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The standard conjectures



We would like to think of our functor

h : SmProj/kop → Mhom(k)

as the “universal Weil cohomology”. What is lacking:

• We have the “total cohomology” h(X), we would like the in-

dividual cohomologies hr(X).

• Other “higher level” properties of cohomology are missing,

e.g., Lefschetz theorems.

• ∼hom could depend on the choice of Weil cohomology.

• Mhom(k) is not a category of vector spaces, but it is at least

pseudo-abelian. It would be nice if it were an abelian category.
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Künneth projectors

Fix a Weil cohomology H∗ and an X ∈ SmProj/k. By the

Künneth formula, we have

H∗(X × X) = H∗(X) ⊗ H∗(X)

so

H2dX(X × X)(dX) = ⊕2dX
n=0Hn(X) ⊗ H2dX−n(X)(dX)

By Poincaré duality, H2dX−n(X)(dX) = Hn(X)∨, so

H2dX(X × X)(dX) = ⊕2dX
n=0Hn(X) ⊗ Hn(X)∨

= ⊕2dX
n=0HomK(Hn(X), Hn(X)).
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H2dX(X × X)(dX) = ⊕2dX
n=0Hn(X) ⊗ Hn(X)∨

= ⊕2dX
n=0HomK(Hn(X), Hn(X)).

This identifies H2dX(X×X)(dX) with the vector space of graded

K-linear maps f : H∗(X) → H∗(X) and writes

idH∗(X) =
2dX∑

n=0

πn
X,H; πn

H ∈ Hn(X) ⊗ Hn(X)∨.

The term

πn
X,H : H∗(X) → H∗(X)

is the projection on Hn(X), called the Künneth projector
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Since idhhom(X) is represented by the diagonal ∆X ∈ ZdX(X×X),

we have

γX,H(∆∗) = idH∗(X) =
∑
n

πn
X,H

We can ask: are there correspondences πn
X ∈ Z

dX
hom(X×X)Q with

γX,H(πn
X) = πn

X,H.

Remarks 1. The πn
X,H are idempotent endomorphisms =⇒

(X, πn
X) defines a summand hn(X) of h(X) in Meff

hom(k)Q.

2. If πn
X exists, it is unique.

3. πn
X exists iff hhom(X) = hn(X) ⊕ h(X)′ in Meff(k)Q with

H∗(hn(X)) ⊂ H∗(X) equal to Hn(X).

7



If all the πn
X exist:

hhom(X) = ⊕2dX
n=0hn

hom(X)

X has a Künneth decomposition.

Examples

1. The decomposition

h(Pn) = ⊕n
r=0h2r(Pn)

in CHMeff(k) maps to a Künneth decomposition of hhom(Pn).

8



2. For a curve C, the decomposition (depending on a choice of
0 ∈ C(k))

h(C) = h0(X) ⊕ h1(C) ⊕ h2(C); h0(C) ∼= 1, h2(C) ∼= 1(−1),

in CHMeff(k) maps to a Künneth decomposition of hhom(C).

3. For each X ∈ SmProj/k, a choice of a k-point gives factors

h0(X) := (X,0 × X) ∼= 1

h2dX(X) := (X, X × 0) ∼= 1(−dX).

of h(X). Using the Picard and Albanese varieties of X, one can
also define factors h1(X) and h2d−1(X), so

h(X) = h0(X) ⊕ h1(X) ⊕ h(X)′ ⊕ h2dX−1(X) ⊕ h2dX(X)

which maps to a partial Künneth decomposition in Meff
hom(k)Q.

For dX = 2, this gives a full Künneth decomposition (Murre).
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The Künneth conjecture

Conjecture (C(X)) The Künneth projectors πn
X,H are algebraic

for all n:

hhom(X) = ⊕2dX
n=0hn

hom(X)

with H∗(hn
hom(X)) = Hn(X) ⊂ H∗(X).

Consequence Let a ∈ ZdX(X × X)Q be a correspondence.

1. The characteristic polynomial of Hn(a) on Hn(X) has Q-

coefficients.

