

SMR/1847-4

Summer School on Particle Physics

11 - 22 June 2007

LHC Accelerators and Experiments (part III)

Marzio Nessi CERN, Switzerland

LHC Accelerators and Experiments (part III)

Contraction of the second

ICTP Marzio Nessi , CERN Trieste, 11-13th June 2007

ICTP-2007 The LHC project

- Part I : motivation, the LHC accelerator
- Part II : experimental goals, ATLAS and CMS detectors
- Part III : LHCb and Alice experiments, luminosity measurements, early discovery potential
- This will be a set of experimental lectures, with the goal of giving you an impression of the complexity and challenges of this project
- My deep involvement in the design and construction of the ATLAS detector will bias me towards it as a showcase ... sorry!

Table of Content (Part III)

- The LHC-b Experiment
 The heavy ion program: ALICE
 How do you measure the beam Luminosity
 The GRID project (offline computing)
- ✓ The early Physics Discoveries

B Physics at LHC

LHC will act as a **b**-factory with large b-quark production rate including B_s , allowing to improve the CKM consistency test and to look for deviations from the SM rare processes (dedicated experiment LHCb + ATLAS & CMS)

- ✓ All b hadron species are produced: B⁰, B⁺, B_s, B_c, b-baryons
 Expected fractions ~ 40 : 40 : 10 : 0.1 : 10 %
- One of the first physics goals:
 observation of B_s oscillation
- ✓ Best mode: $B_s \rightarrow D_s^- \pi^+$

Plot made for 1 year of data (80k selected events, LHCb) for $\Delta m_s = 20 \text{ ps}^{-1}$ (SM preferred)

M.Nessi - CFRN

New Physics in the B sector

LHCb is dedicated to the Search for New Physics in CP violation and Rare B decays

- Measure processes which are very suppressed in SM
 - \checkmark CP in B_s mixing
 - $\mathsf{B} \mathsf{B}_{\mathsf{s}} \rightarrow \mathsf{J}/\Psi \Phi_{\mathsf{s}} \rightarrow \mathsf{J}/\Psi \Phi$
 - Radiative and very rare B decays
 - $B_d \rightarrow K^* \gamma, B_s \rightarrow \Phi \gamma, B_d \rightarrow K^* \mu \mu, B_{d,s}$
 - \checkmark Rare D decays and D⁰ mixing
 - Lepton flavour violating decays
- Precision measurements of CKM elements
 - \checkmark B_s oscillations
 - ✓ Compare pure tree level processes with processes sensitive to NP Sin2 β B_d→J/ Ψ K_s vs B_d→ Φ K_s γ B→DK vs B→ $\pi\pi$ /KK
 - Measure all angles and sides in many different ways. Any inconsistency will be evidence for NP

LHCb looking for Matter-Antimatter Asymmetry in B-mesons

B hadrons have a mass of \sim 5 GeV and therefore tend to be produced with asymmetric *x* values of the partons --> boosted along the beam direction

✓ Cross section for bb production at 14 TeV: $\sigma_{bb} \sim 500 \ \mu b$

Enormous production rate at LHCb: $\sim 10^{12}$ bb pairs per year!

 \rightarrow much higher statistics than the current B factories

- ✓ However, σ_{bb} < 1% of inelastic cross-section more background from non-b events → challenging trigger and high energy → more primary tracks
- ✓ Expect ~ 200,000 reconstructed $B^0 \rightarrow J/\psi K_s evts/y$ *cf* current B-factory samples of ~ 4000 ev. → precision on sin 2 β ~ 0.02 in one year (similar to current *world average precision*)
- ✓ But in addition, *all* b-hadron species are produced: B^0 , B^+ , B_s , B_c , Λ_b ... In particular can study the B_s (bs) system, inaccessible at the B factories

Detector requirements

b and \overline{b} quarks are produced in pairs (mostly in the forward direction)

✓ Need to measure proper time of B decay: $t = m_{\rm B} L / pc$

hence decay length *L* (~ 1 cm in LHCb) and momentum *p* from decay products (which have ~ 1–100 GeV)

- Also need to tag *production* state of B: whether it was B or \overline{B} . Use charge of lepton or kaon from decay of the *other* b hadron in the event
- Need excellent particle identification to avoid huge combinatorial background

LHC-b in its cavern

The LHCb detector

Forward spectrometer (running in pp collider mode) Inner acceptance 10 mrad from conical beryllium **beam pipe**

Vertex Locator

Vertex locator around the interaction region Silicon strip detector with ~ 30 mm impact-parameter resolution, particularly important for triggering

