

SMR/1840-32

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Pure motives, II

Marc Levine Universitaet Duisburg-Essen, Germany

Pure motives: Part II

School on Algebraic *K*-theory and its applications ICTP-May 14-26, 2007

Marc Levine

Outline:

- Standard conjectures
- Decompositions of the diagonal
- Filtrations on the Chow ring
- Nilpotence conjecture
- Finite dimensionality

The standard conjectures

We would like to think of our functor

```
\mathfrak{h}: \mathbf{SmProj}/k^{\mathsf{op}} \to M_{\mathsf{hom}}(k)
```

as the "universal Weil cohomology". What is lacking:

• We have the "total cohomology" $\mathfrak{h}(X)$, we would like the individual cohomologies $\mathfrak{h}^r(X)$.

• Other "higher level" properties of cohomology are missing, e.g., Lefschetz theorems.

• $\sim_{\rm hom}$ could depend on the choice of Weil cohomology.

• $M_{\text{hom}}(k)$ is not a category of vector spaces, but it is at least pseudo-abelian. It would be nice if it were an abelian category.

Künneth projectors

Fix a Weil cohomology H^* and an $X \in \mathbf{SmProj}/k$. By the Künneth formula, we have

$$H^*(X \times X) = H^*(X) \otimes H^*(X)$$

SO

 $H^{2d_X}(X \times X)(d_X) = \bigoplus_{n=0}^{2d_X} H^n(X) \otimes H^{2d_X-n}(X)(d_X)$ By Poincaré duality, $H^{2d_X-n}(X)(d_X) = H^n(X)^{\vee}$, so

$$H^{2d_X}(X \times X)(d_X) = \bigoplus_{n=0}^{2d_X} H^n(X) \otimes H^n(X)^{\vee}$$

= $\bigoplus_{n=0}^{2d_X} \operatorname{Hom}_K(H^n(X), H^n(X)).$

$$H^{2d_X}(X \times X)(d_X) = \bigoplus_{n=0}^{2d_X} H^n(X) \otimes H^n(X)^{\vee}$$
$$= \bigoplus_{n=0}^{2d_X} \operatorname{Hom}_K(H^n(X), H^n(X)).$$

This identifies $H^{2d_X}(X \times X)(d_X)$ with the vector space of graded *K*-linear maps $f : H^*(X) \to H^*(X)$ and writes

$$\mathsf{id}_{H^*(X)} = \sum_{n=0}^{2d_X} \pi^n_{X,H}; \quad \pi^n_H \in H^n(X) \otimes H^n(X)^{\vee}.$$

The term

$$\pi^n_{X,H}: H^*(X) \to H^*(X)$$

is the projection on $H^n(X)$, called the *Künneth projector*

Since $id_{\mathfrak{h}_{hom}(X)}$ is represented by the diagonal $\Delta_X \in \mathbb{Z}^{d_X}(X \times X)$, we have

$$\gamma_{X,H}(\Delta_*) = \mathrm{id}_{H^*(X)} = \sum_n \pi^n_{X,H}$$

We can ask: are there correspondences $\pi_X^n \in \mathcal{Z}^{d_X}_{hom}(X \times X)_{\mathbb{Q}}$ with $\gamma_{X,H}(\pi_X^n) = \pi_{X,H}^n$.

Remarks 1. The $\pi_{X,H}^n$ are idempotent endomorphisms \Longrightarrow (X, π_X^n) defines a summand $\mathfrak{h}^n(X)$ of $\mathfrak{h}(X)$ in $M_{\text{hom}}^{\text{eff}}(k)_{\mathbb{O}}$.

2. If π_X^n exists, it is unique.

3. π_X^n exists iff $\mathfrak{h}_{hom}(X) = \mathfrak{h}^n(X) \oplus \mathfrak{h}(X)'$ in $M^{\text{eff}}(k)_{\mathbb{Q}}$ with $H^*(\mathfrak{h}^n(X)) \subset H^*(X)$ equal to $H^n(X)$.

If all the π_X^n exist:

$$\mathfrak{h}_{\mathsf{hom}}(X) = \oplus_{n=0}^{2d_X} \mathfrak{h}_{\mathsf{hom}}^n(X)$$

X has a *Künneth decomposition*.

Examples

1. The decomposition

$$\mathfrak{h}(\mathbb{P}^n) = \oplus_{r=0}^n \mathfrak{h}^{2r}(\mathbb{P}^n)$$

in $CHM^{\text{eff}}(k)$ maps to a Künneth decomposition of $\mathfrak{h}_{\text{hom}}(\mathbb{P}^n)$.

2. For a curve C, the decomposition (depending on a choice of $0 \in C(k)$)

 $\mathfrak{h}(C) = \mathfrak{h}^0(X) \oplus \mathfrak{h}^1(C) \oplus \mathfrak{h}^2(C); \quad \mathfrak{h}^0(C) \cong 1, \mathfrak{h}^2(C) \cong 1(-1),$ in $CHM^{\text{eff}}(k)$ maps to a Künneth decomposition of $\mathfrak{h}_{\text{hom}}(C).$

3. For each $X \in \mathbf{SmProj}/k$, a choice of a k-point gives factors

$$\mathfrak{h}^0(X) := (X, 0 \times X) \cong \mathbb{1}$$
$$\mathfrak{h}^{2d_X}(X) := (X, X \times 0) \cong \mathbb{1}(-d_X).$$

of $\mathfrak{h}(X)$. Using the Picard and Albanese varieties of X, one can also define factors $\mathfrak{h}^1(X)$ and $\mathfrak{h}^{2d-1}(X)$, so

$$\mathfrak{h}(X) = \mathfrak{h}^{0}(X) \oplus \mathfrak{h}^{1}(X) \oplus \mathfrak{h}(X)' \oplus \mathfrak{h}^{2d_{X}-1}(X) \oplus \mathfrak{h}^{2d_{X}}(X)$$

which maps to a partial Künneth decomposition in $M_{\text{hom}}^{\text{eff}}(k)_{\mathbb{Q}}$. For $d_X = 2$, this gives a full Künneth decomposition (Murre).

