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Abstract

The theoretical tools required to construct models in warped extra dimen-
sions are presented. This includes how to localise zero modes in the warped
bulk and how to obtain the holographic interpretation using the AdS/CFT
correspondence. Several models formulated in warped space are then discussed
including nonsupersymmetric and supersymmetric theories as well as their dual
interpretation. Finally it is shown how grand unification occurs in warped mod-
els.
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1 Introduction

Warped extra dimensions have provided a new framework for addressing the hier-
archy problem in extensions of the Standard Model. The curved fifth dimension is
compactified on a line segment where distance scales are measured with the nonfac-
torisable metric of anti-de Sitter (AdS) space. Since distance and hence energy scales
are location dependent in AdS space, the hierarchy problem can be redshifted away.
However this novel solution also has a more mundane explanation. By the AdS/CFT
correspondence, five-dimensional (5D) AdS space has a dual four-dimensional (4D)
interpretation in terms of a strongly-coupled conformal field theory (CFT). In this 4D
guise the hierarchy problem is solved by having a low cutoff scale that is associated
with the conformal symmetry breaking scale of the CFT. Both interpretations are
equally valid and allow the infrared (IR) scale to be hierarchically smaller and stable
compared to the ultraviolet (UV) scale. This is much like the photon and electron of
QED compared with the baryons and mesons of QCD. The Planck scale, MP provides
the cutoff scale for QED, while in QCD the composite baryons and mesons are only
valid up to the QCD scale ΛQCD ≪ MP . In warped models of electroweak physics
the Higgs is composite at the TeV scale, while the Standard Model fermions and
gauge bosons are partly composite to varying degrees, ranging from an elementary
electron to a composite top quark. The Planck scale again provides the UV cutoff
for the elementary states, while the TeV scale is the compositeness or IR scale.

This hybrid framework of electroweak physics has led to a renaissance of com-
posite Higgs models that have many desirable features. They are consistent with
electroweak precision data that place strong bounds on the scales of new physics.
New physics at the TeV scale generically leads to flavor problems, but these are ab-
sent in warped models, since a GIM-like mechanism operates. The warped models
also explain the fermion mass hierarchy (including neutrino masses) as well as in-
corporate grand unification with logarithmic running and unified gauge couplings.
This sophisticated level of model building is due to the complementary nature of the
AdS/CFT framework. The 5D warped bulk not only provides a simple geometric
picture in which to construct these models, but more importantly is also a weakly-
coupled description in which calculations can be performed. In fact this theoretical
tool provides a unique window into strongly-coupled 4D gauge theories and goes be-
yond the application to electroweak physics that will be the primary concern of these
lectures. The 5D picture is complemented by the 4D description which is more intu-
itive, primarily from our understanding of QCD, except that the 4D gauge theory is
strongly-coupled and a perturbative analysis is not possible.

Hence the plan of these lectures will be to begin in 5D warped space and describe
how to localise zero modes anywhere in a slice of AdS. This will enable us to quite
simply construct the Standard Model in the bulk. The more intuitive dual 4D in-
terpretation will then be obtained by writing down the AdS/CFT dictionary. This
dictionary will allow us to give either a 5D or 4D description for any type of warped
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model. The AdS/CFT framework need not only apply to electroweak physics. Su-
persymmetry will be subsequently introduced and the model-building possibilities
surveyed. Lastly the novel features of grand unification in warped space will be
discussed.

Since the aim of these lectures is to emphasize the dual nature of warped models
a little background knowledge of warped extra dimensions will be useful. This is
nicely reviewed in Refs [1, 2, 3, 4, 5]. Some theoretical aspects of warped models
presented in these lectures have also been covered in Refs [3, 5, 6]. Higgless models
are not covered in these lectures, but these type of warped models are discussed in
Refs [6, 7]. Finally, while these lectures concentrate on the theoretical aspects of
warped models, the phenomenological aspects are just as important, and these can
be found in Ref [6, 8].

2 Bulk fields in a slice of AdS5

2.1 A slice of AdS5

Let us begin by considering a 5D spacetime with the AdS5 metric

ds2 = e−2kyηµνdx
µdxν + dy2 ≡ gMNdx

MdxN , (1)

where k is the AdS curvature scale. The spacetime indices M = (µ, 5) where µ =
0, 1, 2, 3 and ηµν = diag(− + ++) is the Minkowski metric. The fifth dimension y
is compactified on a Z2 orbifold with a UV (IR) brane located at the orbifold fixed
points y∗ = 0(πR). Between these two three-branes the metric (1) is a solution to
Einstein’s equations provided the bulk cosmological constant and the brane tensions
are appropriately tuned (see, for example, the lectures by Rubakov [1]). This slice
of AdS5 is the Randall-Sundrum solution [9] (RS1) and is geometrically depicted in
Fig.1.

