the projection on H™(X), called the Kiinneth projector



Since idp _(x) is represented by the diagonal Ax € 29x (X x X),
we have

vx,7H(Ax) =idg«xy=> T g
mn
We can ask: are there correspondences 7'y € Z‘higm(X X X)Q with
vx,H(TX) = TX 11"

Remarks 1. The wf}(H are idempotent endomorphisms —

(X,n%) defines a summand h™(X) of h(X) in MET (k)q.

2. If w} exists, it is unique.

3. w1 exists iff hhom(X) = h(X) @ h(X)" in MM (k)g with
H*(h"(X)) Cc H*(X) equal to H"(X).



If all the w}”‘( exist:

Bhom(X) = &2X pl  (X)

X has a Kinneth decomposition.

Examples

1. The decomposition

h(P™) = &r—h>" (P")
in CHM®™ (k) maps to a Kiinneth decomposition of hpom(P™).



2. For a curve C, the decomposition (depending on a choice of
0ecC(k))

h(C) =h°(X) @ hH(C) @ H2(C);  HO(C) = 1,h2(C) = 1(-1),
in CHM®™ (k) maps to a Kiinneth decomposition of hnom(C).

3. For each X € SmProj/k, a choice of a k-point gives factors

HO(X) = (X,0x X) =21
thX<X> = (X, X x 0) =2 1(~dy).

of h(X). Using the Picard and Albanese varieties of X, one can
also define factors h1(X) and h2¢—1(X), so

h(X) = H2(X) @ h1(X) @ h(X) @ h2x~1(X) @ h29x(X)

which maps to a partial Kiinneth decomposition in Mﬁgfm(k)Q.

For dyxy = 2, this gives a full Klinneth decomposition (Murre).
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The Kunneth conjecture

Conjecture (C(X)) The Kiinneth projectors %y, ;; are algebraic
for all n:

Bhom(X) = &2 pl 0 (X)

with H*(h?. (X)) = H™(X) C H*(X).

Consequence Let a € 29X (X x X)q be a correspondence.

1. The characteristic polynomial of H"(a) on H™(X) has Q-
coefficients.

2. IFH"(a) : H"(X) — H™(X) is an automorphism, then H"(a)~1 =
H*(b) for some correspondence b € 29X (X x X)q.
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Proof. (1) The Lefschetz trace formula gives

Tr(am)|Hn(X) = (=1)"deg(*a™ - Ty) € Q.
But

1
det(1 — tajgn(x)) = exp(— > ETT(a’gn(X))tm)'

m=1

(2) By Cayley-Hamilton and (1), there is a Qn(t) € Q[t] with

H"™(a) "' = Qn(H"(a))
= H"(Qn(a))
= H*(Qn(a)7’)
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Status: C(X) is known for “geometrically cellular” varieties (P,
Grassmannians, flag varieties, quadrics, etc.), curves, surfaces
and abelian varieties: For an abelian variety A, one has

b om (A) = A"(bEom(A)).

C(X) is true for all X if the base-field k is a finite field F, and
H* = Hgt(_7Q€):

Use the Weil conjectures to show that the characteristic poly-
nomial Pn(t) of Frxy on H™(X,Q,) has Q-coefficients and that
Pn(t) and P, (t) are relatively prime for n = m. Cayley-Hamilton
and the Chinese remainder theorem yield polynomials Q,(t) with
Q-coefficients and

Qn(FT;()u{m(X) — 5n,mide(X)-
Then 7% = Qn(*Tpy ).
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The sign conjecture C1T(X)

This is a weak version of C(X), saying that n}f 5 1= Y0X o 73y

IS algebraic. Equivalently, Ty [ - = Zgﬁl 7@(”]}1 IS algebraic.