The Künneth conjecture

Conjecture (C(X)) The Künneth projectors $\pi_{X,H}^n$ are algebraic for all n:

$$\mathfrak{h}_{hom}(X) = \bigoplus_{n=0}^{2d_X} \mathfrak{h}_{hom}^n(X)$$

with $H^*(\mathfrak{h}_{hom}^n(X)) = H^n(X) \subset H^*(X).$

Consequence Let $a \in \mathbb{Z}^{d_X}(X \times X)_{\mathbb{O}}$ be a correspondence.

1. The characteristic polynomial of $H^n(a)$ on $H^n(X)$ has \mathbb{Q} -coefficients.

2. If $H^n(a) : H^n(X) \to H^n(X)$ is an automorphism, then $H^n(a)^{-1} = H^*(b)$ for some correspondence $b \in \mathbb{Z}^{d_X}(X \times X)_{\mathbb{O}}$.

Proof. (1) The Lefschetz trace formula gives $Tr(a^m)_{|H^n(X)} = (-1)^n \deg({}^ta^m \cdot \pi^n_X) \in \mathbb{Q}.$ But

$$\det(1 - ta_{|H^n(X)}) = \exp(-\sum_{m=1}^{\infty} \frac{1}{m} Tr(a_{H^n(X)}^m) t^m).$$

(2) By Cayley-Hamilton and (1), there is a $Q_n(t) \in \mathbb{Q}[t]$ with

$$H^{n}(a)^{-1} = Q_{n}(H^{n}(a))$$
$$= H^{n}(Q_{n}(a))$$
$$= H^{*}(Q_{n}(a)\pi_{X}^{n})$$

)

Status: C(X) is known for "geometrically cellular" varieties (\mathbb{P}^n , Grassmannians, flag varieties, quadrics, etc.), curves, surfaces and abelian varieties: For an abelian variety A, one has

$$\mathfrak{h}_{hom}^n(A) = \Lambda^n(\mathfrak{h}_{hom}^1(A)).$$

C(X) is true for all X if the base-field k is a finite field \mathbb{F}_q and $H^* = H^*_{\text{ét}}(-, \mathbb{Q}_{\ell})$:

Use the Weil conjectures to show that the characteristic polynomial $P_n(t)$ of Fr_X on $H^n(X, \mathbb{Q}_\ell)$ has \mathbb{Q} -coefficients and that $P_n(t)$ and $P_m(t)$ are relatively prime for $n \neq m$. Cayley-Hamilton and the Chinese remainder theorem yield polynomials $Q_n(t)$ with \mathbb{Q} -coefficients and

$$Q_n(Fr_X^*)_{|H^m(X)} = \delta_{n,m} \mathrm{id}_{H^m(X)}.$$

Then $\pi_X^n = Q_n({}^t\Gamma_{Fr_X}).$

The sign conjecture $C^+(X)$

This is a weak version of C(X), saying that $\pi_{X,H}^+ := \sum_{n=0}^{d_X} \pi_{X,H}^{2n}$ is algebraic. Equivalently, $\pi_{X,H}^- := \sum_{n=1}^{d_X} \pi_{X,H}^{2n-1}$ is algebraic.

 $C^+(X)$ for all X/k says that we can impose a $\mathbb{Z}/2$ -grading on $M_{\text{hom}}(k)_{\mathbb{Q}}$:

$$\mathfrak{h}_{\mathrm{hom}}(X) = \mathfrak{h}^+_{\mathrm{hom}}(X) \oplus \mathfrak{h}^-_{\mathrm{hom}}(X)$$

so that $H^*: M_{hom}(k)_{\mathbb{Q}} \to \operatorname{GrVec}_K$ defines

$$H^{\pm}: M_{\mathsf{hom}}(k)_{\mathbb{Q}} \to s \mathsf{Vec}_K$$

respecting the $\mathbb{Z}/2$ grading, where $s \operatorname{Vec}_K$ the tensor category of finite dimensional $\mathbb{Z}/2$ -graded K vector spaces.

Consequence Suppose $C^+(X)$ for all $X \in \operatorname{SmProj}/k$. Then $M_{\operatorname{hom}}(k)_{\mathbb{Q}} \to M_{\operatorname{num}}(k)_{\mathbb{Q}}$ is conservative and essentially surjective.

This follows from:

Lemma $C^+(X) \Longrightarrow$ the kernel of $\mathcal{Z}^{d_X}_{hom}(X \times X)_{\mathbb{Q}} \to \mathcal{Z}^{d_X}_{num}(X \times X)_{\mathbb{Q}}$ is a nil-ideal, hence ker $\subset \mathcal{R}$.

Proof. For $f \in ker$, $\deg(f^n \cdot \pi_X^+) = \deg(f^n \cdot \pi_X^-) = 0$. By Lefschetz $Tr(\gamma(f^n)_{|H^+(X)}) = Tr(\gamma(f^n)_{|H^-(X)}) = 0$

Thus $\gamma(f)_{|H^*(X)}$ has characteristic polynomial t^N , $N = \dim H^*(X)$.

Remark. André and Kahn use the fact that the kernel of $M_{\text{hom}}(k)_{\mathbb{Q}} \to M_{\text{num}}(k)_{\mathbb{Q}}$ is a \otimes nilpotent ideal to define a canonical \otimes functor $M_{\text{num}}(k)_{\mathbb{Q}} \to M_{\text{hom}}(k)_{\mathbb{Q}}$. This allows one to define the "homological realization" for $M_{\text{num}}(k)_{\mathbb{Q}}$.

The Lefschetz theorem

Take a smooth projective X over k with an embedding $X \subset \mathbb{P}^N$. Let $i: Y \hookrightarrow X$ be a smooth hyperplane section.

For a Weil cohomology H^* , this gives the operator

$$L: H^*(X) \to H^{*-2}(X)(-1)$$

$$L(x) := i_*(i^*(x)) = \gamma([Y]) \cup x$$

L lifts to the correspondence $Y \times X \subset X \times X$.

The strong Leschetz theorem is

Theorem For H^* a "classical" Weil cohomology and $i \le d_X$ $L^{d_X-i}: H^i(X) \to H^{2d_X-i}(X)(d_X-i)$

is an isomorphism.