2. If Hn(a) : Hn(X) → Hn(X) is an automorphism, then Hn(a)−1 =

H∗(b) for some correspondence b ∈ ZdX(X × X)Q.
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Proof. (1) The Lefschetz trace formula gives

Tr(am)|Hn(X) = (−1)n deg(tam · πn
X) ∈ Q.

But

det(1 − ta|Hn(X)) = exp(−
∞∑

m=1

1

m
Tr(am

Hn(X))t
m).

(2) By Cayley-Hamilton and (1), there is a Qn(t) ∈ Q[t] with

Hn(a)−1 = Qn(H
n(a))

= Hn(Qn(a))

= H∗(Qn(a)π
n
X)

11



Status: C(X) is known for “geometrically cellular” varieties (Pn,
Grassmannians, flag varieties, quadrics, etc.), curves, surfaces
and abelian varieties: For an abelian variety A, one has

hn
hom(A) = Λn(h1

hom(A)).

C(X) is true for all X if the base-field k is a finite field Fq and
H∗ = H ∗́

et(−, Q�):

Use the Weil conjectures to show that the characteristic poly-
nomial Pn(t) of FrX on Hn(X, Q�) has Q-coefficients and that
Pn(t) and Pm(t) are relatively prime for n �= m. Cayley-Hamilton
and the Chinese remainder theorem yield polynomials Qn(t) with
Q-coefficients and

Qn(Fr∗X)|Hm(X) = δn,midHm(X).

Then πn
X = Qn(tΓFrX

).
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The sign conjecture C+(X)

This is a weak version of C(X), saying that π+
X,H :=

∑dX
n=0 π2n

X,H

is algebraic. Equivalently, π−
X,H :=

∑dX
n=1 π2n−1

X,H is algebraic.

C+(X) for all X/k says that we can impose a Z/2-grading on

Mhom(k)Q:

hhom(X) = h+
hom(X) ⊕ h−hom(X)

so that H∗ : Mhom(k)Q → GrVecK defines

H± : Mhom(k)Q → sVecK

respecting the Z/2 grading, where sVecK the tensor category of

finite dimensional Z/2-graded K vector spaces.
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Consequence Suppose C+(X) for all X ∈ SmProj/k. Then

Mhom(k)Q → Mnum(k)Q

is conservative and essentially surjective.

This follows from:

Lemma C+(X) =⇒
the kernel of Z

dX
hom(X×X)Q → Z

dX
num(X×X)Q is a nil-ideal, hence

ker ⊂ R.

Proof. For f ∈ ker, deg(fn·π+
X) = deg(fn·π−

X) = 0. By Lefschetz

Tr(γ(fn)|H+(X)) = Tr(γ(fn)|H−(X)) = 0

Thus γ(f)|H∗(X) has characteristic polynomial tN , N = dimH∗(X).
�
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Remark. André and Kahn use the fact that the kernel of Mhom(k)Q →
Mnum(k)Q is a ⊗ nilpotent ideal to define a canonical ⊗ functor

Mnum(k)Q → Mhom(k)Q. This allows one to define the “homo-

logical realization” for Mnum(k)Q.
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The Lefschetz theorem

Take a smooth projective X over k with an embedding X ⊂ PN .
Let i : Y ↪→ X be a smooth hyperplane section.

For a Weil cohomology H∗, this gives the operator

L : H∗(X) → H∗−2(X)(−1)

L(x) := i∗(i∗(x)) = γ([Y ]) ∪ x.

L lifts to the correspondence Y × X ⊂ X × X.

The strong Leschetz theorem is

Theorem For H∗ a “classical” Weil cohomology and i ≤ dX

LdX−i : Hi(X) → H2dX−i(X)(dX − i)

is an isomorphism.
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The conjecture of Lefschetz type

Let ∗L,X be the involution of ⊕i,rH
i(X)(r):

∗L,X on Hi(X)(r) :=

⎧⎨
⎩

LdX−i for 0 ≤ i ≤ dX

(Li−dX)−1 for dX < i ≤ 2dX.