CT(X) for all X/k says that we can impose a Z/2-grading on
Mhom(k)(@3

Dhom(X) = Diiom (X)) @ higm (X)
so that H* : Mphom(k)g — GrVecgk defines
H* : Mpom(k)g — sVeck

respecting the Z/2 grading, where sVecy the tensor category of
finite dimensional Z/2-graded K vector spaces.
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Consequence Suppose CT(X) for all X € SmProj/k. Then

Mnom(k)g — Mnum(k)q

is conservative and essentially surjective.
This follows from:

Lemma CT1T(X)—=—
the kernel of Zﬁgm (X xX)g — Zﬁ{fm (X x X)q is a nil-ideal, hence
ker C R.

Proof. For f € ker, deg(f”-wgt) = deg(f"-my) = 0. By Lefschetz

Tr(y(F) + ) =TrO () -(x) =0

Thus v(f)|g+(x) has characteristic polynomial N N =dim H*(X).
[]
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Remark. André and Kahn use the fact that the kernel of Mpom(k)g —
Mnum(k)g is @ ® nilpotent ideal to define a canonical ® functor
Mnum(k)g — Mpom(k)g- This allows one to define the “homo-

logical realization” for Mnum(k)q-
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The Lefschetz theorem

Take a smooth projective X over k with an embedding X c P,
Let 7Y — X be a smooth hyperplane section.

For a Weil cohomology H*, this gives the operator
L:H"(X) — H*2(X)(-1)
L(z) := ix(i"(x)) = v([YD Uz,

L lifts to the correspondence ¥ x X C X x X.

The strong Leschetz theorem is

Theorem For H* a ‘classical” Weil cohomology and 1 < dx
LIX—t: HH(X) — H2X7H(X)(dy — 1)
IS an isomorphism.
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The conjecture of Lefschetz type

Let x; y be the involution of &; ,H'(X)(r):

Lax—1 for 0 <i<dy

s x on H'(X)(r) =<
L.X (X)(r) {(LZdX)l for dxy <1 < 2dy.

Conjecture (B(X)) The Lefschetz involution x, x is algebraic:
there is a correspondence ay, x € Z*(X x X)g with v(a) = x1, x
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Status

B(X) is known for curves, and for abelian varieties (Kleiman-
Grothendieck). For abelian varieties Lieberman showed that the
operator A (related to the inverse of L) is given by Pontryagin
product (translation) with a rational multiple of Y (d-1)
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Homological and numerical equivalence

Conjecture (D(X)) Z{,m(X)o = Znum(X)g

hom

Proposition For X € SmProj/k, D(X?) = End g, o (kg (HCX))
iIs semi-simple.

D(X?) == Endy () (0(X)) = Endyp g (0(X)), which is
semi-simple by Jannsen’s theorem.

Similarly, Jannsen’s theorem shows:

Proposition If D(X) is true for all X € SmProj/k, then H* :
Mnom(k)r — GrVecy is conservative and exact.
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In fact: D(X?) = B(X) = C(X).

Thus, if we know that hom = num (with Q-coefficients) we have
our universal cohomology of smooth projective varieties

h = ®;h* : SmProj(k)°P — NM(k)q

with values in the semi-simple abelian category NM(k)q.

Also, for H* = Betti cohomology, B(X) =— D(X), so it would
suffice to prove the conjecture of Lefschetz type.

D(X) is known in codimension 0, dx and for codimension 1 (Mat-
susaka's thm). In characteristic 0, also for codimension 2,dxy — 1
and for abelian varieties (Lieberman).
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Decompositions of the diagonal
We look at analogs of the Kiinneth projectors for CHM(k)@.

First look at two basic properties of the Chow groups.



Localization

Theorem Let:: W — X be a closed immersion, 5 .U — X the
complement. Then

CH, (W) 25 CH(X) L5 CHA(U) — 0

IS exact.

Proof.

is exact: Look at the basis given by subvarieties. At Z,(U) take
the closure to lift to Z,(X). At Z(X) i~ 3(Z) =0 means Z Cc W.