Tracking System

Tracking system and dipole magnet to measure angles and momenta $\Delta p/p \sim 0.4$ %, mass resolution ~ 14 MeV (for $B_s \rightarrow D_s K$)

RICH detectors (Ring Imaging Cherenkov)

Two **RICH** detectors for charged hadron identification (π , K, p), important for hadronic decays as $B_s^{\ 0} \rightarrow D_s^{\ -} K^+ \rightarrow K^+ K^- \pi^- K^+$

RICH detectors

By measuring the radius of the ring, the velocity of the particle is found Then, with knowledge of its momentum, the mass of the particle can be found

Test-beam image of Cherenkov rings from 50 GeV e + π beam

Calorimeters

Calorimeter system to identify electrons, hadrons and neutrals Important for the first level of the trigger

Muon System

Muon system to identify muons, also used in the first level of the trigger

Overall view

Overall view

Trigger strategy

 $\overset{\sim}{\times}$

Ion physics @ LHC

- Global Characteristics of the event multiplicites, η distributions
- Degrees of freedom as a function of T hadron ratios and spectra, dilepton continuum, direct photons
- ✓ Collective effects
- ✓ Energy loss of partons in the QGP jet quenching, high p_{τ} spectrum, open c and b
- Deconfinement charmonium and bottomonium
- Chiral symmetry restauration
 Neutral to charged ratios, resonance decays
- Fluctuations and critical behaviour event-by-event particle composition and spectra

Machine

- \Rightarrow energy: $E_{beam} = 7 \times Z/A \text{ [TeV]} => \sqrt{s} = 5.5 \text{ TeV/A or } 1.14 \text{ PeV}$ (Pb-Pb)
- ⇒ beams: ~ 4 weeks/year(10⁶ s effective); typically after pp running (like at SPS)
 ⇒ luminosity:
 - 10^{27} cm⁻²s⁻¹ (Pb) to >10³⁰ (light ions), => rate 10 kHz to several 100 kHz
 - integrated luminosity 0.5 nb⁻¹/year (Pb-Pb)

ALICE multipurpose detector

Detector challenge:

✓ Identify and track most of the hadrons from soft to hard processes (100 MeV/c to P_T of ~ 100 GeV/c) up to 1.8 η units

✓ Vertex recognition of D/B mesons and hyperons in a very high density environment of up to $dN/d\eta \sim 8000$

✓ Special effort to detect and identify di-lepton decays

✓ Excellent photon detection

✓ A smart trigger system and very powerful data flow processing

ALICE Collaboration

- ~ 1000 Members
 (63% from CERN MS)
 ~30 Countries
- ~90 Institutes

ALICE setup

Magnet (from L3)

ITS

Six Layers of silicon detectors for precision tracking in $|\eta| < 0.9$

■ 3-D reconstruction (< 100µm) of the **Primary Vertex**

Secondary vertex Finding (Hyperons, D and B mesons)

Particle identification via dE/dx for momenta < 1 GeV</p>

■ **Tracking+Standalone reconstruction** of very low momentum tracks

IST

SDD - Silicon Drift

SPD - Silicon Pixel

SSD - Silicon Strip

TPC (Time Proportional Chamber)

Time Projection Chamber – TPC

Space-Point resolution 0.8 (1.2) mm in xy,(z), occupancy from 40% to 15%

- Efficient (>90%) tracking in $\eta < 0.9$
- σ(p)/p < 2.5% up to 10 GeV/c
- Two-track resolution < 10 MeV/c</p>
- p ID with dE/dx resolution < 10%

EM PbW04 Calorimeter Crystal detector unit

TRD (Transition Radiation Detector)

Purpose:

- Electron ID in the central barrel at p > 1 GeV/c
- Fast (6 μs) trigger for high-p_t
 Particles (p_t > 3 GeV/c)

Parameters:

- 540 modules \rightarrow 767 m² area
- 18 "supermodules"
- 6 layers, 5 longitudinal stacks
- Length: 7 m
- 28 m³ Xe/CO₂ (85:15)
- 1.2 M read out channels

The TRD is directly located outside the TPC starting at a radius of 2.9 m and extending to 3.7 m. It covers a rapidity range between -0.9 to 0.9. The total radiation thickness is X/X0 = 15%

TOF (Time of Flight detector)

Large array at R \sim 3.7 m, covering $\mid \eta \mid$ < 0.9 and full φ

- TOF basic element: double-stack Multigap RPC strip
- Occupancy < 15% (O(10⁵) readout channels)