Conjecture (B(X)) The Lefschetz involution ∗L,X is algebraic:

there is a correspondence αL,X ∈ Z∗(X × X)Q with γ(α) = ∗L.X
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Status

B(X) is known for curves, and for abelian varieties (Kleiman-

Grothendieck). For abelian varieties Lieberman showed that the

operator Λ (related to the inverse of L) is given by Pontryagin

product (translation) with a rational multiple of Y (d−1).
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Homological and numerical equivalence

Conjecture (D(X)) Z∗
hom(X)Q = Z∗

num(X)Q

Proposition For X ∈ SmProj/k, D(X2) =⇒ EndMhom(k)Q
(h(X))

is semi-simple.

D(X2) =⇒ EndMhom(k)Q
(h(X)) = EndMnum(k)Q

(h(X)), which is

semi-simple by Jannsen’s theorem.

Similarly, Jannsen’s theorem shows:

Proposition If D(X) is true for all X ∈ SmProj/k, then H∗ :

Mhom(k)F → GrVecK is conservative and exact.
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In fact: D(X2) =⇒ B(X) =⇒ C(X).

Thus, if we know that hom = num (with Q-coefficients) we have

our universal cohomology of smooth projective varieties

h = ⊕ih
i : SmProj(k)op → NM(k)Q

with values in the semi-simple abelian category NM(k)Q.

Also, for H∗ = Betti cohomology, B(X) =⇒ D(X), so it would

suffice to prove the conjecture of Lefschetz type.

D(X) is known in codimension 0, dX and for codimension 1 (Mat-

susaka’s thm). In characteristic 0, also for codimension 2, dX −1

and for abelian varieties (Lieberman).
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Decompositions of the diagonal

We look at analogs of the Künneth projectors for CHM(k)Q.

First look at two basic properties of the Chow groups.



Localization

Theorem Let i : W → X be a closed immersion, j : U → X the

complement. Then

CHr(W )
i∗−→ CHr(X)

j∗−→ CHr(U) → 0

is exact.

Proof.

0 → Zr(W )
i∗−→ Zr(X)

j∗−→ Zr(U) → 0

is exact: Look at the basis given by subvarieties. At Zr(U) take

the closure to lift to Zr(X). At Zr(X) j−1(Z) = ∅ means Z ⊂ W .

Do the same for W × P1 ⊂ X × P1 and use the snake lemma. �
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Continuity

Proposition Let t : Spec (L) → T be a geometric generic point

and take X ∈ Schk equi-dimensional. If η ∈ CHr(X × T )Q �→ 0 ∈
CHr(Xt)Q, then there is a Zariski open subset of T containing

the image of t such that η �→ 0 ∈ CHr(X × U).

ηt = 0 ⇒ ηK = 0 for some K/k(T ) finite, Galois.

But CHr(XK)Gal
Q

= CHr(Xk(X))Q ⇒ ηk(X) = 0 ∈ CHr(Xk(X))Q.

But CHr(Xk(X)) = lim∅�=U⊂T CHr(X × U).

Note. This result is false for other ∼, e.g. ∼hom, ∼alg.
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The first component

Proposition (Bloch) X ∈ SmProj/k. Suppose CH0(XL̄)Q = Q

(by degree) for all finitely generated field extensions L ⊃ k. Then

∆X ∼rat X × 0 + ρ

with ρ ∈ ZdX(X ×X) supported in D ×X for some divisor D ⊂ X

and 0 ∈ CH0(X)Q any degree 1 cycle.
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Proof. Let i : η → X be a geometric generic point. Then

i∗(X × 0) and i∗(∆X) are in CH0(Xk(η)) and both have degree

1. Thus

(i × id)∗(X × 0) = (i × id)∗(∆X) in CH0(Xk(η))Q

By continuity, there is a dense open subscheme j : U ↪→ X with

(j × id)∗(X × 0) = (j × id)∗(∆∗
X) in CH0(U × X)Q

By localization there is a τ ∈ ZdX
(D × X) for D = X \ U with

∆X − X × 0 = (iD∗ × id)∗(τ) =: ρ.
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Mumford’s theorem Take k = k̄. Each X in SmProj/k has an
associated Albanese variety Alb(X). A choice of 0 ∈ X(k) gives
a morphism αX : X → Alb(X) sending 0 to 0, which is universal
for pointed morphisms to abelian varieties.

