
SMR/1840-2

School and Conference on Algebraic K-Theory and its Applications

Eric Friedlander

14 May - 1 June, 2007

Northwestern University, Evanston, USA

Classifying Spaces and Higher K-theory



2. Classifying spaces and higher K-theory

2.1. Recollections of homotopy theory. Much of our discussions will require
some basics of homotopy theory. We emphasize the definition of a homotopy.

Definition 2.1. Two continuous maps f, g : X → Y between topological spaces
are said to be homotopic if there exists some continuous map F : X × I → Y with
F|X×{0} = f, F|X×{1} = g (where I denotes the unit interval [0, 1]).

If x ∈ X, y ∈ Y are chosen (“base points”), then two (“pointed”) maps f, g :
(X, {x}) → (Y, {y}) are said to be homotopic if there exists some continuous map
F : X × I → Y such that F|X{×0} = f, F|X×{1} = g, and F|{x}×I = {y} (i.e., F must
project {x} × I to {y}. We use the notation [(X, x), (Y, y)] to denote the pointed
homotopy classes of maps from (X, x) (previously denoted (X, {x})) to (Y, {y}).

We shall employ the usual notation, [X, Y ] to denote homotopy classes of contin-
uous maps from X to Y .

Another basic definition is that of the homotopy groups of a topological space.

Definition 2.2. For any n ≥ 0 and any pointed space (X, x),

πn(X, x) ≡ [(Sn,∞), (X, x)].

For n = 0, πn(X, x) is a pointed set; for n ≥ 1, a group; for n ≥ 2, an abelian group.
If (X, x) is “nice”, then πn(X, x) � [Sn, X]; moreover, if X is path connected, then
the isomorphism class of πn(X, x) is independent of x ∈ X.

A relative C.W. complex is a topological pair (X, A) (i.e., A is a subspace of
X) such that there exists a sequence of subspaces A = X−1 ⊂ X0 ⊂ · · · ⊂ Xn ⊂ · · ·
of X with union equal to X such that Xn is obtained from Xn−1 by “attaching”
n-cells (i.e., possibly infinitely many copies of the closed unit disk in R

n, where
“attachment” means that the boundary of the disk is identified with its image under
a continous map Sn−1 → Xn−1 ) and such that a subset F ⊂ X is closed if and
only if X ∩ Xn ⊂ Xn is closed for all n. A space X is a C.W. complex if (X, ∅) is a
relative C.W. complex. A pointed C.W. complex (X, x) is a relative C.W. complex
for (X, {x}).

C.W. complexes have many good properties, one of which is the following.

Theorem 2.3. (Whitehead theorem) If f : X → Y is a continuous map of connected
C.W. complexes such that f∗ : πn(X, x) → πn(Y, f(x)) is an isomorphism for all
n ≥ 1, then f is a homotopy equivalence.

Moreover, C.W. complexes are quite general: If (T, t) is a pointed topological
space, then there exists a pointed C.W. complex (X, x) and a continuous map g :
(X, x) → (T, t) such that g∗ : π∗(X, x) → π∗(T, t) is an isomorphism.
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Recall that a continuous map f : X → Y is said to be a fibration if it has the
homotopy lifting property: given any commutative square of continuous maps

A × {0}

��

�� X

��
A × I �� Y

then there exits a map A×I → X whose restriction to A×{0} is the upper horizontal
map and whose composition with the right vertical map equals the lower horizontal
map. A very important property of fibrations is that if f : X → Y is a fibration,
then there is a long exact sequence of homotopy groups for any xo ∈ X, y ∈ Y :

· · · → πn(f−1(y), x0) → πn(X, x0) → πn(Y, y0) → πn−1(f
−1(y), x0) → · · ·

If f : (X, x) → (Y, y) is any pointed map of spaces, we can naturally construct

a fibration f̃ : X̃ → Y together with a homotopy equivalence X → X̃ over Y . We
denote by htyfib(f) the fibre f̃−1(y) of f̃ .