The conjecture of Lefschetz type

Let $*_{L,X}$ be the involution of $\oplus_{i,r}H^i(X)(r)$:

$$*_{L,X}$$
 on $H^{i}(X)(r) := \begin{cases} L^{d_{X}-i} & \text{for } 0 \le i \le d_{X} \\ (L^{i-d_{X}})^{-1} & \text{for } d_{X} < i \le 2d_{X}. \end{cases}$

Conjecture (B(X)) The Lefschetz involution $*_{L,X}$ is algebraic: there is a correspondence $\alpha_{L,X} \in \mathbb{Z}^*(X \times X)_{\mathbb{Q}}$ with $\gamma(\alpha) = *_{L,X}$

Status

B(X) is known for curves, and for abelian varieties (Kleiman-Grothendieck). For abelian varieties Lieberman showed that the operator Λ (related to the inverse of L) is given by Pontryagin product (translation) with a rational multiple of $Y^{(d-1)}$.

Homological and numerical equivalence

Conjecture (D(X)) $\mathcal{Z}^*_{hom}(X)_{\mathbb{Q}} = \mathcal{Z}^*_{num}(X)_{\mathbb{Q}}$

Proposition For $X \in \operatorname{SmProj}/k$, $D(X^2) \Longrightarrow \operatorname{End}_{M_{\operatorname{hom}}(k)_{\mathbb{Q}}}(\mathfrak{h}(X))$ is semi-simple.

 $D(X^2) \Longrightarrow \operatorname{End}_{M_{\operatorname{hom}}(k)_{\mathbb{Q}}}(\mathfrak{h}(X)) = \operatorname{End}_{M_{\operatorname{num}}(k)_{\mathbb{Q}}}(\mathfrak{h}(X)),$ which is semi-simple by Jannsen's theorem.

Similarly, Jannsen's theorem shows:

Proposition If D(X) is true for all $X \in \text{SmProj}/k$, then H^* : $M_{\text{hom}}(k)_F \to \text{GrVec}_K$ is conservative and exact. In fact: $D(X^2) \Longrightarrow B(X) \Longrightarrow C(X)$.

Thus, if we know that hom = num (with \mathbb{Q} -coefficients) we have our universal cohomology of smooth projective varieties

 $\mathfrak{h} = \oplus_i \mathfrak{h}^i : \mathbf{SmProj}(k)^{\mathsf{op}} \to NM(k)_{\mathbb{Q}}$

with values in the semi-simple abelian category $NM(k)_{\mathbb{O}}$.

Also, for $H^* =$ Betti cohomology, $B(X) \Longrightarrow D(X)$, so it would suffice to prove the conjecture of Lefschetz type.

D(X) is known in codimension 0, d_X and for codimension 1 (Matsusaka's thm). In characteristic 0, also for codimension 2, $d_X - 1$ and for abelian varieties (Lieberman).

Decompositions of the diagonal

We look at analogs of the Künneth projectors for $CHM(k)_{\mathbb{Q}}$.

First look at two basic properties of the Chow groups.

Localization

Theorem Let $i: W \to X$ be a closed immersion, $j: U \to X$ the complement. Then

$$\mathsf{CH}_r(W) \xrightarrow{i_*} \mathsf{CH}_r(X) \xrightarrow{j^*} \mathsf{CH}_r(U) \to 0$$

is exact.

Proof.

$$0 \to \mathcal{Z}_r(W) \xrightarrow{i_*} \mathcal{Z}_r(X) \xrightarrow{j^*} \mathcal{Z}_r(U) \to 0$$

is exact: Look at the basis given by subvarieties. At $\mathcal{Z}_r(U)$ take the closure to lift to $\mathcal{Z}_r(X)$. At $\mathcal{Z}_r(X)$ $j^{-1}(Z) = \emptyset$ means $Z \subset W$.

Do the same for $W \times \mathbb{P}^1 \subset X \times \mathbb{P}^1$ and use the snake lemma. \Box

Continuity

Proposition Let t: Spec $(L) \to T$ be a geometric generic point and take $X \in \operatorname{Sch}_k$ equi-dimensional. If $\eta \in \operatorname{CH}^r(X \times T)_{\mathbb{Q}} \mapsto 0 \in$ $\operatorname{CH}^r(X_t)_{\mathbb{Q}}$, then there is a Zariski open subset of T containing the image of t such that $\eta \mapsto 0 \in \operatorname{CH}^r(X \times U)$.

$$\eta_t = 0 \Rightarrow \eta_K = 0$$
 for some $K/k(T)$ finite, Galois.

But
$$\operatorname{CH}^{r}(X_{K})^{\operatorname{Gal}}_{\mathbb{Q}} = \operatorname{CH}^{r}(X_{k(X)})_{\mathbb{Q}} \Rightarrow \eta_{k(X)} = 0 \in \operatorname{CH}^{r}(X_{k(X)})_{\mathbb{Q}}$$
.

But $\operatorname{CH}^{r}(X_{k(X)}) = \lim_{\emptyset \neq U \subset T} \operatorname{CH}^{r}(X \times U).$

Note. This result is *false* for other \sim , e.g. \sim_{hom} , \sim_{alg} .

The first component

Proposition (Bloch) $X \in \operatorname{SmProj}/k$. Suppose $\operatorname{CH}_0(X_{\overline{L}})_{\mathbb{Q}} = \mathbb{Q}$ (by degree) for all finitely generated field extensions $L \supset k$. Then

 $\Delta_X \sim_{\mathsf{rat}} X \times 0 + \rho$

with $\rho \in \mathbb{Z}^{d_X}(X \times X)$ supported in $D \times X$ for some divisor $D \subset X$ and $0 \in CH_0(X)_{\mathbb{O}}$ any degree 1 cycle. **Proof.** Let $i : \eta \to X$ be a geometric generic point. Then $i^*(X \times 0)$ and $i^*(\Delta_X)$ are in $CH_0(X_{k(\eta)})$ and both have degree 1. Thus

$$(i \times id)^*(X \times 0) = (i \times id)^*(\Delta_X)$$
 in $CH_0(X_{k(\eta)})_{\mathbb{Q}}$

By continuity, there is a dense open subscheme $j: U \hookrightarrow X$ with

$$(j \times \mathrm{id})^*(X \times 0) = (j \times \mathrm{id})^*(\Delta_X^*)$$
 in $\mathrm{CH}_0(U \times X)_{\mathbb{Q}}$

By localization there is a $\tau \in \mathcal{Z}_{d_X}(D \times X)$ for $D = X \setminus U$ with

$$\Delta_X - X \times \mathbf{0} = (i_{D*} \times \mathrm{id})_*(\tau) =: \rho.$$

Mumford's theorem Take $k = \overline{k}$. Each X in SmProj/k has an associated Albanese variety Alb(X). A choice of $0 \in X(k)$ gives a morphism $\alpha_X : X \to Alb(X)$ sending 0 to 0, which is universal for pointed morphisms to abelian varieties.

