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Lecture 2
Chow groups and motives

We will be working with the algebraic varieties, which we always as-
sume to be quasiprojective. Quasiprojective variety is an open subvariety in
the projective variety. And the latter one is just a closed subvariety of the
projective space PV, that is subvariety given by the set of (homogeneous)
equations fi,..., f,. The same quasiprojective variety can be embedded in
different projective spaces: PY > X < PM (in particular, one can define
precisely when such subvarieties are isomorphic).

Algebraic variety can be covered by affine open subvarieties. Affine vari-
eties correspond to commutative rings (finitely generated, in our case). This
correspondence has the form

R — ring < Spec(R),

where Spec(R) is called the spectrum of R, and R, in turn is a ring of regular
functions on the algebraic variety Spec(R). The above correspondence is
contravariant:

$p:S—R < ¢ :Spec(R)— Spec(S).

In our situation, affine varieties are just the closed subvarieties of affine space
A" = Spec(k[zy,...,2,]) which is just the translation into geometric lan-
guage of the fact that the respective rings are finitely generated and so are
the quotient rings of the polynomial ring: R = k[zy ..., 2,)/(f1,..., f). Of
course, the same variety can be embedded into many different affine spaces
- just choose another set of k-algebra generators vy, ...,y and present R as
klyy - yml/ (g1, 9s)-

Algebraic varieties have points. Points of the affine variety Spec(R) are
the prime ideals P C R (that is, such ideals that for any z,y € R, x -y € P
implies that either z, or y belongs to P). The morphism of affine varieties
® : Spec(R) — Spec(S) acts on points: P +— ¢ }(P). If X is covered by
affine open varieties X = U,;U;, then

( points of X) = H( points of U;)/(ident.),
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where we identify points of U; N U; in U; and U;.



In contrast to topology and usual geometry, the points have different
dimensions. It is sufficient to consider the case of affine variety.

dim(P) = max{d| 3 chain P = Py C P, C ... C P, of distinct prime ideals}.

Points of dimension 0 are exactly the mazimal ideals in R. If R has no zero
divisors then the ideal (0) is prime, and the respective point is called the
generic point. In such a case the dimension of a variety is just the dimension
of its generic point.

To each point one can assign the residue field k(x). Namely, if P is
prime, then the subset 7" = R\ P is multiplicative (T'-T C T'), and we can
localise: RT! will be a local ring, and PT~! is the only maximal ideal in
it. k(P):= RT~'/PT~'. The dimension of a point is just the transcendence
degree trdeg(k(P)/k) of its residue field over k. Any regular function r on
Spec(R) (that is, an element of R), can be evaluated at P with value in k(P):

R— RT' — RT'/PT™' = k(P).

Notice that all these fields k(P) come with the natural embedding k& C k(P),
so if one considers only the case of closed points over algebraically closed field
k, then all the residue fields are identified, and the evaluation takes values in
the same field & (as one used to).

Example: X = Spec(k[zi,...,2,]) = A". Then dim(X) = n, residue
field of a generic point is the field of rational functions k(z1,...,x,), and as
a maximal chain of prime ideals one can choose

(X1, yxn) D (21, s xpq) D ... D (21) D (0).

Algebraic variety is called irreducible if all of its open affine subvarieties
are, and an affine variety X = Spec(R) is irreducible, if and only if R has no
0-divizors (only “one” generic point).

Examples:

1) Spec(k[z,y]/(zy)) is reducible (consists of the union of z-axis and y-
axis on z, y-plane - two components).

2) Spec(k[z,y]/(y — x*)) is irreducible (consists of just one component).

If (as in the examples above)our variety is a hyersurface in the affine space
(given by just one equation), then one simply needs to check if the respective
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polynomial is decomposable, but if the variety is defined by several equations
it could be quite difficult to check the irreducibility.
There is 1 — 1 correspondence

{iirred. closed subvar. of X} < {points of X'}

where each point is a generic point of some unique closed irreducible subva-
riety.

Chow groups

Let X be an algebraic variety, then one can define the Chow group of
d-dimensional cylces on X modulo rational equivalence as

CHy(X) = ( & Z- [V]) /(rational equivalence ),
VX

where V' runs over all closed irreducible subvarieties of X of dimension d
(that is, over all points of dimension d of X), [V] is just the formal group
generator corresponding to V', and the two combinations are called rationally
equivalent if there exists a combination W = ), v-[W)] of (d+1)-dimensional
irreducible subvarieties on X x P! such that Wxxqp = Y_; A - [Vi] and
Wixxqy = 2215 - [Uj] (one can give the precise meaning to the notation
WX x{a})-

Have the action of various operations on the Chow groups.