2.2. BG.

Definition 2.4. Let G be a topological group and X a topological space. Then a
G-torsor over X (or principal G-bundle) is a continuous map p : E → X together
with a continuous action of G on E over X such that there exists an open covering
{Ui} of X homeomorphisms G × Ui → E|Ui

for each i respecting G-actions (where
G acts on G × Ui by left multiplication on G).

Example 2.5. Assume that G is a discrete group. Then a G-torsor p : E → X is
a normal covering space with covering group G.

Theorem 2.6. (Milnor) Let G be a topological group with the homotopy type of a
C.W. complex. There there exists a connected C.W. complex BG and a G-torsor
π : EG → BG such that sending a continuous function X → BG to the G-torsor
X ×BG EG → X over X determines a 1-1 correspondence

[X, BG]
�→ {isom classes of G-torsors over X}

Moreover, the homotopy type of BG is thereby determined; furthermore, EG is con-
tractible.

The topology on G when considering the classifying space BG is crucial. One
interesting construction one can consider is the map on classifying spaces induced
by the continuous, bijective function Gδ → G where G is a topological group and
Gδ is the same group but provided with the discrete topology.

Corollary 2.7. If G is discrete, then π1(BG, ∗) = G and πn(BG, ∗) = 0 for all
n > 0 (where ∗ is some choice of base point). Moreover, these properties characterize
the C.W. complex BG up to homotopy type.
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Proof. Sketch of proof If n > 0, then the facts that π1(S
n) = 0 and EG is contractible

imply that [Sn, BG] = {0}. The fact that π1(BG, ∗) = G is classical covering space
theory. �

The proof of the following proposition is fairly elementary, using a standard pro-
jection resolution of Z as a Z[π]-module.

Proposition 2.8. Let π be a discrete group and let A be a Z[π]-module. Then

H∗(Bπ, A) = Ext∗
Z[π](Z, A) ≡ H∗(π, A)

H∗(Bπ, A) = TorZ[π]
∗ (Z, A) ≡ H∗(π, A).

Now, vector bundles are not G-torsors but rather fibre bundles for the topological
groups O(n) (respectively, U(n)) in the case of a real (resp., complex) vector bundle
of rank n. Nevertheless, because O(n) (resp., U(n)) acts faithfully and transitively
on R

n (resp., C
n), we can readily conclude using Theorem 2.6

[X, BO(n)] = {isom classes of real rank n vector bundles over X}
[X, BU(n)] = {isom classes of complex rank n vector bundles over X}.

2.3. Quillen’s plus construction. Daniel Quillen’s original definition of Ki(R), i >
0, was in terms of the following “Quillen plus construction”.

Theorem 2.9. (Plus construction) Let G be a discrete group and H ⊂ G be a
perfect normal subgroup. Then there exists a C.W. complex BG+ and a continuous
map

γ : BG → BG+

such that ker{π1(BG) → π1(BG+)} = H and such that H̃∗(htyfib(γ), Z) = 0.
Moreover, γ is unique up to homotopy.

The classical ”Whitehead Lemma” implies that the commutator subgroup [GL(R), GL(R)]
of GL(R) is perfect. (One verifies that an n × n elementary matrix is itself a com-
mutator of elementary matrices provided that n ≥ 4.)

Definition 2.10. For any ring R, let

γ : BGL(R) → BGL(R)+

denote the Quillen plus construction with respect to [GL(R), GL(R)] ⊂ GL(R). We
define

Ki(R) ≡ πi(BGL(R)+), i > 0.

This construction is closely connected to the group completions of our first lec-
ture. In some sense,

∐
n BGL(n, R) is “up to homotopy, a commutative topological

monoid” and BGL(R)+ × Z is a group completion in an appropriate sense. There
are several technologies which have been introduced in part to justify this informal
description (e.g., the “S−1S construction” discussed below).
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Remark 2.11. Essentially by definition, K1(R) as defined in the first lecture agrees
with that of Definition 2.10. Moreover, for any K1(R)-module A,

H∗(BGL(R)+, A) = H∗(BGL(R), A).