- Intrinsic Resolution ~ 40 ps
- Efficiency > 99%

ALICE central tracking

robust, redundant tracking from 100 MeV to 100 GeV

- ✓ modest soleniodal field (0.5 T) = > easy pattern recognition
- ✓ long lever arm => good momentum resolution
- ✓ small material budget < 10% X₀ vertex -> end of TPC
- Silicon Vertex Detector (ITS) 4 cm < r < 44 cm stand-alone tracking at low p_t

(**6 layers**, >6 m²)

✓ Time Projection Chamber (TPC) 85 cm < r < 245 cm</p>

Transition Radiation Detector (TRD) 290 cm < 370 cm (6x3 cm tracks)</p>

ALICE particle identification

34

ALICE setup

Dimuon Spectrometer

Muon Spectrometer

How to measure luminosity ?

First Why ?

Cross sections for "Standard " processes ✓ t-tbar production ✓ W/Z production

✓ ……

Theoretically known to better than 10%will improve in the future

New physics manifesting in deviation of σ x BR $\,$ relative the Standard Model predictions

Strategy:

 Measure the absolute luminosity with a precise method at optimum conditions
Calibrate luminosity monitor with this measurement, which can then be used at different conditions *Goal: Measure L with* \leq *3% accuracy (long term goal)*

How? Three major approaches

LHC Machine parameters
Rates of well-calculable processes:e.g. QED (like LEP), EW and QCD
Elastic scattering

✓ Optical theorem: forward elastic rate + total inelastic rate:

Luminosity from Coulomb Scattering

✓ Hybrids

✓ Use σ_{tot} measured by others

✓ Combine machine luminosity with optical theorem

Luminosity from machine parameters

Luminosity depends exclusively on beam parameters:

$$\mathcal{L} = \frac{N^2 f_{\rm rev} n_b}{4\pi \sigma^{*2}}$$

Depends on f_{rev} revolution frequency, n_b number of bunches N number of particles/bunch σ^* beam size or rather overlap integral at IP

$$\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$$

The luminosity is reduced if there is a crossing angle (300 µrad) 1 % for $\beta^* = 11$ m and 20% for $\beta^* = 0.5$ m

Luminosity accuracy limited by

- \checkmark extrapolation of σ_x , σ_y (or ε , β_x^* , β_y^*) from meas. of beam profiles elsewhere to IP; knowledge of optics, ...
- ✓ Precision in the measurement of the the bunch current (parasitic particles)
- ✓ beam-beam effects at IP, effect of crossing angle at IP, ...

Calibration runs : i.e calibrate the relative beam monitors of the experiments during dedicated calibration runs with simplified LHC conditions

- ✓ Reduced intensity
- ✓Fewer bunches
- ✓No crossing angle
- ✓ Larger beam size

√....

Better than ~5 % precision might be in reach (it will take some time !)

Luminosity from well know physics channels (1)

Luminosity from well know physics channels (2)

W, Z counting

- Clean signature via leptonic decays
- σ_{th} is the convolution of the Parton Distribution Functions (PDF) and of the partonic cross section
- The uncertainty of the partonic cross section is available to NNLO in differential form with estimated scale uncertainty below 1 % (PRD 69, 94008.)
- PDF's more controversial and complex (today 8%)
- Aiming at a final precision 3-5 % after several years
- Requires perfect knowledge of the detector

$$\mathcal{L}$$
 = (N - BG)/ ($\epsilon \times A_W \times \sigma_{th}$)

 \mathcal{A} is the integrated luminosity N is the number of candidates BG is the number of background events ε is the efficiency for detecting W,Z decay products $A_{W,Z}$ is the acceptance σ_{th} is the theoretical inclusive cross section

ATLAS ALFA approach

Elastic scattering at very small angles (ATLAS ALFA)

- Measure elastic scattering at such small t-values that the cross section becomes sensitive to the Coulomb amplitude
- Effectively a normalization of the luminosity to the exactly calculable Coulomb amplitude
- No total rate measurement and thus no additional detectors near IP necessary
- \checkmark UA4 used this method to determine the luminosity to 2-3 % at the SPS

Need to measure extremely small angles using detectors in "Roman pots" far away from the IP (~220m)

Coulomb amplitude » Strong amplitude for $-t < 0.00065 \text{GeV}^2$, this corresponds to 3.5 mrad

ATLAS ALFA detector

- The active area has to be very close to the beam (~1.5 mm)
- The detector has to be far away from the interaction point (240m)
- The dead space at the edge of the detector has to be small (< 100 μm)</p>
- The detector resolution has to be about 30 μm
- The times resolution has to be about 1 ns.