Push-forwards

Let f: X — Y be a map of algebraic varoeties. It is called projective, if
it can be decomposed as:

X Y x P"

where j is a closed embedding.
Examples:

1) Closed embedding is a projective map.
2) A' — Spec(k) is not a projective map.

3) X is projective (a closed subvariety in projective space), then any f :
X — Y is projective.



Roughly speaking, f is projective if all the fibers are projective varieties.
If f is projective we have push-forward maps

f* : CHd(X> — CHd(Y>,

where if V' C X is closed irreducible subvariety of X, and U C Y is its image
under f, then

o, if dim(U) < dim(V);
FV]) = {deg(k(V)/k‘(U)) - [U], if dim(U) = dim(V).

The coefficient deg(k(V)/k(U)) here is just the “number of preimages” of
the “sufficiently generic” point of U.

One can prove that in the case of projective map such definition respects
the rational equivalence.

Warning: if f is not projective one can try to define f, by the same
formula, but the rational equivalence will not be respected.

Pull-backs

Together with the dimensional notations one can use the codimensional
ones. Namely, codim(V C X) = dim(X) — dim(V'), and we will denote the
same Chow groups in two ways:

CHy(X) = CHImE)=d(x),

Variety X is called smooth if locally it can be defined by (n — dim(X))

equations f1,..., fu—dim(x) in some A", so that the matrix (%

- ) has (maxi-

mal possible) rank (n — dim(X)) everywhere on X.
Examples:

1) Projective space is smooth.

2) g-nondegenerate quadratic, then the respective projective quadric @) is
smooth. If ¢ is degenerate, then () is not smooth.

3) Spec(k[z,y]/(y* — 2?)) is not smooth (singularity at (0,0)).
If X is smooth, one has pull-back maps

£+ CH(Y) — CHE(X).



For arbitrary f it is not easy to see, how f* acts on classes of subvarieties,
but if f is smooth morphism (roughly speking, all the fibers are smooth
varieties)(or even flat morphism), then f*([U]) = [f~H(U)].

For arbitrary varieties X and Y one has the external product

CH%(X) x CH*(Y) & CH*"*(X x Y),

given by [V] x [U] — [V x U]. If now X is smooth we can combine this
product with the pull-back along the diagonal morphism A : X — X x X to
get a product structure on CH*(X).

X

CH*(X) x CH*(X) CH*™(X x X)

— s

CHP(X).

This gives the structure of the associative commutative ring on CH*(X) for
smooth variety X.

Category of Chow motives

Category of correspondences

Define C(k) - the category of correspondences:

Ob(C(k)) = { smooth proj. var.overk} 5 [X] - typical representative.

Moreu ([X],[Y]) = CHaim(x)(X x Y'), where we assume X - connected.

composition:

Let ¢ € Morcwy([X],[Y]), ¥ € Morew([Y],[Z]), in other words, ¢ €
CHdim(X) (X X Y), P E CHdim(y)(Y X Z).

Consider the natural projections

X xY xZ

XY l” TY,Z
X,Z

XxY X xZ Y x Z.
Then the composition is defined as:

Vo= ((Txz)((mxy)"(#) - (7y,2)"(¥)).

It follows from the standard properties of pull-backs and push-forwards, that
this operation is asociative.



In particular, one gets the associative ring structure on CH ™) (X x X).
Warning: do not mess it with the product ring structure on CH*(X x X) -
our new composition product is almost never commutative, while the product
structure is.

Have a natural functor

Sm.Proj./k A C(k)

from the category of smooth quasiprojective varieties over k to C(k), where
X — [X],and (f : X —Y) — [['y], where I'y C X x Y is the graph of the
map f. It is not difficult to check that this is really a functor (respects the
composition).

Category of correspondences has a structure of tenzor additive category,
where [X]|@[Y] := [X ][] Y] (the class of the disjoint union), and [X]®[Y] :=
(X xY].

Now, one can define the category of effective Chow-motives over k as the
Karoubian envelope of C(k):

Chow*? (k) := Kar(C(k)),

where the Karoubian (=pseudo-abelian) envelope of an additive category C
is defined as follows. p € End¢(A) is called projector, if pop = p. The
Kar(C) is a category such that Ob(Kar(C)) = {(A,p),A € Ob(C),p €
End¢(A)is a projector }. Morgarc)((A,p), (B,q)) = go Mor¢(A,B)op C
More(A, B), and the composition is induced by that in C.

There is natural functor C(k) R4 Chow®// (k) sending [X] to the pair
([X],id), and the structure of tenzor additive category descends from C(k) to
Chow®// (k). The composition of functors C' and Kar gives a motivic functor
from the category of smooth projective varieties over k to the category of the
effective Chow motives.

c C(k) K
=
Sm.Proj./k — Chow®// (k).

For the smooth projective variety X we will call its image M (X) - the motive
of X.