Extending by linearity and noting Alb(X × P1) = Alb(X) gives a
canonical map

αX : CH0(X)deg0 → Alb(X)

Theorem (Mumford) X: smooth projective surface over C.
If H0(X,Ω2) �= 0, then the Albanese map αX : CH0(X)deg0 →
Alb(X) has “infinite dimensional” kernel.

Here is Bloch’s motivic proof (we simplify: assume Alb(X) = 0,
and show only that CH0(X)Q is not Q).
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Since C has infinite transcendence degree over Q, CH0(X)Q = Q

implies CH0(XL̄)Q = Q for all finitely generated fields L/C.

Apply Bloch’s decomposition theorem: ∆X ∼rat X×0+ρ. Since

H0(X,Ω2) = H0(X × P1,Ω2)

∆X∗ = (X × 0)∗ + ρ∗ on 2-forms.

If ω ∈ H0(X,Ω2) is a two form, then

ω = ∆∗(ω) = (X × 0)∗(ω) + ρ∗(ω) = 0 :

(X ×0)∗(ω) is 0 on X \{0}. ρ∗(ω) factors through the restriction

ω|D. D is a curve, so ω|D = 0.
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Jannsen’s surjectivity theorem

Theorem (Jannsen) Take X ∈ SmProj/C. Suppose the cycle-

class map

γr : CHr(X)Q → H2r(X(C), Q)

is injective for all r. Then γ∗ : CH∗(X) → H∗(X, Q) is surjective,

in particular Hodd(X, Q) = 0.

Corollary If γ∗ : CH∗(X)Q → H∗(X(C), Q) is injective, then the

Hodge spaces Hp,q(X) vanish for p �= q.

Compare with Mumford’s theorem: if X is a surface and CH0(X)Q =

Q, then H2,0(X) = H0,2(X) = 0.
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Note. The proof shows that the injectivity assumption yields a

full decomposition of the diagonal

∆X =
dX∑

i=0

ni∑

j=1

aij × bij in CHdX(X × X)Q

with aij ∈ Zi(X)Q, bij ∈ Zi(X)Q. Applying ∆X∗ to a cohomology

class η ∈ Hr(X, Q) gives

η = ∆X∗(η) =
∑

ij

T r(η ∪ γ(aij)) × γ(bij)

This is 0 if r is odd, and is in the Q-span of the γ(bij) for

r = 2dX − 2i.
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Conversley, a decomposition of ∆X as above yields

h(X)Q
∼=

dX∑

i=0

1(−i)ni
Q

in CHM(C)Q

which implies CHi(X)Q is the Q-span of the bij and that γ∗ is an

isomorphism.
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Proof. Show by induction that

∆X =
r∑

i=0

ni∑

j=1

aij × bij + ρr in CHdX(X × X)Q

with aij ∈ Zi(X)Q, bij ∈ Zi(X)Q and ρr supported on Zr × X,

Zr ⊂ X a closed subset of codimension r + 1.

The case r = 0 is Bloch’s decomposition theorem, since H2dX(X, Q) =

Q.
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To go from r to r + 1: ρr has dimension dX. Think of ρr → Zr

as a familiy of codimension dX − r−1 cycles on X, parametrized

by Zr (at least over some dense open subschemeof Zr):

z �→ ρr(z) ∈ CHd−r−1(X)Q
γ−→→ H2d−2r−2(X, Q)

For each component Zi of Z, fix one point zi. Then

ρr − ∑

i

Zi × ρr(zi)

goes to zero in H2d−2r−2(X, Q) at each geometric generic point

of Zr. Thus the cycle goes to zero in CHd−r−1(Xk(ηj)
) for each

generic point ηj ∈ Zr.
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By continuity, there is a dense open U ⊂ Zr with

(ρr − ∑

i

Zi × ρr(zi)) ∩ U × X = 0 in CHdX(U × X)Q

By localization

ρr =
∑

i

Zi × ρr(zi) + ρr+1 ∈ CH∗(Zr × X)Q

with ρr+1 supported in Zr+1 × X, Zr+1 = X \ U .