Extending by linearity and noting $Alb(X \times \mathbb{P}^1) = Alb(X)$ gives a canonical map

$$\alpha_X : CH_0(X)_{deg 0} \to Alb(X)$$

Theorem (Mumford) *X*: smooth projective surface over \mathbb{C} . If $H^0(X, \Omega^2) \neq 0$, then the Albanese map $\alpha_X : CH_0(X)_{deg 0} \rightarrow Alb(X)$ has "infinite dimensional" kernel.

Here is Bloch's motivic proof (we simplify: assume Alb(X) = 0, and show only that $CH_0(X)_{\mathbb{Q}}$ is not \mathbb{Q}).

Since \mathbb{C} has infinite transcendence degree over \mathbb{Q} , $CH_0(X)_{\mathbb{Q}} = \mathbb{Q}$ implies $CH_0(X_{\overline{L}})_{\mathbb{Q}} = \mathbb{Q}$ for all finitely generated fields L/\mathbb{C} .

Apply Bloch's decomposition theorem: $\Delta_X \sim_{rat} X \times 0 + \rho$. Since

$$H^0(X,\Omega^2) = H^0(X \times \mathbb{P}^1,\Omega^2)$$

 $\Delta_{X*} = (X \times 0)_* + \rho_* \text{ on 2-forms.}$

If $\omega \in H^0(X, \Omega^2)$ is a two form, then

$$\omega = \Delta_*(\omega) = (X \times 0)_*(\omega) + \rho_*(\omega) = 0$$

 $(X \times 0)_*(\omega)$ is 0 on $X \setminus \{0\}$. $\rho_*(\omega)$ factors through the restriction $\omega_{|D}$. *D* is a curve, so $\omega_{|D} = 0$.

Jannsen's surjectivity theorem

Theorem (Jannsen) Take $X \in \mathbf{SmProj}/\mathbb{C}$. Suppose the cycleclass map

$$\gamma^r : \operatorname{CH}^r(X)_{\mathbb{Q}} \to H^{2r}(X(\mathbb{C}), \mathbb{Q})$$

is injective for all r. Then $\gamma^* : CH^*(X) \to H^*(X, \mathbb{Q})$ is surjective, in particular $H^{odd}(X, \mathbb{Q}) = 0$.

Corollary If $\gamma^* : CH^*(X)_{\mathbb{Q}} \to H^*(X(\mathbb{C}), \mathbb{Q})$ is injective, then the Hodge spaces $H^{p,q}(X)$ vanish for $p \neq q$.

Compare with Mumford's theorem: if X is a surface and $CH_0(X)_{\mathbb{Q}} = \mathbb{Q}$, then $H^{2,0}(X) = H^{0,2}(X) = 0$.

Note. The proof shows that the injectivity assumption yields a full decomposition of the diagonal

$$\Delta_X = \sum_{i=0}^{d_X} \sum_{j=1}^{n_i} a^{ij} \times b_{ij} \text{ in } CH^{d_X}(X \times X)_{\mathbb{Q}}$$

with $a^{ij} \in \mathcal{Z}^i(X)_{\mathbb{Q}}$, $b_{ij} \in \mathcal{Z}_i(X)_{\mathbb{Q}}$. Applying Δ_{X*} to a cohomology class $\eta \in H^r(X, \mathbb{Q})$ gives

$$\eta = \Delta_{X*}(\eta) = \sum_{ij} Tr(\eta \cup \gamma(a^{ij})) \times \gamma(b_{ij})$$

This is 0 if r is odd, and is in the Q-span of the $\gamma(b_{ij})$ for $r = 2d_X - 2i$.

Conversley, a decomposition of Δ_X as above yields

$$\mathfrak{h}(X)_{\mathbb{Q}} \cong \sum_{i=0}^{d_X} \mathbb{1}(-i)_{\mathbb{Q}}^{n_i} \text{ in } CHM(\mathbb{C})_{\mathbb{Q}}$$

which implies $CH_i(X)_{\mathbb{Q}}$ is the \mathbb{Q} -span of the b_{ij} and that γ^* is an isomorphism.

Proof. Show by induction that

$$\Delta_X = \sum_{i=0}^r \sum_{j=1}^{n_i} a^{ij} \times b_{ij} + \rho^r \text{ in } CH^{d_X}(X \times X)_{\mathbb{Q}}$$

with $a^{ij} \in \mathcal{Z}^i(X)_{\mathbb{Q}}$, $b_{ij} \in \mathcal{Z}_i(X)_{\mathbb{Q}}$ and ρ^r supported on $Z^r \times X$, $Z^r \subset X$ a closed subset of codimension r + 1.

The case r = 0 is Bloch's decomposition theorem, since $H^{2d_X}(X, \mathbb{Q}) = \mathbb{Q}$.

To go from r to r + 1: ρ^r has dimension d_X . Think of $\rho^r \to Z^r$ as a family of codimension $d_X - r - 1$ cycles on X, parametrized by Z^r (at least over some dense open subschemeof Z^r):

$$z \mapsto \rho^r(z) \in \mathsf{CH}^{d-r-1}(X)_{\mathbb{Q}} \xrightarrow{\gamma} \to H^{2d-2r-2}(X,\mathbb{Q})$$

For each component Z_i of Z, fix one point z_i . Then

$$\rho^r - \sum_i Z_i \times \rho^r(z_i)$$

goes to zero in $H^{2d-2r-2}(X, \mathbb{Q})$ at each geometric generic point of Z^r . Thus the cycle goes to zero in $CH^{d-r-1}(X_{k(\eta_j)})$ for each generic point $\eta_j \in Z^r$. By continuity, there is a dense open $U \subset Z^r$ with

$$(\rho^r - \sum_i Z_i \times \rho^r(z_i)) \cap U \times X = 0 \text{ in } CH^{d_X}(U \times X)_{\mathbb{Q}}$$

By localization

$$\rho^{r} = \sum_{i} Z_{i} \times \rho^{r}(z_{i}) + \rho^{r+1} \in \mathsf{CH}^{*}(Z^{r} \times X)_{\mathbb{Q}}$$

with ρ^{r+1} supported in $Z^{r+1} \times X$, $Z^{r+1} = X \setminus U$.

