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Lecture 2

Chow groups and motives

We will be working with the algebraic varieties, which we always as-
sume to be quasiprojective. Quasiprojective variety is an open subvariety in
the projective variety. And the latter one is just a closed subvariety of the
projective space P

N , that is subvariety given by the set of (homogeneous)
equations f1, . . . , fr. The same quasiprojective variety can be embedded in
different projective spaces: P

N ⊃ X ⊂ P
M (in particular, one can define

precisely when such subvarieties are isomorphic).
Algebraic variety can be covered by affine open subvarieties. Affine vari-

eties correspond to commutative rings (finitely generated, in our case). This
correspondence has the form

R − ring ↔ Spec(R),

where Spec(R) is called the spectrum of R, and R, in turn is a ring of regular
functions on the algebraic variety Spec(R). The above correspondence is
contravariant:

φ : S → R ↔ φ∨ : Spec(R) → Spec(S).

In our situation, affine varieties are just the closed subvarieties of affine space
A

n = Spec(k[x1, . . . , xn]) which is just the translation into geometric lan-
guage of the fact that the respective rings are finitely generated and so are
the quotient rings of the polynomial ring: R = k[x1 . . . , xn]/(f1, . . . , fr). Of
course, the same variety can be embedded into many different affine spaces
- just choose another set of k-algebra generators y1, . . . , ym and present R as
k[y1 . . . , ym]/(g1, . . . , gs).

Algebraic varieties have points. Points of the affine variety Spec(R) are
the prime ideals P ⊂ R (that is, such ideals that for any x, y ∈ R, x · y ∈ P
implies that either x, or y belongs to P ). The morphism of affine varieties
φ∨ : Spec(R) → Spec(S) acts on points: P �→ φ−1(P ). If X is covered by
affine open varieties X = ∪iUi, then

( points of X) =
∐

i

( points of Ui)/(ident.),

where we identify points of Ui ∩ Uj in Ui and Uj .

1



In contrast to topology and usual geometry, the points have different
dimensions. It is sufficient to consider the case of affine variety.

dim(P ) = max{d| ∃ chain P = P0 ⊂ P1 ⊂ . . . ⊂ Pd of distinct prime ideals}.

Points of dimension 0 are exactly the maximal ideals in R. If R has no zero
divisors then the ideal (0) is prime, and the respective point is called the
generic point. In such a case the dimension of a variety is just the dimension
of its generic point.

To each point one can assign the residue field k(x). Namely, if P is
prime, then the subset T = R\P is multiplicative (T · T ⊂ T ), and we can
localise: RT−1 will be a local ring, and PT−1 is the only maximal ideal in
it. k(P ) := RT−1/PT−1. The dimension of a point is just the transcendence
degree trdeg(k(P )/k) of its residue field over k. Any regular function r on
Spec(R) (that is, an element of R), can be evaluated at P with value in k(P ):

R→ RT−1 → RT−1/PT−1 = k(P ).

Notice that all these fields k(P ) come with the natural embedding k ⊂ k(P ),
so if one considers only the case of closed points over algebraically closed field
k, then all the residue fields are identified, and the evaluation takes values in
the same field k (as one used to).

Example: X = Spec(k[x1, . . . , xn]) = A
n. Then dim(X) = n, residue

field of a generic point is the field of rational functions k(x1, . . . , xn), and as
a maximal chain of prime ideals one can choose

(x1, . . . , xn) ⊃ (x1, . . . , xn−1) ⊃ . . . ⊃ (x1) ⊃ (0).

Algebraic variety is called irreducible if all of its open affine subvarieties
are, and an affine variety X = Spec(R) is irreducible, if and only if R has no
0-divizors (only “one” generic point).

Examples:

1) Spec(k[x, y]/(xy)) is reducible (consists of the union of x-axis and y-
axis on x, y-plane - two components).

2) Spec(k[x, y]/(y − x3)) is irreducible (consists of just one component).

If (as in the examples above)our variety is a hyersurface in the affine space
(given by just one equation), then one simply needs to check if the respective
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polynomial is decomposable, but if the variety is defined by several equations
it could be quite difficult to check the irreducibility.

There is 1 − 1 correspondence

{ irred. closed subvar. ofX} ↔ { points ofX}

where each point is a generic point of some unique closed irreducible subva-
riety.

Chow groups

Let X be an algebraic variety, then one can define the Chow group of

d-dimensional cylces on X modulo rational equivalence as

CHd(X) :=

(
⊕

V ⊂X
Z · [V ]

)
/( rational equivalence ),

where V runs over all closed irreducible subvarieties of X of dimension d
(that is, over all points of dimension d of X), [V ] is just the formal group
generator corresponding to V , and the two combinations are called rationally

equivalent if there exists a combination W =
∑

l νl ·[Wl] of (d+1)-dimensional
irreducible subvarieties on X × P

1 such that W |X×{0} =
∑

i λi · [Vi] and
W |X×{1} =

∑
j µj · [Uj ] (one can give the precise meaning to the notation

W |X×{a}).
Have the action of various operations on the Chow groups.
Push-forwards
Let f : X → Y be a map of algebraic varoeties. It is called projective, if

it can be decomposed as:

X
j

��

f
�������������� Y × P

n

π

��
Y

where j is a closed embedding.
Examples:

1) Closed embedding is a projective map.