TOTEM

The optical theorem relates the total cross section to the forward elastic rate

$$\sigma_{tot} = 4\pi \text{ Im } f_{el}(0)$$

$$L = \frac{1 + \rho^{2}}{16\pi} \frac{N_{tot}^{2}}{\frac{dN_{el}}{dt}} \Big|_{t=0}$$

✓ Extrapolate the elastic cross section to t=0
✓ Measure the total rate
✓ Use best estimate of ρ (ρ ~ 0.13 +- 0.02 ⇒ 0.5 % in ΔL/L)

dN_{el}/dt|_{t=0} requires small -t ~ 0.01 GeV² ⇒ θ ~15 µrad (nominal divergence is 32 µrad) ⇒ beam with smaller divergence ⇒ large β* ~ 1000 m (divergence ∝1/√β*)

Zero crossing angle ⇒ fewer bunches ⇒ Special run at low luminosity

TOTEM detectors

TOTEM Roman Pots

- Measurement of $d\sigma/dt$ in a wide range of t: $10^{-3} \text{ GeV}^2 < -t < 8 \text{ GeV}^2$
- Special beam optics designed
- High statistics in a few days of running (<1%)

LHC computing effort ?

The offline Data Processing (GRID project)

The amount of data produce by the 4 experiments will just be enormous, no single computer center can handle such amount of data

The GRID (ATLAS example)

The **World Wide Web** provides seamless access to information that is stored in many millions of different geographical locations

The **Grid** is an infrastructure that provides seamless access to computing power and data storage capacity distributed over the globe

The GRID : how it works

- It relies on special software, called middleware
- Middleware automatically finds the data the scientist needs, and the computing power to analyse it
- Middleware balances the load on different resources. It also handles security, accounting, monitoring and much more

ATLAS computing model

CERN and Tier-1/2 resources usage

- ✓ CPU usage increased by factor of 2 over past year
- ✓ Disk usage by a factor of 4.9
- Expect new important increase during data taking at the level of 15 PetaBytes/year

http://gridportal.hep.ph.ic.ac.uk/rtm/

European Research Network

•New GÉANT 2 – research network backbone

•Strong correlation with major European LHC centres (Swiss PoP at CERN)

•Core links are fibre

The LHC computing grid status

The LHC physics data analysis service distributed across the world

 ✓ CERN, 11 large *Tier-1* centres, over 100 active *Tier-2* centres

Status at April 2007

- Established the 10 Gigabit/sec optical network that interlinks CERN and the Tier-1 centres
- Demonstrated data distribution from CERN to the Tier-1 centres at 1.3 GByte/sec – the rate that will be needed in 2008
- ✓ ATLAS and CMS can each transfer 1 PetaByte of data per month between their computing centres
- ✓ Running ~2 million jobs each month across the grid
- ✓ The distributed grid operation, set up during 2005, has reached maturity, with responsibility shared across 7 sites in Europe, the US and Asia
- End-user analysis tools enabling "real physicists" to profit from this worldwide dataintensive computing environment

Early Physics Scenario

Step by step

Understand and calibrate detector and trigger in situ using well-known physics samples Goal # e.g. - Z \rightarrow ee, $\mu\mu$ tracker, ECAL, Muon chambers calibration/alignment, ... - $tt \rightarrow bl_V bjj$ jet scale from W $\rightarrow jj$, b-tag performance, etc. Understand basic SM physics at $\sqrt{s} = 14$ TeV --> first tuning of Monte Carlo Understand the timing of all components --> use minimum bias Main candles: W, Z, tt, minimum bias, QCD jets e.g. - measure cross-sections (initially to ~ 20 %), look at basic event features, first constraints of PDFs, etc. - measure top mass (to ~ 7 GeV) \rightarrow give feedback on detector performance it will take time Note : statistical error negligible after few weeks run Prepare the road to discovery: Goal # 2 measure backgrounds to New Physics : e.g. tt and W/Z+ jets (omnipresent ...) Look for New Physics potentially accessible in first year(s) Goal # 3 (e.g. $Z' \rightarrow ee$, SUSY, some Higgs ? ...)