Combining with the identity for r gives

$$\Delta_X = \sum_{i=0}^{r+1} \sum_{j=1}^{n_i} a^{ij} \times b_{ij} + \rho^r \text{ in } CH^{d_X}(X \times X)_{\mathbb{Q}}$$

Esnault's theorem

Theorem (Esnault) Let X be a smooth Fano variety over a finite field \mathbb{F}_q . Then X has an \mathbb{F}_q -rational point.

Recall: X is a Fano variety if $-K_X$ is ample.

Proof. Kollár shows that X Fano $\implies X_{\overline{k}}$ is rationally connected (each two points are connected by a chain of rational curves).

Thus $CH_0(X_L)_{\mathbb{Q}} = \mathbb{Q}$ for all $L \supset \overline{\mathbb{F}}_q$. Now use Bloch's decomposition (transposed):

$$\Delta_{\bar{X}} = \mathbf{0} \times \bar{X} + \rho$$

 $0 \in X(\overline{\mathbb{F}}_q)$, ρ supported on $\overline{X} \times D$.

Thus $H^n_{\text{ét}}(\bar{X}, \mathbb{Q}_{\ell}) \to H^n_{\text{ét}}(\bar{X} \setminus D, \mathbb{Q}_{\ell})$ is the zero map for all $n \ge 1$.

Purity of étale cohomology \implies EV of Fr_X on $H^n_{\text{ét}}(\bar{X}, \mathbb{Q}_\ell)$ are divisible by q for $n \ge 1$.

Lefschetz fixed point formula \Longrightarrow

$$\#X(\mathbb{F}_q) = \sum_{n=0}^{2d_X} (-1)^n Tr(Fr_{X|H^n_{\text{ét}}(\bar{X},\mathbb{Q})}) \equiv 1 \mod q$$

Bloch's conjecture

Conjecture Let X be a smooth projective surface over \mathbb{C} with $H^0(X, \Omega^2) = 0$. Then the Albanese map

$$\alpha_X : \mathsf{CH}_0(X) \to \mathsf{Alb}(X)$$

is an isomorphism.

This is known for surfaces *not* of general type (K_X ample) by Bloch-Kas-Lieberman, and for many examples of surfaces of general type.

Roitman has shown that α_X is an isomorphism on the torsion subgroups for arbitrary smooth projective X over \mathbb{C} .

A motivic viewpoint

Since X is a surface, we have Murre's decomposition of $\mathfrak{h}_{rat}(X)_{\mathbb{Q}}$: $\mathfrak{h}(X)_{\mathbb{Q}} = \bigoplus_{i=0}^{4} \mathfrak{h}^{i}(X)_{\mathbb{Q}} \cong 1 \oplus \mathfrak{h}^{1} \oplus \mathfrak{h}^{2} \oplus \mathfrak{h}^{1}(-1) \oplus 1(-2).$ Murre defined a filtration of $CH^{2}(X)_{\mathbb{Q}}$: $F^{0} := CH^{2}(X)_{\mathbb{Q}} \subset F^{1} = CH^{2}(X)_{\mathbb{Q} \deg 0} \supset F^{2} := \ker \alpha_{X} \supset F^{3} = 0$

and showed

 $F^{2} = CH^{2}(\mathfrak{h}^{2}(X)), gr_{F}^{1} = CH^{2}(\mathfrak{h}^{3}(X)), gr_{F}^{0} = CH^{2}(\mathfrak{h}^{4}(X))$ $CH^{2}(\mathfrak{h}^{i}(X)) = 0 \text{ for } i = 0, 1.$

Suppose $p_g = 0$. Choose representatives $z_i \in CH^1(X)$ for $\mathcal{Z}^1_{num}(X)_{\mathbb{Q}} = H^2(X, \mathbb{Q})(1)$.

Since $CH^1(X) = Hom_{CHM}(\mathbb{1}(-1), \mathfrak{h}(X))$, we can use the z_i to lift $\mathfrak{h}^2_{num}(X) = \mathbb{1}(-1)^{\rho}$ to a direct factor of $\mathfrak{h}^2(X)_{\mathbb{Q}}$:

$$\mathfrak{h}^2(X)_{\mathbb{Q}} = \mathbb{1}(-1)^{\rho} \oplus \mathfrak{t}^2$$

with $\mathfrak{t}_{\operatorname{num}}^2(X) = 0$.

$$CH^{2}(1(-1)) := Hom_{CHM(k)}(1(-2), 1(-1)) = CH^{1}(Spec k) = 0.$$

So Bloch's conjecture is:

$$\mathsf{CH}^2(\mathfrak{t}^2(X)) = 0.$$

Filtrations on the Chow ring

We have seen that a lifting of the Künneth decomposition in $\mathcal{Z}^*_{num}(X^2)_{\mathbb{Q}}$ to a sum of products in $CH^*(X^2)_{\mathbb{Q}}$ imposes strong restrictions on X. However, one can still ask for a lifting of the Künneth projectors π^n_X (assuming C(X)) to a mutually orthogonal decomposition of Δ_X in $CH^*(X^2)_{\mathbb{Q}}$.

This leads to an interesting filtration on $CH^*(X)_{\mathbb{Q}}$, generalizing the situation for dimension 2.

Murre's conjecture

Conjecture (Murre) For all $X \in \text{SmProj}/k$:

1. the Künneth projectors π_X^n are algebraic.