2) A
1 → Spec(k) is not a projective map.

3) X is projective (a closed subvariety in projective space), then any f :
X → Y is projective.
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Roughly speaking, f is projective if all the fibers are projective varieties.
If f is projective we have push-forward maps

f∗ : CHd(X) → CHd(Y ),

where if V ⊂ X is closed irreducible subvariety of X, and U ⊂ Y is its image
under f , then

f∗([V ]) :=

{
0, if dim(U) < dim(V );

deg(k(V )/k(U)) · [U ], if dim(U) = dim(V ).

The coefficient deg(k(V )/k(U)) here is just the “number of preimages” of
the “sufficiently generic” point of U .

One can prove that in the case of projective map such definition respects
the rational equivalence.

Warning: if f is not projective one can try to define f∗ by the same
formula, but the rational equivalence will not be respected.

Pull-backs
Together with the dimensional notations one can use the codimensional

ones. Namely, codim(V ⊂ X) = dim(X) − dim(V ), and we will denote the
same Chow groups in two ways:

CHd(X) = CHdim(X)−d(X).

Variety X is called smooth if locally it can be defined by (n − dim(X))

equations f1, . . . , fn−dim(X) in some A
n, so that the matrix

(
∂fi

∂xj

)
has (maxi-

mal possible) rank (n− dim(X)) everywhere on X.
Examples:

1) Projective space is smooth.

2) q-nondegenerate quadratic, then the respective projective quadric Q is
smooth. If q is degenerate, then Q is not smooth.

3) Spec(k[x, y]/(y2 − x3)) is not smooth (singularity at (0, 0)).

If X is smooth, one has pull-back maps

f ∗ : CHc(Y ) → CHc(X).
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For arbitrary f it is not easy to see, how f ∗ acts on classes of subvarieties,
but if f is smooth morphism (roughly speking, all the fibers are smooth
varieties)(or even flat morphism), then f ∗([U ]) = [f−1(U)].

For arbitrary varieties X and Y one has the external product

CHa(X) × CHb(Y )
×
→ CHa+b(X × Y ),

given by [V ] × [U ] �→ [V × U ]. If now X is smooth we can combine this
product with the pull-back along the diagonal morphism ∆ : X → X ×X to
get a product structure on CH∗(X).

CHa(X) × CHb(X)
×

��

·
�����������������

CHa+b(X ×X)

∆∗

��

CHa+b(X).

This gives the structure of the associative commutative ring on CH∗(X) for
smooth variety X.

Category of Chow motives

Category of correspondences
Define C(k) - the category of correspondences:
Ob(C(k)) = { smooth proj. var.overk} � [X] - typical representative.
MorC(k)([X], [Y ]) = CHdim(X)(X × Y ), where we assume X - connected.
composition:
Let ϕ ∈ MorC(k)([X], [Y ]), ψ ∈ MorC(k)([Y ], [Z]), in other words, ϕ ∈

CHdim(X)(X × Y ), ψ ∈ CHdim(Y )(Y × Z).
Consider the natural projections

X × Y × Z
πX,Y

������������

πX,Z

��

πY,Z

������������

X × Y X × Z Y × Z.

Then the composition is defined as:

ψ ◦ ϕ := ((πX,Z)∗((πX,Y )∗(ϕ) · (πY,Z)∗(ψ)).

It follows from the standard properties of pull-backs and push-forwards, that
this operation is asociative.
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In particular, one gets the associative ring structure on CHdim(X)(X×X).
Warning: do not mess it with the product ring structure on CH∗(X ×X) -
our new composition product is almost never commutative, while the product
structure is.

Have a natural functor

Sm.Proj./k
C
→ C(k)

from the category of smooth quasiprojective varieties over k to C(k), where
X �→ [X], and (f : X → Y ) �→ [Γf ], where Γf ⊂ X × Y is the graph of the
map f . It is not difficult to check that this is really a functor (respects the
composition).

Category of correspondences has a structure of tenzor additive category,
where [X]⊕ [Y ] := [X

∐
Y ] (the class of the disjoint union), and [X]⊗ [Y ] :=

[X × Y ].
Now, one can define the category of effective Chow-motives over k as the

Karoubian envelope of C(k):

Choweff(k) := Kar(C(k)),

where the Karoubian (=pseudo-abelian) envelope of an additive category C
is defined as follows. p ∈ EndC(A) is called projector, if p ◦ p = p. The
Kar(C) is a category such that Ob(Kar(C)) = {(A, p), A ∈ Ob(C), p ∈
EndC(A) is a projector }. MorKar(C)((A, p), (B, q)) = q ◦MorC(A,B) ◦ p ⊂
MorC(A,B), and the composition is induced by that in C.

There is natural functor C(k)
Kar
→ Choweff(k) sending [X] to the pair

([X], id), and the structure of tenzor additive category descends from C(k) to
Choweff (k). The composition of functors C and Kar gives a motivic functor

from the category of smooth projective varieties over k to the category of the
effective Chow motives.

C(k)
Kar

�������

Sm.Proj./k

C
��������

M
�� Choweff(k).

For the smooth projective variety X we will call its image M(X) - the motive

of X.
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