In RS1 the Standard Model particle states are confined to the IR brane. The
hierarchy problem is then solved by noting that generic mass scales M in the 5D
theory are scaled down to Me−πkR on the IR brane at y = πR. In particular since
the Higgs boson H is localised on the IR brane this means that the dimension two
Higgs mass term gets rescaled by an amount

m2
H |H|2 → (mHe

−πkR)2|H|2 , (2)

so that a Higgs mass parameter mH ∼ O(M5) in the 5D theory will naturally be
associated with a hierarchically smaller scale on the IR brane (where M5 is the 5D
fundamental mass scale). However on the IR brane higher-dimension operators with
dimension greater than four, such as those associated with proton decay, flavour
changing neutral currents (FCNC) and neutrino masses will now be suppressed by

3



AdS 5

π R

)UV (M  P IR (TeV)

y0

Figure 1: A slice of AdS5: The Randall-Sundrum scenario.

the warped down scale

1

M2
5

Ψ̄iΨjΨ̄kΨl → 1

(M5e−πkR)2
Ψ̄iΨjΨ̄kΨl , (3)

1

M5
ννHH → 1

M5e−πkR
ννHH , (4)

where Ψi is a Standard Model fermion and ν is the neutrino. This leads to generic
problems with proton decay and FCNC effects, and also neutrino masses are no longer
consistent with experiment. Thus, while the hierarchy problem has been addressed
in the Higgs sector by a classical rescaling of the Higgs field, this has come at the
expense of introducing proton decay and FCNC problems from higher-dimension op-
erators that were sufficiently suppressed in the Standard Model.

• Exercise: The classical rescaling Φ → edΦπkRΦ where dΦ = 1(3
2
) for scalars

(fermions), suffers from a quantum anomaly and leads to the addition of the La-
grangian term

δLanomaly = πkR
∑

i

β(gi)

4g3
i

TrF 2
µν,i , (5)

where β(gi) is the β-function for the corresponding gauge couplings gi. Show that this
anomaly implies that quantum mass scales, such as the gauge coupling unification
scale MGUT , are also redshifted by an amount MGUT e

−πkR.

Instead in the slice of AdS5 with the Standard Model fields confined on the IR brane
one has to resort to discrete symmetries to forbid the offending higher-dimension
operators. Of course it is not adequate just to forbid the leading higher-dimension
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operators. Since the cutoff scale on the IR brane is low (O(TeV)), successive higher-
dimension operators must also be eliminated to very high order.

This feature of RS1 stems from the fact that all Standard Model particles are
localised on the IR brane. However to address the hierarchy problem, only the Higgs
field needs to be localised on the IR brane. The Standard Model fermions and gauge
fields do not have a hierarchy problem and therefore can be placed anywhere in the
bulk [10, 11, 12]. In this way the UV brane can be used to provide a sufficiently high
scale to help suppress higher-dimension operators while still solving the hierarchy
problem [11].

2.2 The bulk field Lagrangian

Let us consider fermion Ψ, scalar Φ and vector AM bulk fields. In a slice of AdS5 the
5D action is given by

S5 = −
∫
d4x dy

√−g
[
1

2
M3

5R + Λ5

+
1

4g2
5

F 2
MN + |DMΦ|2 + iΨ̄ΓM∇MΨ

+ m2
φ|Φ|2 + imψΨ̄Ψ

]
, (6)

where M5 is the 5D fundamental scale, Λ5 is the bulk cosmological constant and g5

is the 5D gauge coupling. In curved space the gamma matrices are ΓM = eAMγA,
where eAM is the funfbein defined by gMN = eAMe

B
NηAB and γA = (γα, γ5) are the usual

gamma matrices in flat space. The curved space covariant derivative ∇M = DM+ωM ,
where ωM is the spin connection and DM is the gauge covariant derivative for fermion
and/or scalar fields charged under some gauge symmetry. The action (6) includes
all terms to quadratic order that are consistent with gauge symmetries and general
coordinate invariance. In particular this only allows a mass term mφ for the bulk
scalar and a mass term mψ for the bulk fermion.