Expected knowledge of the detector at the beginning

months	@Day 1 (examples)	After a few months	Needed physics samples
ECAL uniformity	~1%	~ 0.7 %	Minimum-bias, Z \rightarrow ee
e/γ scale	~2 %	~ 0.1 % ?	~ 10 ⁵ Z \rightarrow ee
HCAL uniformity	3 %	~1%	Single pions, QCD jets
Jet scale	< 10%	<5%	Z (\rightarrow II) +1j, W \rightarrow jj in tt events
Tracking alignment (in Ro Pixels/SCT/u)	20-200 μm ?	10-20µm	Generic tracks, isolated μ , Z $\rightarrow \mu\mu$
B-Field Solenoid	2-4 G	2-4 G	
B-Field Toroids	10-50 G	5-20 G	

 determine detector "operation" parameters: timing, voltages, noise, relative positions, initial calibration and alignment, etc.

✓ reach "day 1" performance and understand several systematic effects (material, B-field, ..)

--> gain time and experience before commissioning with cosmics or single beams

✓ we will go gradually to nominal conditions : first 75ns and 43x43 bunches, then 156x156 and just partial squeezing of the beam (L = 10^{28} - 10^{32}), then 25 ns

First SM physics to cross check

Lot of progress with NLO matrix element MC interfaced to parton shower MC (MC@ NLO, AlpGen,...)

<u>Candidate to very early measurement</u>: few 10⁴ events enough to get dN_{ch}/dη, dN_{ch}/dp_T ->tuning of MC models ->understand basics of pp collisions, occupancy, pile-up, ...

To arrive to today's status (D0&CDF)

Early Top will mean :

Expect ~ **100** (1000) events inside mass peak for **30** (300) pb^{-1}

 \rightarrow top signal observable in early days with no b-tagging and simple analysis

Cross-section to 20%, m_{top} to 7 GeV (LHC goal ~1 GeV) with 100 pb⁻¹?

This tt sample is excellent to:

- ✓ commission b-tagging, set jet E-scale using W -> jj peak
- understand detector performance and reconstruction of several physics objects (e, μ, jets, b-jets, missing ET, ..)
- \checkmark understand / tune MC generators using e.g. p_T spectra
- ✓ measure background to many searches

What about new physics ~ 1 fb⁻¹?

An early di-lepton resonance ?

Many models would then join in !

e,e might be really easier

What about SUSY discovery < 1 fb⁻¹?

Squarks and gluinos produced via strong processes \rightarrow large cross-section

 $\tilde{q}\tilde{q}, \tilde{q}\tilde{g}, \tilde{g}\tilde{g}$ production are dominant SUSY processes at LHC, if accessible

→ spectacular signatures (many jets, missing transverse energy, leptons)

What about SUSY discovery ? (2)

But very difficult BG

- W/Z + jets with $Z \rightarrow vv$, $W \rightarrow \tau v$; tt; etc.
- QCD multijet events with fake ETmiss from jet mis-measurements (calorimeter resolution and non-compensation, cracks, ...)
- cosmics, beam-halo, detector problems overlapped with high- p_T triggers, ...

How to clean the sample:

- ✓ at least 2-3 jets with p_T >80-100 GeV, E_T^{miss} > 80-100 GeV
 - (for masses at overlap with Tevatron reach, higher otherwise)
- ✓ good event vertex
- ✓ no jets in detector cracks
- \checkmark p_T^{miss} vector not pointing along or opposite to a jet in transverse plane

Estimate backgrounds using as much as possible data (control samples) and MC

Normalise MC to data at low E_T^{miss} and use it to predict background at high E_T^{miss} in "signal" region

It will be a long and difficult process !
Discovery reach with jets + E_T^{miss} signature (most model-independent)

What about early Higgs ?

- $m_H < 120 \text{ GeV}$: $H \rightarrow bb$ dominates
- 130 GeV < m_H < 2 m_Z : $H \rightarrow WW^{(*)}$, $ZZ^{(*)}$
- $m_H > 2 m_Z : 1/3 H \rightarrow ZZ, 2/3 H \rightarrow WW$
- *important rare decays :* $H \rightarrow \gamma \gamma$

73

Low mass higgs, will not be easy in an early stage

M > 130 GeV

May be observed with 3-4 fb⁻¹

 $H \rightarrow 4I$: low-rate but very clean : narrow mass peak, small background

- requires:
 - $\sim 90\%\,$ e, μ efficiency at low p_T σ /m \sim 1%, tails < 10% \circledast good quality of E, p measurements in ECAL and tracker
 - background dominated by irreducible ZZ production (tt and Zbb rejected by Z-mass constraint, and lepton isolation and impact parameter)
- $H \rightarrow WW \rightarrow lvlv$: high rate (~ 100 evts/expt) but no mass peak
 - \rightarrow not ideal for early discovery ...

Early Higgs discovery potential

Overall discovery potential : our best guess