2. There are lifts Π_X^n of π_X^n to $\operatorname{CH}^{d_X}(X^2)_{\mathbb{Q}}$ such that i. the Π_X^n are mutually orthogonal idempotents with $\sum_n \Pi_X^n = 1$. ii. Π_X^n acts by 0 on $\operatorname{CH}^r(X)_{\mathbb{Q}}$ for n > 2riii. the filtration

$$F^{\nu}\mathsf{CH}^{r}(X)_{\mathbb{Q}} := \cap_{n > 2r - \nu} \ker \Pi^{n}_{X}$$

is independent of the choice of lifting iv. $F^1 CH^*(X)_{\mathbb{Q}} = \ker(CH^*(X)_{\mathbb{Q}} \to \mathcal{Z}^r_{hom}(X)_{\mathbb{Q}}).$ In terms of a motivic decomposition, this is the same as:

1. $\mathfrak{h}_{hom}(X)$ has a Künneth decomposition in $M_{hom}(k)_{\mathbb{Q}}$:

$$\mathfrak{h}_{\mathsf{hom}}(X) = \oplus_{n=0}^{2d_X} \mathfrak{h}_{\mathsf{num}}^n(X)$$

2. This decomposition lifts to a decomposition in $CHM(k)_{\mathbb{Q}}$:

$$\mathfrak{h}(X) = \oplus_{n=0}^{2d_X} \mathfrak{h}^n(X)$$

such that

ii. $CH^r(\mathfrak{h}^n(X)) = 0$ for n > 2riii. the filtration

$$F^{\nu}\mathsf{CH}^{r}(X)_{\mathbb{Q}} = \sum_{n \leq 2r-\nu} \mathsf{CH}^{r}(\mathfrak{h}^{n}(X))$$

is independent of the lifting.

iv. $CH^r(\mathfrak{h}^{2r}(X)) = \mathcal{Z}^r_{hom}(X)_{\mathbb{Q}}.$

The Bloch-Beilinson conjecture

Conjecture For all $X \in \mathbf{SmProj}/k$:

1. the Künneth projectors π_X^n are algebraic.

2. For each $r \ge 0$ there is a filtration $F^{\nu}CH^{r}(X)_{\mathbb{Q}}$, $\nu \ge 0$ such that

i.
$$F^{0} = CH^{r}$$
, $F^{1} = \ker(CH^{r} \rightarrow \mathcal{Z}_{hom}^{r})$
ii. $F^{\nu} \cdot F^{\mu} \subset F^{\nu+\mu}$
iii. F^{ν} is stable under correspondences
iv. π_{X}^{n} acts by id on $Gr_{F}^{\nu}CH^{r}$ for $n = 2r - \nu$, 0 otherwise
 ν . $F^{\nu}CH^{r}(X)_{\mathbb{Q}} = 0$ for $\nu >> 0$.

Murre's conjecture implies the BB conjecture by taking the filtration given in the statement of Murre's conjecture. In fact

Theorem (Jannsen) The two conjectures are equivalent, and give the same filtrations.

Also: Assuming the Lefschetz-type conjectures B(X) for all X, the condition (v) in BB is equivalent to $F^{r+1}CH^r(X) = 0$ i.e.

 $CH^r(\mathfrak{h}^n(X)) = 0$ for n < r.

Saito's filtration

Saito has defined a functorial filtration on the Chow groups, without requiring any conjectures. This is done inductively: $F^0 CH^r = CH^r$, $F^1 CH^r := \ker(CH^r \to \mathcal{Z}^r_{hom})_{\mathbb{Q}}$ and

$$F^{\nu+1}\mathsf{CH}^{r}(X)_{\mathbb{Q}} := \sum_{Y,\rho,s} \operatorname{Im}(\rho_{*}: F^{\nu}\mathsf{CH}^{r-s}(Y)_{\mathbb{Q}} \to \mathsf{CH}^{r}(X)_{\mathbb{Q}})$$

with the sum over all $Y \in \mathbf{SmProj}/k$, $s \in \mathbb{Z}$ and $\rho \in \mathbb{Z}^{d_Y+s}(Y \times X)$ such that the map

$$\pi_X^{2r-\nu} \circ \rho_* : H^*(Y) \to H^{2r-\nu}(X)$$

is 0.

There is also a version with the Y restricted to lie in a subcategory \mathcal{V} closed under products and disjoint union.

The only problem with Saito's filtration is the vanishing property: That $F^{\nu}CH^{r}(X)$ should be 0 for $\nu >> 0$. The other properties for the filtration in the BB conjecture (2) are satisfied.

Consequences of the BBM conjecture

We assume the BBM conjectures are true for the $X \in \mathcal{V}$, some subset of SmProj/k closed under products and disjoint union. Let $M_{\sim}(\mathcal{V})$ denote the full tensor pseudo-abelian subcategory of $M_{\sim}(k)$ generated by the $\mathfrak{h}(X)(r)$ for $X \in \mathcal{V}$, $r \in \mathbb{Z}$.

Lemma The kernel of $CHM(\mathcal{V})_{\mathbb{Q}} \to NM(\mathcal{V})_{\mathbb{Q}}$ is a nilpotent \otimes ideal.

The nilpotence comes from

- 1. ker(Hom_{CHM}($\mathfrak{h}(X)(r), \mathfrak{h}(Y)(s)$) \rightarrow Hom_{NM}($\mathfrak{h}(X), \mathfrak{h}(Y)$)) = $F^1 CH^{d_X - r + s}(X \times Y)$
- 2. $F^{\nu} \cdot F^{\mu} \subset F^{\nu+\mu}$

3.
$$F^{\nu}CH^{r}(X^{2}) = 0$$
 for $\nu >> 0$.

The \otimes property is valid without using the filtration.

Proposition $CHM(\mathcal{V})_{\mathbb{Q}} \to NM(\mathcal{V})_{\mathbb{Q}}$ is conservative and essentially surjective.

Indeed: ker $\subset \mathcal{R}$

Proposition Let X be a surface over \mathbb{C} with $p_g = 0$. The BBM conjectures for X^n (all n) imply Bloch's conjecture for X.

Proof. Recall the decomposition $\mathfrak{h}(X) = \bigoplus_n \mathfrak{h}^n(X)$ and $\mathfrak{h}^2(X) = \mathbb{1}(-1)^{\rho} \oplus \mathfrak{t}^2(X), \ \rho = \dim_{\mathbb{Q}} H^2(X, \mathbb{Q})$. We need to show that $CH^2(\mathfrak{t}^2(X)) = 0$.

But $\mathfrak{h}_{hom}^2 = \mathfrak{h}_{num}^2 = \mathbb{1}(-1)^{\rho}$, so $\mathfrak{t}_{num}^2 = 0$. By the proposition $\mathfrak{t}^2 = 0$.