In general the equation of motion for the bulk fields is obtained by requiring that
δS5 = 0. This variation of the action (6) can be written in the form

δS5 =

∫
d5x δφ (Dφ) +

∫
d4x δφ (Bφ)

∣∣
y∗
, (7)

where φ is any bulk field. Requiring the first term in (7) to vanish gives the equation
of motion Dφ = 0. However the second term in (7) is evaluated at the boundaries y∗

of the fifth dimension y. The vanishing of the second term thus leads to the boundary
conditions δφ|y∗ = 0 or Bφ|y∗ = 0. Note that there are also boundary terms arising
from the orthogonal directions xµ, but these are automatically zero because φ is
assumed to vanish at the 4D boundary xµ = ±∞.
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2.2.1 Scalar fields

Suppose that the bulk scalar field has a mass squared m2
φ = ak2 where we have

defined the bulk scalar mass in units of the curvature scale k with dimensionless
coefficient a. The equation of motion derived from the scalar part of the variation of
the action (6) is

∂2Φ + e2ky∂5(e
−4ky∂5Φ) −m2

φe
−2kyΦ = 0, (8)

where ∂2 = ηµν∂µ∂ν . We are interested in the zero mode solution of this equation.
The solution is obtained by assuming a separation of variables

Φ(x, y) =
1√
πR

∑

n

Φ(n)(x)φ(n)(y) , (9)

where Φ(n) are the Kaluza-Klein modes satisfying ∂2Φ(n)(x) = m2
nΦ

(n)(x) and φ(n)(y)
is the profile of the Kaluza-Klein mode in the bulk. The general solution for the zero
mode (m0 = 0) is given by

φ(0)(y) = c1 e
(2−α)ky + c2 e

(2+α)ky , (10)

where α ≡
√

4 + a and c1, c2 are arbitrary constants. These constants can be deter-
mined by imposing boundary conditions at the brane locations, which following from
the second term of (7) can be either Neumann ∂5φ

(n)|y∗ = 0 or Dirichlet φ(n)|y∗ = 0.
However for a 6= 0 imposing Neumann conditions leads to c1 = c2 = 0. Similarly
Dirichlet conditions lead to c1 = c2 = 0. This implies that there is no zero mode
solution with simple Neumann or Dirichlet boundary conditions.

Instead in order to obtain a zero mode we need to modify the boundary action
and include boundary mass terms [11]

Sbdy = −
∫
d4x dy

√−g 2 b k [δ(y) − δ(y − πR)] |Φ|2 , (11)

where b is a dimensionless constant parametrising the boundary mass in units of k.
The Neumann boundary conditions are now modified to

(
∂5φ

(0) − b k φ(0)
) ∣∣∣∣

0,πR

= 0. (12)

• Exercise: Verify that the boundary conditions (12) follow from (7) after including
the boundary mass terms (11).

Imposing the modified Neumann boundary conditions at y∗ = 0, πR leads to the
equations

(2 − α− b) c1 + (2 + α− b) c2 = 0 , (13)

(2 − α− b) c1 e
(2−α)πkR + (2 + α− b) c2 e

(2+α)πkR = 0 . (14)
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These equations depend on the two arbitrary mass parameters a and b. For generic
values of these parameters the solution to the boundary conditions again leads to
c1 = c2 = 0. However, if b = 2−α then this implies that only c2 = 0, while if b = 2+α
then we obtain c1 = 0. Note that in principle there are three mass parameters if we
introduce two parameters corresponding to each boundary. However in (11) we have
chosen the mass parameters on the two boundaries to be equal and opposite. Thus
a nonzero part of the general solution always survives and the zero mode solution
becomes

φ(0)(y) ∝ ebky , (15)

where b = 2 ± α. Assuming α to be real (which requires a ≥ −4 in accord with the
Breitenlohner-Freedman bound [13] for the stability of AdS space), the parameter b
has a range −∞ < b < ∞. The localisation features of the zero mode follows from
considering the kinetic term

−
∫
d5x

√−g gµν ∂µΦ∗∂νΦ + . . .