Combining with the identity for r gives

∆X =
r+1∑

i=0

ni∑

j=1

aij × bij + ρr in CHdX(X × X)Q
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Esnault’s theorem

Theorem (Esnault) Let X be a smooth Fano variety over a

finite field Fq. Then X has an Fq-rational point.

Recall: X is a Fano variety if −KX is ample.

Proof. Kollár shows that X Fano =⇒ Xk̄ is rationally connected

(each two points are connected by a chain of rational curves).
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Thus CH0(XL)Q = Q for all L ⊃ F̄q. Now use Bloch’s decompo-

sition (transposed):

∆X̄ = 0 × X̄ + ρ

0 ∈ X(F̄q), ρ supported on X̄ × D.

Thus Hn
ét(X̄, Q�) → Hn

ét(X̄ \ D, Q�) is the zero map for all n ≥ 1.

Purity of étale cohomology =⇒ EV of FrX on Hn
ét(X̄, Q�) are

divisible by q for n ≥ 1.

Lefschetz fixed point formula =⇒

#X(Fq) =
2dX∑

n=0

(−1)nTr(FrX|Hn
ét(X̄,Q)) ≡ 1 mod q
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Bloch’s conjecture

Conjecture Let X be a smooth projective surface over C with

H0(X,Ω2) = 0. Then the Albanese map

αX : CH0(X) → Alb(X)

is an isomorphism.

This is known for surfaces not of general type (KX ample) by

Bloch-Kas-Lieberman, and for many examples of surfaces of gen-

eral type.

Roitman has shown that αX is an isomorphism on the torsion

subgroups for arbitrary smooth projective X over C.
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A motivic viewpoint

Since X is a surface, we have Murre’s decomposition of hrat(X)Q:

h(X)Q = ⊕4
i=0hi(X)Q

∼= 1⊕ h1 ⊕ h2 ⊕ h1(−1) ⊕ 1(−2).

Murre defined a filtration of CH2(X)Q:

F0 := CH2(X)Q ⊂ F1 = CH2(X)Qdeg0 ⊃ F2 := ker αX ⊃ F3 = 0

and showed

F2 = CH2(h2(X)),gr1F = CH2(h3(X)),gr0F = CH2(h4(X))

CH2(hi(X)) = 0 for i = 0,1.
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Suppose pg = 0. Choose representatives zi ∈ CH1(X) for Z1
num(X)Q =

H2(X, Q)(1).

Since CH1(X) = HomCHM(1(−1), h(X)), we can use the zi to

lift h2
num(X) = 1(−1)ρ to a direct factor of h2(X)Q:

h2(X)Q = 1(−1)ρ ⊕ t2

with t2num(X) = 0.

CH2(1(−1)) := HomCHM(k)(1(−2),1(−1)) = CH1(Spec k) = 0.

So Bloch’s conjecture is:

CH2(t2(X)) = 0.
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Filtrations on the Chow ring

We have seen that a lifting of the Künneth decompostion in

Z∗
num(X2)Q to a sum of products in CH∗(X2)Q imposes strong

restrictions on X. However, one can still ask for a lifting of the

Künneth projectors πn
X (assuming C(X)) to a mutually orthogo-

nal decomposition of ∆X in CH∗(X2)Q.

This leads to an interesting filtration on CH∗(X)Q, generalizing

the situation for dimension 2.



Murre’s conjecture

Conjecture (Murre) For all X ∈ SmProj/k:

1. the Künneth projectors πn
X are algebraic.

2. There are lifts Πn
X of πn

X to CHdX(X2)Q such that

i. the Πn
X are mutually orthogonal idempotents with

∑
n Πn

X = 1.

ii. Πn
X acts by 0 on CHr(X)Q for n > 2r

iii. the filtration

FνCHr(X)Q := ∩n>2r−ν kerΠn
X

is independent of the choice of lifting

iv. F1CH∗(X)Q = ker(CH∗(X)Q → Zr
hom(X)Q).