Status

The BBM conjectures are valid for X of dimension ≤ 2 . For an abelian variety A, one can decompose $CH^r(A)_{\mathbb{Q}}$ by the common eigenspaces for the multiplication maps $[m] : A \to A$ This gives

$$\mathsf{CH}^{r}(X)_{\mathbb{Q}} = \oplus_{i \ge 0} \mathsf{CH}^{r}_{(i)}(A)$$

with [m] acting by $\times m^i$ on $CH^r_{(i)}(A)$ for all m.

Beauville conjectures that $CH_{(i)}^r(A) = 0$ for i > 2r, which would give a BBM filtration by

$$F^{\nu} \mathsf{CH}^{r}(A)_{\mathbb{Q}} = \bigoplus_{i=0}^{2r-\nu} \mathsf{CH}^{r}_{(i)}(A).$$

Nilpotence

We have seen how one can compare the categories of motives for $\sim \succ \approx$ if the kernel of $\mathcal{Z}^*_{\sim}(X^2) \to \mathcal{Z}^*_{\approx}(X^2)$ is nilpotent. Voevodsky has formalized this via the adequate equivalence relation $\sim_{\otimes \text{nil}}$.

Definition A correspondence $f \in CH^*(X \times Y)_F$ is *smash nilpotent* if $f \times \ldots \times f \in CH^*(X^n \times Y^n)$ is zero for some n.

Lemma The collection of smash nilpotent elements in $CH^*(X \times Y)_F$ for $X, Y \in SmProj/k$ forms a tensor nil-ideal in $Cor^*(k)_F$.

Proof. For smash nilpotent f, and correspondences g_0, \ldots, g_m , the composition $g_0 \circ f \circ g_1 \circ \ldots \circ f \circ g_m$ is formed from $g_0 \times f \times \ldots \times f \times g_m$ by pulling back by diagonals and projecting. After permuting the factors, we see that $g_0 \times f \times \ldots \times f \times g_m = 0$ for m >> 0.

Note. There is a 1-1 correspondence between tensor ideals in $\text{Cor}_{rat}(k)_F$ and adequate equivalence relations. Thus smash nilpotence defines an adequate equivalence relation $\sim_{\otimes nil}$.

Corollary The functor $CHM(k)_F \to M_{\otimes nil}(k)_F$ is conservative and a bijection on isomorphism classes.

The kernel $\mathcal{I}_{\otimes \text{nil}}$ of $CHM(k)_F \to M_{\otimes \text{nil}}(k)_F$ is a nil-ideal, hence contained in \mathfrak{R} .

Lemma ~_{⊗nil}≻~_{hom}

If a is in $H^*(X)$ then $a \times \ldots \times a \in H^*(X^r)$ is just $a^{\otimes r} \in (H^*(X))^{\otimes r}$, by the Künneth formula.

Conjecture (Voevodsky) $\sim_{\otimes nil} = \sim_{num}$.

This conjecture thus implies the standard conjecture $\sim_{hom} = \sim_{num}$.

As some evidence, Voevodsky proves

Proposition If $f \sim_{\text{alg}} 0$, then $f \sim_{\otimes \text{nil}} 0$ (with \mathbb{Q} -coefs).

By naturality, one reduces to showing $a^{\times n} = 0$ for $a \in CH_0(C)_{\deg 0}$, $n \gg 0$, C a curve.

Pick a point $0 \in C(k)$, giving the decomposition $\mathfrak{h}(C) = \mathbb{1} \oplus \tilde{\mathfrak{h}}(C)$. Since *a* has degree 0, this gives a map $a : \mathbb{1}(-1) \to \tilde{\mathfrak{h}}(C)$.

We view $a^{\times n}$ as a map $a^{\times n} : \mathbb{1}(-n) \to \tilde{\mathfrak{h}}(C)^{\otimes n}$, i.e. an element of $CH^n(\tilde{\mathfrak{h}}(C)^{\otimes n})_{\mathbb{Q}}$.

 $a^{\times n}$ is symmetric, so is in $CH^n(\tilde{\mathfrak{h}}(C)^{\otimes n})^{S_n}_{\mathbb{Q}} \subset CH^n(\tilde{\mathfrak{h}}(C)^{\otimes n})_{\mathbb{Q}}$

But

$$\mathsf{CH}^{n}(\tilde{\mathfrak{h}}(C))_{\mathbb{Q}}^{S_{n}} = \mathsf{CH}_{0}(\mathsf{Sym}^{n}C)_{\mathbb{Q}}/\mathsf{CH}_{0}(\mathsf{Sym}^{n-1}C)_{\mathbb{Q}}.$$

For n > 2g - 1 Symⁿ $C \rightarrow Jac(C)$ and Symⁿ⁻¹ $C \rightarrow Jac(C)$ are projective space bundles, so the inclusion Symⁿ⁻¹ $C \rightarrow$ SymⁿC induces an iso on CH₀.

Nilpotence and other conjectures

For X a surface, the nilpotence conjecture for X^2 implies Bloch's conjecture for X: The nilpotence conjecture implies that $\mathfrak{t}^2_{\otimes \operatorname{nil}}(X) = 0$, but then $\mathfrak{t}^2(X) = 0$.

The BBM conjectures imply the nilpotence conjecture (O'Sullivan).

Finite dimensionality

Kimura and O'Sullivan have introduced a new notion for pure motives, that of finite dimensionality.

Multi-linear algebra in tensor categories

For vector spaces over a field F, one has the operations

$$V \mapsto \Lambda^n V, V \mapsto \operatorname{Sym}^n V$$

as well as the other Schur functors.

Define elements of $\mathbb{Q}[S_n]$ by

$$\lambda^{n} := \frac{1}{n!} \sum_{g \in S_{n}} \operatorname{sgn}(g) \cdot g$$
$$\operatorname{sym}^{n} := \frac{1}{n!} \sum_{g \in S_{n}} g$$

 λ^n and symⁿ are idempotents in $\mathbb{Q}[S_n]$.

Let S_n act on $V^{\otimes_F n}$ by permuting the tensor factors. This makes $V^{\otimes_F n}$ a $\mathbb{Q}[S_n]$ module (assume F has characteristic 0) and

$$\Lambda^n V = \lambda^n (V^{\otimes n}), \operatorname{Sym}^n V = \operatorname{sym}^n (V^{\otimes n}).$$

These operation extend to the abstract setting.