Moreover, one can verify that K2(R) as introduced in the first lecture agrees with
that of Definition 2.10 for any ring R by identifying this second homotopy group
with the second homology group of the perfect group [GL(R), GL(R)].

When Quillen formulated his definition of K∗(R), he also made the following
fundamental computation. Indeed, this computation was a motivating factor for
Quillen’s definition.

Theorem 2.12. (Quillen’s computation for finite fields) Let Fq be a finite field.
Then the space BGL(Fq)

+ can be described as the homotopy fibre of a computable
map. This leads to the following computation for i > 0:

Ki(Fq) = Z/qj − 1 if i = 2j − 1

Ki(Fq) = 0 if i = 2j.

As you probably know, homotopy groups are notoriously hard to compute. So
Quillen has played a nasty trick on us, giving us very interesting invariants with
which we struggle to make the most basic calculations. For example, a fundamental
problem which is still not fully solved is to compute Ki(Z).

Early computations of higher K-groups of a ring R often proceeded by first com-
puting the group homology groups of GL(n, R) for n large, then relating these
homology groups to the homotopy groups of BGL(R)+.

2.4. Abelian and exact categories. Much of our discussion in these lectures will
require the language and concepts of category theory. Indeed, working with cate-
gories will give us a method to consider various kinds of K-theories simultaneously.

I shall assume that you are familiar with the notion of an abelian category. Recall
that in an abelian category A, the set of morphisms HomA(B, C) for any A, B ∈
Obj A has the natural structure of an abelian group; moreover, for each A, B ∈
Obj A, there is an object B⊕C which is both a product and a coproduct; moreover,
any f : A → B in HomA(A, B) has both a kernel and a cokernel. In an abelian
category, we can work with exact sequences just as we do in the category of abelian
groups.

Example 2.13. Here are a few “standard” examples of abelian categories.

• the category Mod(R) of (left) R-modules.
• the category mod(R) of finitely generated R-modules (in which case we must

take R to be Noetherian).
• the category QCoh(X) of quasi-coherent sheaves on a variety X.
• the category Coh(X) of coherent sheaves on a Notherian variety X.
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Warning. The full subcategory P(R) ⊂ mod(R) is not an abelian category. For
example, if R = Z, then n : Z → Z is a homomorphism of projective R-modules
whose cokernel is not projective and thus is not in P(Z).

Definition 2.14. An exact category P is a full additive subcategory of some abelian
category A such that
(a.) There exists some set S ⊂ Obj A such that every A ∈ Obj A is isomorphic to
some element of S.
(b.) If 0 → A1 → A2 → A3 → 0 is an exact sequence in A with both A1, A3 ∈ Obj P ,
then A2 ∈ Obj P .

An admissible monomorphism (respectively, epimorphism) in P is a monomor-
phism A1 → A2 (resp., A2 → A3) in P which fits in an exact sequence of the form
of (b.).

Definition 2.15. If P is an exact category, we define K0(P) to be the group com-
pletion of the abelian monoid defined as the quotient of the monoid of isomor-
phism classes of objects of P (with respect to ⊕) modulo the equivalence relation
[A2] − [A1] − [A3] for every exact sequence of the form (I.5.b).

Exercise 2.16. Show that K0(R) equals K0(P(R)), where P(R) is the exact category
of finitely generated projective R-modules.

More generally, show that K0(X) equals K0(Vect(X)), where Vect(X) is the exact
category of algebraic vector bundles on the quasi-projective variety X.

Definition 2.17. Let P be an exact category in which all exact sequences split.
Consider pairs (A, α) where A ∈ Obj P and α is an automorphism of A. Direct
sums and exact sequences of such pairs are defined in the obvious way. Then K1(P)
is defined to be the group completion of the abelian monoid defined as the quotient
of the monoid of isomorphism classes of such pairs modulo the relations given by
short exact sequences.

You can find a proof in [?] that K1(P(R)) equals K1(R).