Do the same for W x P! ¢ X x P! and use the snake lemma. O
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Continuity

Proposition Lett:Spec(L) — T be a geometric generic point
and take X € Schy, equi-dimensional. If n € CH"(X X T)g +— 0 €
CHT(Xt)Q, then there is a Zariski open subset of T containing
the image of t such that n— 0 € CH"(X x U).

nt = 0 = ni = 0 for some K/k(T) finite, Galois.

But CH?“(XK)ga' = CH"(Xk(x))Q = Mk(x) = 0 € CH" (Xk(x))o-

But CH"(X}(x)) = limgcyrer CHT(X x U).

Note. This result is false for other ~, €.9. ~phom, ~alg-
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The first component

Proposition (Bloch) X € SmProj/k. Suppose CHo(X7)g = Q
(by degree) for all finitely generated field extensions L D k. Then

Ax ~at X X0+ p

with p € 29x(X x X) supported in D x X for some divisor D C X
and 0 € CHo(X)qg any degree 1 cycle.
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Proof. Let 2 : » — X be a geometric generic point. Then
i*(X x 0) and *(Ax) are in CHO(Xk(n)) and both have degree
1. Thus

(¢t xid)" (X x0) = (G xid)"(Ax) in CHo (X))o

By continuity, there is a dense open subscheme j: U — X with
(J xid)*(X x0) = (4 x id)"(A%) in CHo(U x X)g

By localization there is a 7 € 24, (D x X) for D = X \ U with

Ay — X x0=C(ip, xid)«(7) =: p.
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Mumford’s theorem Take kK = k. Each X in SmProj/k has an
associated Albanese variety Alb(X). A choice of 0 € X (k) gives
a morphism ay : X — Alb(X) sending 0 to 0, which is universal
for pointed morphisms to abelian varieties.

Extending by linearity and noting Alb(X x P1) = Alb(X) gives a
canonical map

ay . CHO(X)degO — A|b(X)

Theorem (Mumford) X: smooth projective surface over C.
If HO(X,Q2) # 0, then the Albanese map ax : CHo(X)gego —
Alb(X) has “infinite dimensional” kernel.

Here is Bloch's motivic proof (we simplify: assume Alb(X) = 0,
and show only that CHp(X)g is not Q).
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Since C has infinite transcendence degree over Q, CHp(X)g = Q

implies CHo(X7)g = Q for all finitely generated fields L/C.

Apply Bloch's decomposition theorem: Ax ~ 3t X X0+ p. Since
HO(X, Q%) = HO(X x PL,Q?)

Ay, = (X x0)x+ px on 2-forms.

If we HO(X,Q2) is a two form, then

w= Asx(w) = (X x0)x(w) + px(w) =0 :

(X x0)«(w) is 0 on X\ {0}. p«(w) factors through the restriction
wp- D is a curve, so wp=0.
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Jannsen’s surjectivity theorem

Theorem (Jannsen) Take X € SmProj/C. Suppose the cycle-
class map

Y CHY(X)g — H?"(X(C),Q)

is injective for all r. Then ~* : CH*(X) — H*(X,Q) is surjective,
in particular H°%(X, Q) = 0.

Corollary If v*: CH*(X)g — H*(X(C),Q) is injective, then the
Hodge spaces HP4(X) vanish for p #£ q.

Compare with Mumford's theorem: if X is a surface and CHq(X)g =
Q, then H29(X) = HY2(X) = 0.
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Note. The proof shows that the injectivity assumption vields a
full decomposition of the diagonal

Ay = Z Z a* x sz in CHdX(X X X)Q

i=0 j=1

with a¥ € ZY(X)q, bi; € Zi(X)g. Applying Ax, to a cohomology
class n € H"(X,Q) gives

n=Ax.(n) =D Tr(nU~(a?)) x v(b;;)

1J

This is 0 if » is odd, and is in the Q-span of the ~(b;;) for
T = QdX — 21.
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Conversley, a decomposition of Ax as above yields

dx

h(X)g = Y ]1(-@)8 in CHM (C)q
1=0

which implies CH;(X)q is the Q-span of the b;; and that v* is an
Isomorphism.
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Proof. Show by induction that

rooh
Ay = Z ZCLZ]XbZ‘j—I-pT in CHdX(XXX)Q
1=07=1

with a¥ € Z'(X)q, b;; € 2;(X)g and p" supported on Z" x X,
Z" C X a closed subset of codimension r+ 1.