40



In terms of a motivic decomposition, this is the same as:

1. hhom(X) has a Künneth decomposition in Mhom(k)Q:

hhom(X) = ⊕2dX
n=0hn

num(X)

2. This decomposition lifts to a decomposition in CHM(k)Q:

h(X) = ⊕2dX
n=0hn(X)

such that

ii. CHr(hn(X)) = 0 for n > 2r
iii. the filtration

FνCHr(X)Q =
∑

n≤2r−ν

CHr(hn(X))

is independent of the lifting.
iv. CHr(h2r(X)) = Zr

hom(X)Q.
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The Bloch-Beilinson conjecture

Conjecture For all X ∈ SmProj/k:

1. the Künneth projectors πn
X are algebraic.

2. For each r ≥ 0 there is a filtration FνCHr(X)Q, ν ≥ 0 such that

i. F0 = CHr, F1 = ker(CHr → Zr
hom)

ii. Fν · Fµ ⊂ Fν+µ

iii. Fν is stable under correspondences

iv. πn
X acts by id on GrνFCHr for n = 2r − ν, 0 otherwise

v. FνCHr(X)Q = 0 for ν >> 0.
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Murre’s conjecture implies the BB conjecture by taking the fil-

tration given in the statement of Murre’s conjecture. In fact

Theorem (Jannsen) The two conjectures are equivalent, and

give the same filtrations.

Also: Assuming the Lefschetz-type conjectures B(X) for all X,

the condition (v) in BB is equivalent to Fr+1CHr(X) = 0 i.e.

CHr(hn(X)) = 0 for n < r.
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Saito’s filtration

Saito has defined a functorial filtration on the Chow groups,

without requiring any conjectures. This is done inductively:

F0CHr = CHr, F1CHr := ker(CHr → Zr
hom)Q and

Fν+1CHr(X)Q :=
∑

Y,ρ,s

Im(ρ∗ : FνCHr−s(Y )Q → CHr(X)Q)

with the sum over all Y ∈ SmProj/k, s ∈ Z and ρ ∈ ZdY +s(Y ×X)

such that the map

π2r−ν
X ◦ ρ∗ : H∗(Y ) → H2r−ν(X)

is 0.
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There is also a version with the Y restricted to lie in a subcate-

gory V closed under products and disjoint union.

The only problem with Saito’s filtration is the vanishing property:

That FνCHr(X) should be 0 for ν >> 0. The other properties

for the filtration in the BB conjecture (2) are satisfied.
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Consequences of the BBM conjecture

We assume the BBM conjectures are true for the X ∈ V, some

subset of SmProj/k closed under products and disjoint union.

Let M∼(V) denote the full tensor pseudo-abelian subcategory of

M∼(k) generated by the h(X)(r) for X ∈ V, r ∈ Z.

Lemma The kernel of CHM(V)Q → NM(V)Q is a nilpotent ⊗
ideal.
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The nilpotence comes from

1. ker(HomCHM(h(X)(r), h(Y )(s)) → HomNM(h(X), h(Y )))

= F1CHdX−r+s(X × Y )

2. Fν · Fµ ⊂ Fν+µ

3. FνCHr(X2) = 0 for ν >> 0.

The ⊗ property is valid without using the filtration.

Proposition CHM(V)Q → NM(V)Q is conservative and essen-

tially surjective.

Indeed: ker ⊂ R
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Proposition Let X be a surface over C with pg = 0. The BBM

conjectures for Xn (all n) imply Bloch’s conjecture for X.

Proof. Recall the decomposition h(X) = ⊕nhn(X) and h2(X) =

1(−1)ρ ⊕ t2(X), ρ = dimQ H2(X, Q). We need to show that

CH2(t2(X)) = 0.

But h2
hom = h2

num = 1(−1)ρ, so t2num = 0. By the proposition

t2 = 0.
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Status

The BBM conjectures are valid for X of dimension ≤ 2. For an

abelian variety A, one can decompose CHr(A)Q by the common

eigenspaces for the multiplication maps [m] : A → A This gives

CHr(X)Q = ⊕i≥0CHr
(i)(A)

with [m] acting by ×mi on CHr
(i)(A) for all m.