2.5. The S−1S construction. Recall that a symmetric monoidal category S is a
(small) category with a unit object e ∈ S and a functor � : S × S → S which is
associative and commutative up to coherent natural isomorphisms. For example,
if we consider the category P of finitely generated projective R-modules, then the
direct sum ⊕ : P × P → P is associative but only commutative up to natural
isomorphism. The symmetric monoidal category relevant for the K-theory of a ring
R is the category Iso(P) whose objects are finitely generated projective R-modules
and whose morphisms are isomorphisms between projective R-modules.

Quillen’s construction of S−1S for a symmetric monoidal category S is appealing,
modelling one way we would introduce inverses to form the group completion of an
abelian monoid.
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Definition 2.18. Let S be a symmetric monoidal category. The category S−1S is
the category whose objects are pairs {a, b} of objects of S and whose maps from
{a, b} to {c, d} are equivalence classes of compositions of the following form:

{a, b} s�−→ {s�a, s�b)
(f,g)→ {c, d}

where s is some object of S, f, g are morphisms in S. Another such composition

{a, b} s′�−→ {s′�a, s′�b)
(f ′,g′)→ {c, d}

is declared to be the same map in S−1S from {a, b} to {c, d} if and only if there
exists some isomorphism θ : s → s′ such that f = f ′ ◦ (θ�a), g = g′ ◦ (θ�b).

Heuristically, we view {a, b} ∈ S−1S as representing a − b, so that {s�a, s�b}
also represents a − b. Moreover, we are forcing morphisms in S to be invertible in
S−1S. If we were to apply this construction to the natural numbers N viewed as a
discrete category with addition as the operation, then we get N

−1
N = Z.

The following theorem of Quillen shows how the S−1S construction can provide
a homotopy-theoretic group completion

Theorem 2.19. (Quillen) Let S be a symmetric monoidal category with the property
that for all s, t ∈ S the map s�− : Aut(t) → Aut(s�t) is injective. Then the natural
map BS → B(S−1S) of classifying spaces (see the next section) is a homotopy-
theoretic group completion.

In particular, if S denotes the category whose objects are finite dimensional pro-
jective R-modules and whose maps are isomorphisms (so that BS =

∐
[P ] BAut(P )),

then K(R) is homotopy equivalent to B(S−1S).

2.6. Simplicial sets and the Nerve of a Category.

Definition 2.20. The category of standard simplices, ∆, has objects n = 〈0, 1, . . . , n〉
indexed by n ∈ N and morphisms given by

Hom∆(m, n) = {non-decreasing maps 〈0, 1, . . . , n〉 → 〈0, 1, . . . , m〉}.
The special morphisms

∂i : n-1 → n (skip i); σj : n+1 → n (repeat j)

in ∆ generate (under composition) all the morphisms of ∆ and satisfy certain stan-
dard relations which many topologists know by heart.

A simplicial set S• is a functor ∆op → (sets).

In other words, S• consists of a set Sn for each n ≥ 0 and maps di : Sn → Sn−1, sj :
Sn → Sn+1 satisfying the relations given by the relations satisfied by ∂i, σj ∈ ∆.

Example 2.21. Let T be a topological space. Then the singular complex Sing•T
is a simplicial set. Recall that SingnT is the set of continuous maps ∆n → T , where
∆n ⊂ R

n+1 is the standard n-simplex: the subspace consisting of those points
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x = (x0, . . . , xn) with each xi ≥ 0 and
∑

xi = 1. Since any map µ : n → m
determines a (linear) map ∆n → ∆m, it also determines µ : SingmT → SingnT , so
that we may easily verify that

Sing• : ∆op → (sets)

is a well defined functor.

Definition 2.22. (Milnor’s geometric realization functor) For any simplicial set X•,
we define its geometric realization as the topological space |X.| given as follows:

|X•| =
∐

n≥0

Xn × ∆n/ ∼

where the equivalence relation is given by (x, µ◦ t) � (µ◦x, t) whenever x ∈ Xm, t ∈
∆n, µ : n → m a map of ∆. This quotient is given the quotient topology, where
each Xn × ∆n is topologized as a disjoint union indexed by x ∈ Xn of copies of
∆n ⊂ R

n+1.