The case r = 0 is Bloch's decomposition theorem, since H24x (X, Q) =

Q.
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To go from r to r+ 1. p" has dimension dx. Think of p" — Z"
as a familiy of codimension dx —r — 1 cycles on X, parametrized
by Z" (at least over some dense open subschemeof Z7):

o s pr(z) c CHd—T—l(X)Q AN H2d—27’—2(X’ Q)
For each component Z; of Z, fix one point z;. Then

pl = Zi x p"(2)
)

goes to zero in H24=2r=2(Xx Q) at each geometric generic point
of Z". Thus the cycle goes to zero in CHd—T—l(Xk(nj)) for each
generic point n; € AN
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By continuity, there is a dense open U C Z" with

(P" =" Zix p"(2))NU x X =0 in CHX(U x X)q
)

By localization
pl = ZZZ X p' (z;) + p?“—l-l € CH*(Z" x X)Q
;
with p"T1 supported in Z"+1 x X, zr+1 = X\ U.

Combining with the identity for r gives

r+1 n; B
AXZ Z ZaZ]Xbij—l—pr in CHdX(XXX)Q
1=0 j7=1
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Esnault’s theorem

Theorem (Esnault) Let X be a smooth Fano variety over a
finite field Fy. Then X has an Fq-rational point.

Recall: X is a Fano variety if —Kx is ample.

Proof. Kollar shows that X Fano — Xt Is rationally connected
(each two points are connected by a chain of rational curves).
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Thus CHo(Xp)g=Q for all L D F,. Now use Bloch’s decompo-
sition (transposed):

AX—:OXX—F,O
0 € X(F,), p supported on X x D.

Thus HZ(X,Qp) — HZ.(X \ D,Qp) is the zero map for all n > 1.

Purity of étale cohomology == EV of Frx on HJ.(X,Q,) are
divisible by g for n > 1.

LLefschetz fixed point formula —

2dx

n=0
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Bloch’s conjecture

Conjecture Let X be a smooth projective surface over C with
HO(X,Q2) = 0. Then the Albanese map

ay . CH()(X) — A|b(X)

Is an isomorphism.

This is known for surfaces not of general type (Kx ample) by
Bloch-Kas-Lieberman, and for many examples of surfaces of gen-

eral type.

Roitman has shown that ax is an isomorphism on the torsion
subgroups for arbitrary smooth projective X over C.
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A motivic viewpoint

Since X is a surface, we have Murre's decomposition of ot (X):
h(X)g = Bi=oh' (X =L@ ®h? @ h'(~1) ® 1(-2).
Murre defined a filtration of CH?(X)g:
F9 := CH?*(X)gp C F!' = CH?*(X)gdego D F2 :=kerax D F> =0
and showed
F? = CH?(h?(X)),ar; = CHZ(h3(X)), 9rp = CHA(h*(X))
CH2(h*(X)) =0 for i = 0, 1.
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Suppose p; = 0. Choose representatives z; € CH(X) for Z5,m(X)g =
H2(X,Q)(1).

Since CH(X) = Homgga (1(—1),h(X)), we can use the z; to
lift haum(X) = 1(—1)? to a direct factor of h2(X)q:

h°(X)g = 1(-1)’ & °
with £2,,(X) = 0.

CHZ(1(=1)) := Homep py(x) (1(=2),1(~1)) = CH*(Speck) = 0.