Let $(\mathcal{C}, \otimes, \tau)$ be a pseudo-abelian tensor category (over \mathbb{Q}). For each object V of \mathcal{C} , S_n acts on $V^{\otimes n}$ with simple transpositions acting by the symmetry isomorphisms τ .

Since C is pseudo-abelian, we can define

$$\Lambda^{n}V := \operatorname{Im}(\lambda^{n} : V^{\otimes n} \to V^{\otimes n})$$

SymⁿV := Im(symⁿ : V^{\otimes n} \to V^{\otimes n})

Note. 1. Let $\mathcal{C} = \text{GrVec}_F$, and let $f : \text{GrVec}_K \to \text{Vec}_K$ be the functor "forget the grading". If V has purely odd degree, then

$$f(\operatorname{Sym}^{n}V) \cong \Lambda^{n}f(V), f(\Lambda^{n}V) = \operatorname{Sym}^{n}f(V)$$

If V has purely even degree, then

$$f(\operatorname{Sym}^{n}V) \cong \operatorname{Sym}^{n}f(V), f(\Lambda^{n}V) = \Lambda^{n}f(V).$$

2. Take $\mathcal{C} = \operatorname{Vec}_{K}^{\infty}$. Then $V \in \mathcal{C}$ is finite dimensional $\Leftrightarrow \Lambda^{n}V = 0$ for some n.

3. Take $\mathcal{C} = \text{GrVec}_K^{\infty}$. Then $V \in \mathcal{C}$ is finite dimensional $\Leftrightarrow V = V^+ \oplus V^-$ with $\Lambda^n V^+ = 0$ and $\text{Sym}^n V^- = 0$ for some n.

Definition Let \mathcal{C} be a pseudo-abelian tensor category over a field F of characteristic 0. Call $M \in \mathcal{C}$ finite dimensional if $M \cong M^+ \oplus M^-$ with

$$\Lambda^n M^+ = 0 = \operatorname{Sym}^m M^-$$

for some integers n, m > 0.

Proposition (Kimura, O'Sullivan) If M, N are finite dimensional, then so are $N \oplus M$ and $N \otimes M$.

The proof uses the extension of the operations Λ^n , Symⁿ to all Schur functors.

Theorem (Kimura,O'Sullivan) Let C be a smooth projective curve over k. Then $\mathfrak{h}(C) \in CHM(k)_{\mathbb{Q}}$ is finite dimensional.

In fact

$$\mathfrak{h}(C)^+ = \mathfrak{h}^0(C) \oplus \mathfrak{h}^2(C), \ \mathfrak{h}(C)^- = \mathfrak{h}^1(C) \text{ and}$$

 $\lambda^3(\mathfrak{h}^0(C) \oplus \mathfrak{h}^2(C)) = 0 = \operatorname{Sym}^{2g+1}\mathfrak{h}^1(C).$

The proof that $\operatorname{Sym}^{2g+1}\mathfrak{h}^1(C) = 0$ is similar to the proof that the nilpotence conjecture holds for algebraic equivalence: One uses the structure of $\operatorname{Sym}^N C \to \operatorname{Jac}(C)$ as a projective space bundle.

Corollary Let M be in the pseudo-abelian tensor subcategory of $CHM(k)_{\mathbb{Q}}$ generated by the $\mathfrak{h}(C)$, as C runs over smooth projective curves over k. Then M is finite dimensional.

For example $\mathfrak{h}(A)$ is finite dimensional if A is an abelian variety. $\mathfrak{h}(S)$ is finite dimensional if S is a Kummer surface. $\mathfrak{h}(C_1 \times \ldots \times C_r)$ is also finite dimensional.

It is not known if a general quartic surface $S \subset \mathbb{P}^3$ has finite dimensional motive.

Consequences

Theorem Suppose M is a finite dimensional Chow motive. Then every $f \in \text{Hom}_{CHM(k)_{\mathbb{Q}}}(M, M)$ with $H^*(f) = 0$ is nilpotent. In particular, if $H^*(M) = 0$ then M = 0.

Corollary Suppose $\mathfrak{h}(X)$ is finite dimensional for a surface X. Then Bloch's conjecture holds for X.

Indeed, $\mathfrak{h}(X)$ finite dimensional implies $\mathfrak{h}^2(X) = \mathbb{1}(-1)^{\rho} \oplus \mathfrak{t}^2(X)$ is evenly finite dimensional, so $\mathfrak{t}^2(X)$ is finite dimensional. But $\mathfrak{t}^2_{hom}(X) = 0$.

Conjecture (Kimura, O'Sullivan) Each object of $CHM(k)_{\mathbb{Q}}$ is finite dimensional.

Note. The nilpotence conjecture implies the finite dimensionality conjecture.

In fact, let $\mathcal{I}_{\otimes \operatorname{nil}} \subset \mathcal{I}_{\operatorname{hom}} \subset \mathcal{I}_{\operatorname{num}}$ be the various ideals in $CHM(k)_{\mathbb{Q}}$.

Then $\mathcal{I}_{\otimes \operatorname{nil}} \subset \mathcal{R}$ (*f* smash nilpotent \Rightarrow *f* nilpotent). So the nilpotence conjecture implies $\mathcal{R} = \mathcal{I}_{\operatorname{num}}$.

Thus $\phi : CHM(k)_{\mathbb{Q}} \to NM(k)_{\mathbb{Q}} = M_{\text{hom}}(k)_{\mathbb{Q}}$ is conservative and essentially surjective.

Since $\sim_{\text{hom}} = \sim_{\text{num}}$, the Künneth projectors are algebraic: we can thus lift the decomposition $\mathfrak{h}_{\text{hom}}(X) = \mathfrak{h}^+_{\text{hom}}(X) \oplus \mathfrak{h}^-_{\text{hom}}(X)$ to CHM(k).

Since ϕ is conservative, $\mathfrak{h}(X) = \mathfrak{h}^+ X(X) \oplus \mathfrak{h}^-(X)$ is finite dimensional:

$$\Lambda^{b^+(X)+1}(\mathfrak{h}^+(X)) = 0 = \operatorname{Sym}^{b^-(X)+1}(\mathfrak{h}^-(X)).$$