Beauville conjectures that CHr
(i)(A) = 0 for i > 2r, which would

give a BBM filtration by

FνCHr(A)Q = ⊕2r−ν
i=0 CHr

(i)(A).
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Nilpotence

We have seen how one can compare the categories of motives for

∼�≈ if the kernel of Z∗∼(X2) → Z∗≈(X2) is nilpotent. Voevodsky

has formalized this via the adequate equivalence relation ∼⊗nil.



Definition A correspondence f ∈ CH∗(X × Y )F is smash nilpo-

tent if f × . . . × f ∈ CH∗(Xn × Y n) is zero for some n.

Lemma The collection of smash nilpotent elements in CH∗(X×
Y )F for X, Y ∈ SmProj/k forms a tensor nil-ideal in Cor∗(k)F .

Proof. For smash nilpotent f , and correspondences g0, . . . , gm,

the composition g0 ◦ f ◦ g1 ◦ . . . ◦ f ◦ gm is formed from g0 × f ×
. . . × f × gm by pulling back by diagonals and projecting. After

permuting the factors, we see that g0 × f × . . . × f × gm = 0 for

m >> 0. �

Note. There is a 1-1 correspondence between tensor ideals

in Corrat(k)F and adequate equivalence relations. Thus smash

nilpotence defines an adequate equivalence relation ∼⊗nil.
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Corollary The functor CHM(k)F → M⊗nil(k)F is conservative

and a bijection on isomorphism classes.

The kernel I⊗nil of CHM(k)F → M⊗nil(k)F is a nil-ideal, hence

contained in R.

Lemma ∼⊗nil�∼hom

If a is in H∗(X) then a× . . .×a ∈ H∗(Xr) is just a⊗r ∈ (H∗(X))⊗r,

by the Künneth formula.

Conjecture (Voevodsky) ∼⊗nil=∼num.

This conjecture thus implies the standard conjecture ∼hom=∼num.
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As some evidence, Voevodsky proves

Proposition If f ∼alg 0, then f ∼⊗nil 0 (with Q-coefs).

By naturality, one reduces to showing a×n = 0 for a ∈ CH0(C)deg0,

n >> 0, C a curve.

Pick a point 0 ∈ C(k), giving the decomposition h(C) = 1⊕ h̃(C).

Since a has degree 0, this gives a map a : 1(−1) → h̃(C).

We view a×n as a map a×n : 1(−n) → h̃(C)⊗n, i.e. an element of

CHn(h̃(C)⊗n)Q.
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a×n is symmetric, so is in CHn(h̃(C)⊗n)Sn
Q

⊂ CHn(h̃(C)⊗n)Q

But

CHn(h̃(C))Sn
Q

= CH0(SymnC)Q/CH0(Symn−1C)Q.

For n > 2g − 1 SymnC → Jac(C) and Symn−1C → Jac(C) are

projective space bundles, so the inclusion Symn−1C → SymnC

induces an iso on CH0.
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Nilpotence and other conjectures

For X a surface, the nilpotence conjecture for X2 implies Bloch’s

conjecture for X: The nilpotence conjecture implies that t2⊗nil(X) =

0, but then t2(X) = 0.

The BBM conjectures imply the nilpotence conjecture (O’Sullivan).
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Finite dimensionality

Kimura and O’Sullivan have introduced a new notion for pure

motives, that of finite dimensionality.



Multi-linear algebra in tensor categories

For vector spaces over a field F , one has the operations

V �→ ΛnV, V �→ SymnV

as well as the other Schur functors.

Define elements of Q[Sn] by

λn :=
1

n!

∑

g∈Sn

sgn(g) · g

symn :=
1

n!

∑

g∈Sn

g

λn and symn are idempotents in Q[Sn].
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Let Sn act on V ⊗F n by permuting the tensor factors. This makes

V ⊗F n a Q[Sn] module (assume F has characteristic 0) and

ΛnV = λn(V ⊗n),SymnV = symn(V ⊗n).