So Bloch's conjecture is:

CH2(t?(X)) = 0.
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Filtrations on the Chow ring

We have seen that a lifting of the Kilinneth decompostion in
Z?;um(XQ)Q to a sum of products in CH*(XQ)@ imposes strong
restrictions on X. However, one can still ask for a lifting of the
Kinneth projectors «y, (assuming C(X)) to a mutually orthogo-
nal decomposition of Ay in CH*(X?)g.

This leads to an interesting filtration on CH*(X)@, generalizing
the situation for dimension 2.



Murre’s conjecture
Conjecture (Murre) For all X € SmProj/k:
1. the Kiunneth projectors 7r7)7'< are algebraic.

2. There are lifts N, of % to CHIX(X?)q such that

i. the I‘I& are mutually orthogonal idempotents with ), I‘I& = 1.
ii. M% acts by 0 on CH"(X)q for n > 2r

iii. the filtration

FYCH"(X)q := Np>or—p ker M
is independent of the choice of lifting

iv. FICH*(X)g = ker(CH*(X)g — Zom(X)q)-

hom
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In terms of a motivic decomposition, this is the same as:

1. bhom(X) has a Kiinneth decomposition in Mupom(k)g:

2d
[Jhom(X) — X m(X)
2. This decomposition lifts to a decomp05|t|on in C’HM(k:)@:

h(X) = &% h™(X)
such that

i. CH"(h™(X)) =0 for n > 2r
iii. the filtration

F'CH (X)g= Y. CH'(h"(X))
n<2r—v
IS independent of the lifting.
iv. CH"(h?"(X)) = 2L ., (X)o.
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The Bloch-Beilinson conjecture
Conjecture For all X € SmProj/k:
1. the Kiunneth projectors 7& are algebraic.

2. Foreachr > 0 thereis a filtration F¥CH"(X)q, v > 0 such that

j. FO=CH", F1 =ker(CH" — 21 __)

ji. FV.FHC Fprtu

iii. FY is stable under correspondences

iv. ' acts by id on Grz,CH" for n = 2r — v, 0 otherwise
v. FYCH"(X)gp =0 forv>>0.
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Murre’s conjecture implies the BB conjecture by taking the fil-
tration given in the statement of Murre's conjecture. In fact

Theorem (Jannsen) The two conjectures are equivalent, and
give the same filtrations.

Also: Assuming the Lefschetz-type conjectures B(X) for all X,
the condition (V) in BB is equivalent to F"TICH"(X) =0 i.e.

CH"(h""(X)) =0 for n < r.
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Saito’s filtration

Saito has defined a functorial filtration on the Chow groups,
without requiring any conjectures. This is done inductively:
FOCH" = CH", FICH" := ker(CH" — ZI | )@ and

hom

FYTPLICH™(X)g == Y Im(ps : FYCH™ ™ 5(Y)g — CH" (X))
Y,p,s

with the sum over all Y € SmProj/k, s € Z and p € ZW T5(Y x X)
such that the map

Wg(r—uop* : H*(Y) R HQT—I/(X)

is O.
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There is also a version with the Y restricted to lie in a subcate-
gory V closed under products and disjoint union.

The only problem with Saito’s filtration is the vanishing property:
That FYCH"(X) should be 0 for v >> 0. The other properties
for the filtration in the BB conjecture (2) are satisfied.
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Consequences of the BBM conjecture

We assume the BBM conjectures are true for the X € V, some
subset of SmProj/k closed under products and disjoint union.
Let M~ (V) denote the full tensor pseudo-abelian subcategory of
M~ (k) generated by the h(X)(r) for X €V, r € Z.

Lemma The kernel of CHM(V)g — NM(V)q is a nilpotent ®
ideal.
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The nilpotence comes from

1. ker(Homgagar(h(X)(r),6(Y)(s)) — Hompyp (H(X),5(Y)))
= FICHIX—T+s(X x Y)

2. FV.FH C FvTH

3. FYCH"(X?2) =0 for v >> 0.

The ® property is valid without using the filtration.

Proposition CHM(V)g — NM(V)q is conservative and essen-
tially surjective.