Now, simplicial sets are a very good combinatorial model for homotopy theory as
the next theorem reveals.

Theorem 2.23. (Homotopy category) The categories of topological spaces and sim-
plicial sets satisfy the following relationships.

• Milnor’s geometric realization functor is left adjoint to the singular functor;
in other words, for every simplicial set X• and every topological space T ,

Hom(s.sets)(X•, Sing•T ) = Hom(spaces)(|X•|, T ).

• For any simplicial set X•, |X•| is a C.W. complex; moreover, for any topo-
logical space T , Sing.•(T ) is a particularly well behaved type of simplicial set
called a Kan complex.

• For any topological space T and any point t ∈ T , the adjunction morphism

(|Sing•T |, t) → (T, t)

induces an isomorphism on homotopy groups.
• The adjunction morphisms of (a.) induces an equivalence of categories

(Kan cxes)/ ∼ hom.equiv � (C.W. cxes)/ ∼ hom.equiv

Now we can define the classifying space of a (small) category.

Definition 2.24. Let C be a small category. We define the nerve NC ∈ (s.sets)
to be the simplicial set whose set of n-simplices is the set of composable n-tuples of
morphisms in C:

NCn = {Cn
γn→ Cn−1 → · · · γ1→ C0}.

For ∂i : n-1 → n, we define di : NCn → NCn−1 to send the n-tuple Cn → · · · → C0

to that n−1-tuple given by composing γi+1 and γi whenever 0 < i < n, by dropping
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γ1→ C0 if i = 0 and by dropping Cn
γn→ if i = n. For σj : n → n+1, we define

sj : NCn → NCn+1 by repeating Cj and inserting the identity map.
We define the classifying space BC of the category C to be |NC|, the geometric

realization of the nerve of C.

Example 2.25. Let G be a (discrete) group and let G denote the category with a
single object (denoted ∗) and with HomG(∗, ∗) = G. Then BG is a model for BG
(i.e., BG is a connected C.W. complex with π1(BG, ∗) = G and all higher homotopy
groups 0).

Example 2.26. Let X be a polyhedron and let S(X) denote the category whose
objects are simplices of X and maps are the inclusions of simplices. Then BS(X)
can be identified with the first barycentric subdivision of X.

2.7. Quillen’s Q-construction. What are the higher K-groups of an exact cate-
gory? In particular, what are the higher K-groups of a quasi-projective variety X
(i.e., of the exact category Vect(X)) or more generally of a scheme?

Quillen defines these in terms of another construction, the “Quillen Q-construction.”

Definition 2.27. Let P be an exact category and let QP be the category obtained
from P by applying the Quillen Q-construction (as discussed below). Then

Ki(P) = πi+1(BQP), i ≥ 0,

the homotopy groups of the geometric realization of the nerve of QP .

Theorem 2.28. Let X be a scheme and let Vect(X) dnoe the exact category of
finitely presented, locally free OX-modules. Then

Ki(X) ≡ πi(Vect(X)) ≡ πi+1(BQVect(X))

agrees for i = 0 with the Grothendieck group of Vect(X) and for X = SpecA an
affine scheme agrees with Ki(A) = πi(BLG(A)+) provided that i > 0.

Quillen proves this theorem using the S−1S construction as an intermediary.
Here is the formulation of Quillen’s Q-construction.

Definition 2.29. Let P be an exact category. We define the category QP as follows.
We set Obj QP equal to Obj P . For any A, B ∈ Obj QP , we define

HomQP(A, B) = {A p
� X

i� B; p (resp i) admis epi (resp. mono)/ ∼}
where the equivalence relation is generated by pairs

A � X � B, A � X ′ � B
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which fit in a commutative diagram

A

=

��

Xp
��

��

i ��

��

B

=

��
A Xp′

�� i′ �� B

Waldhausen gives a somewhat more elaborate construction of Quillen’s Q con-
struction which produces “n-fold deloopings” of BQP for every n ≥ 0: pointed
spaces Tn with the property that Ωn(Tn) is homotopy equivalent to BQP .
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