These operation extend to the abstract setting.

Let (C,⊗, τ) be a pseudo-abelian tensor category (over Q). For

each object V of C, Sn acts on V ⊗n with simple transpositions

acting by the symmetry isomorphisms τ .

Since C is pseudo-abelian, we can define

ΛnV := Im(λn : V ⊗n → V ⊗n)

SymnV := Im(symn : V ⊗n → V ⊗n)
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Note. 1. Let C = GrVecF , and let f : GrVecK → VecK be the

functor “forget the grading”. If V has purely odd degree, then

f(SymnV ) ∼= Λnf(V ), f(ΛnV ) = Symnf(V )

If V has purely even degree, then

f(SymnV ) ∼= Symnf(V ), f(ΛnV ) = Λnf(V ).

2. Take C = Vec∞K . Then V ∈ C is finite dimensional ⇔ ΛnV = 0

for some n.

3. Take C = GrVec∞K . Then V ∈ C is finite dimensional ⇔
V = V + ⊕ V − with ΛnV + = 0 and SymnV − = 0 for some n.

59



Definition Let C be a pseudo-abelian tensor category over a

field F of characteristic 0. Call M ∈ C finite dimensional if M ∼=
M+ ⊕ M− with

ΛnM+ = 0 = SymmM−

for some integers n, m > 0.

Proposition (Kimura, O’Sullivan) If M, N are finite dimen-

sional, then so are N ⊕ M and N ⊗ M .

The proof uses the extension of the operations Λn, Symn to all

Schur functors.
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Theorem (Kimura,O’Sullivan) Let C be a smooth projective

curve over k. Then h(C) ∈ CHM(k)Q is finite dimensional.

In fact

h(C)+ = h0(C) ⊕ h2(C), h(C)− = h1(C) and

λ3(h0(C) ⊕ h2(C)) = 0 = Sym2g+1h1(C).
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The proof that Sym2g+1h1(C) = 0 is similar to the proof that

the nilpotence conjecture holds for algebraic equivalence: One

uses the structure of SymNC → Jac(C) as a projective space

bundle.

Corollary Let M be in the pseudo-abelian tensor subcategory

of CHM(k)Q generated by the h(C), as C runs over smooth

projective curves over k. Then M is finite dimensional.

For example h(A) is finite dimensional if A is an abelian variety.

h(S) is finite dimensional if S is a Kummer surface. h(C1×. . .×Cr)

is also finite dimensional.

It is not known if a general quartic surface S ⊂ P3 has finite

dimensional motive.
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Consequences

Theorem Suppose M is a finite dimensional Chow motive.

Then every f ∈ HomCHM(k)Q
(M, M) with H∗(f) = 0 is nilpo-

tent. In particular, if H∗(M) = 0 then M = 0.

Corollary Suppose h(X) is finite dimensional for a surface X.

Then Bloch’s conjecture holds for X.

Indeed, h(X) finite dimensional implies h2(X) = 1(−1)ρ ⊕ t2(X)

is evenly finite dimensional, so t2(X) is finite dimensional. But

t2hom(X) = 0.
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Conjecture (Kimura, O’Sullivan) Each object of CHM(k)Q

is finite dimensional.

Note. The nilpotence conjecture implies the finite dimensionality

conjecture.

In fact, let I⊗nil ⊂ Ihom ⊂ Inum be the various ideals in CHM(k)Q.

Then I⊗nil ⊂ R (f smash nilpotent ⇒ f nilpotent). So the nilpo-

tence conjecture implies R = Inum.

Thus φ : CHM(k)Q → NM(k)Q = Mhom(k)Q is conservative and

essentially surjective.
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Since ∼hom=∼num, the Künneth projectors are algebraic: we

can thus lift the decomposition hhom(X) = h+
hom(X) ⊕ h−hom(X)

to CHM(k).

Since φ is conservative, h(X) = h+X(X)⊕h−(X) is finite dimen-

sional:

Λb+(X)+1(h+(X)) = 0 = Symb−(X)+1(h−(X)).
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