Indeed: ker C R
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Proposition Let X be a surface over C with ps = 0. The BBM
conjectures for X™ (all n) imply Bloch’s conjecture for X.

Proof. Recall the decomposition h(X) = ®ph™(X) and h2(X) =
1(—1)? ® t3(X), p = dimgH?(X,Q). We need to show that
CH2(t2(X)) = 0.

But b2, ., = baum = 1(—1)”, so ta,m = 0. By the proposition

2 = 0.
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Status

The BBM conjectures are valid for X of dimension < 2. For an
abelian variety A, one can decompose CHT(A)Q by the common
eigenspaces for the multiplication maps [m] : A — A This gives

CHT(X)@ = @iZOCH@) (A)

with [m] acting by xm! on CH?, )(A) for all m.

Beauville conjectures that CH7(“Z.)(A) = 0 for ¢ > 2r, which would
give a BBM filtration by

FYCH"(A)g = @77 0" CH{ (A).
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Nilpotence

We have seen how one can compare the categories of motives for
~>= if the kernel of 2 (X?2) — Z£(X?) is nilpotent. Voevodsky
has formalized this via the adequate equivalence relation ~gnj.



Definition A correspondence f € CH*(X x Y)p is smash nilpo-
tent if fx...x fe CH*(X"xY") is zero for some n.

Lemma The collection of smash nilpotent elements in CH*( X x
Y)p for X, Y € SmProj/k forms a tensor nil-ideal in Cor*(k)p.

Proof. For smash nilpotent f, and correspondences gq,...,9m,
the composition ggo fogjo...o fogm is formed from gg X f X
... X f X gnm by pulling back by diagonals and projecting. After
permuting the factors, we see that gog X f X ... X f X g, = 0 for
m >> 0. L]

Note. There is a 1-1 correspondence between tensor ideals
in Corat(k)r and adequate equivalence relations. Thus smash
nilpotence defines an adequate equivalence relation ~gpi.
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Corollary The functor CHM(k)r — Mgni(k)F is conservative
and a bijection on isomorphism classes.

The kernel Jgny of CHM (k) — Mgni(k)p is a nil-ideal, hence
contained in R.

Lemma ~®nil>~~hom

If aisin H*(X) then ax...xa € H*(X") is just a®" € (H*(X))®",
by the Kunneth formula.

Conjecture (Voevodsky) ~gnii=~num.

T his conjecture thus implies the standard conjecture ~pom=~num-
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As some evidence, VVoevodsky proves
Proposition If f ~440, then f ~gn) 0 (with Q-coefs).

By naturality, one reduces to showing a*" = 0 for a € CHp(C)geq0-
n >> 0, C' a curve.

Pick a point 0 € C(k), giving the decomposition h(C) = 1&H(C).
Since a has degree 0, this gives a map a : 1(—1) — §(O).

We view a*™ as a map a*" : 1(—n) — h(C)®", i.e. an element of
CH™(h(C)®™)q.
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a*™ is symmetric, so is in CH”(G(C)@)”)%” C CH™(h(C)®™)q

But

CH™(H(C))g" = CHo(Sym™C)g/CHo(Sym" 1C)q.

For n > 2g — 1 Sym™”C — Jac(C) and Sym™1C — Jac(C) are
projective space bundles, so the inclusion Sym”_lC — SymnC
induces an iso on CHy.
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Nilpotence and other conjectures
For X a surface, the nilpotence conjecture for X2 implies Bloch's
conjecture for X: The nilpotence conjecture implies that %n”(X) —

0, but then t3(X) = 0.

The BBM conjectures imply the nilpotence conjecture (O’'Sullivan).
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Finite dimensionality

Kimura and O’'Sullivan have introduced a new notion for pure
motives, that of finite dimensionality.



Multi-linear algebra in tensor categories

For vector spaces over a field F', one has the operations

V=AY, Vi—Sym"V

as well as the other Schur functors.

Define elements of Q[Sy] by

1
A=) sgn(g) g
n! <3,

A" and sym™ are idempotents in Q[Sy].
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Let S, act on V®F" py permuting the tensor factors. This makes
VOF" 3 Q[Sn] module (assume F has characteristic 0) and

A"V = AN (VM) Sym™V = sym™(V®N).

These operation extend to the abstract setting.

Let (C,®,7) be a pseudo-abelian tensor category (over Q). For
each object V of @, S,, acts on V®" with simple transpositions
acting by the symmetry isomorphisms .

Since € is pseudo-abelian, we can define

A"V =Im(A" : VE? — VET)
Sym”™V :=Im(sym™ : V& — y&n)
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Note. 1. Let C = GrVecy, and let f : GrVecyg — Vecy be the
functor ‘forget the grading”. If V has purely odd degree, then

fFSym"V) = A" f(V), fF(N"V) = Sym™ f(V')
If V has purely even degree, then

fSym"V) = sSym" f(V), f(N"V) = A" f(V).

2. Take C = Vec%o. Then V € € is finite dimensional & A"V =0
for some n.

3. Take C = GrVec%O. Then V € € is finite dimensional <
V=VTaV~ with A"WT =0 and Sym™”V~— = 0 for some n.
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Definition Let € be a pseudo-abelian tensor category over a
field ' of characteristic 0. Call M € C finite dimensional if M =
Mt @ M~ with

A"MT =0=Sym™M™

for some integers n,m > 0.

Proposition (Kimura, O’Sullivan) If M, N are finite dimen-
sional, then so are N M and N ® M.

The proof uses the extension of the operations A", Sym™ to all
Schur functors.
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Theorem (Kimura,O’Sullivan) Let C be a smooth projective
curve over k. Then h(C) € CHM((k)q is finite dimensional.

In fact

h(C)t = K2(C) @ H2(C), H(C)~ = h1(C) and
A0 (C) @ %(0)) = 0 = sym29Tihl(0).
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The proof that Sym29+1pl(C) = 0 is similar to the proof that
the nilpotence conjecture holds for algebraic equivalence: One
uses the structure of Sym¥¥C — Jac(C) as a projective space
bundle.

Corollary Let M be in the pseudo-abelian tensor subcategory
of CHM (k) generated by the h(C), as C runs over smooth
projective curves over k. Then M is finite dimensional.

For example h(A) is finite dimensional if A is an abelian variety.
H(S) is finite dimensional if S is a Kummer surface. h(Cyx...xCy)
is also finite dimensional.

It is not known if a general quartic surface S C P3 has finite
dimensional motive.
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Cconsequences

Theorem Suppose M is a finite dimensional Chow motive.
Then every f € HomCHM(k)Q(M, M) with H*(f) = 0 is nilpo-
tent. In particular, if H*(M) = 0 then M = 0.

Corollary Suppose h(X) is finite dimensional for a surface X.
Then Bloch's conjecture holds for X.

Indeed, h(X) finite dimensional implies h2(X) = 1(=1)? @ t3(X)
is evenly finite dimensional, so t2(X) is finite dimensional. But
t2.,(X) =0.
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Conjecture (Kimura, O’Sullivan) Each object of CHM (k)g
is finite dimensional.

Note. The nilpotence conjecture implies the finite dimensionality
conjecture.

In fact, let Ignil C Jhom C Inum be the various ideals in CHM (k).

Then Jgni C R (f smash nilpotent = f nilpotent). So the nilpo-
tence conjecture implies R = Jnhum.

Thus ¢ : CHM(k)g — NM(k)g = Mpom(k)q is conservative and
essentially surjective.
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Since ~pom=~num, the Kilnneth projectors are algebraic: we
can thus lift the decomposition hpom(X) = h;]"om(X) D b om (X)
to CHM (k).

Since ¢ is conservative, h(X) = hTX(X)@h~(X) is finite dimen-
sional:

AT (pH(x)) = 0 = Sym?” (D)L= (X)).
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