= −
∫
d5x e2(b−1)ky ηµν ∂µΦ

(0)∗(x)∂νΦ
(0)(x) + . . . (16)

Hence, with respect to the 5D flat metric the zero mode profile is given by

φ̃(0)(y) ∝ e(b−1)ky = e(1±
√

4+a)ky . (17)

We see that for b < 1 (b > 1) the zero mode is localised towards the UV (IR)
brane and when b = 1 the zero mode is flat. Therefore using the one remaining free
parameter b the scalar zero mode can be localised anywhere in the bulk.

The general solution of the Kaluza-Klein modes corresponding to mn 6= 0 is given
by

φ(n)(y) = e2ky
[
c1Jα

( mn

ke−ky

)
+ c2Yα

( mn

ke−ky

)]
, (18)

where c1,2 are arbitrary constants. The Kaluza-Klein masses are determined by im-
posing the boundary conditions and in the limit πkR ≫ 1 lead to the approximate
values

mn ≈
(
n +

1

2

√
4 + a− 3

4

)
πk e−πkR . (19)

The fact that the Kaluza-Klein mass scale is associated with the IR scale (ke−πkR) is
consistent with the fact that the Kaluza-Klein modes are localised near the IR brane,
and unlike the zero mode can not be arbitrarily localised in the bulk.

2.2.2 Fermions

Let us next consider bulk fermions in a slice of AdS5 [14, 11]. In five dimensions a
fundmental spinor representation has four components, so fermions are described by
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Dirac spinors Ψ. Under the Z2 symmetry y → −y a fermion transforms (up to a
phase ±) as

Ψ(−y) = ±γ5Ψ(y) , (20)

so that Ψ̄Ψ is odd. Since only invariant (or even) terms under the Z2 symmetry can
be added to the bulk Lagrangian the corresponding mass parameter for a fermion
must necessarily be odd and given by

mψ = c k (ǫ(y) − ǫ(y − πR)) , (21)

where c is a dimensionless mass parameter and ǫ(y) = y/|y|. We have again chosen the
mass parameter c to be equal and opposite on the two boundaries. The corresponding
equation of motion for fermions resulting from the action (6) is

ekyηµνγµ∂νΨ̂− + ∂5Ψ̂+ +mψΨ̂+ = 0 ,

ekyηµνγµ∂νΨ̂+ − ∂5Ψ̂− +mψΨ̂− = 0 , (22)

where Ψ̂ = e−2kyΨ and Ψ± are the components of the Dirac spinor Ψ = Ψ+ + Ψ−
with Ψ± = ±γ5Ψ±. Note that the equation of motion is now a first order coupled
equation between the components of the Dirac spinor Ψ.

• Exercise: Using the fact that the spin connection for the AdS5 metric is given by

ωM =

(
k

2
γ5γµe

−ky, 0

)
, (23)

derive the bulk fermion equation of motion (22) from the action (6).

The solutions of the bulk fermion equation of motion (22) are again obtained by
separating the variables

Ψ±(x, y) =
1√
πR

∑

n

Ψ
(n)
± (x)ψ

(n)
± (y) , (24)

where Ψ
(n)
± are the Kaluza-Klein modes satisfying ηµνγµ∂νΨ

(n)
± = mnΨ

(n)
± . The zero

mode solutions can be obtained for mn = 0 and the general solution of (22) is given
by

ψ̂
(0)
± (y) = d± e∓cky , (25)

where d± are arbitrary constants. The Z2 symmetry implies that one of the compo-
nents ψ± must always be odd. If γ5 = diag(1,−1), then (20) implies that ψ∓ is odd
and there is no corresponding zero mode for this component of Ψ. In fact this is how
4D chirality is recovered from the vectorlike 5D bulk and is the result of compactify-
ing on the Z2 orbifold. For the remaining zero mode the boundary condition obtained
from (7) with the boundary mass term (21) is the modified Neumann condition

(
∂5ψ̂

(0)
± ± c k ψ̂

(0)
±

) ∣∣∣∣
0,πR

= 0 . (26)
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Thus there will always be a zero mode since the boundary condition is trivially the
same as the equation of motion. For concreteness let us choose ψ− to be odd, then
the only nonvanishing zero mode component of Ψ is

ψ
(0)
+ (y) ∝ e(2−c)ky . (27)

Again the localisation features of this mode are obtained by considering the kinetic
term

−
∫
d5x

√−g gµν iΨ̄Γµ∂νΨ + . . .

= −
∫
d5x e2(

1

2
−c)ky ηµν iΨ̄

(0)
+ (x)γµ∂νΨ

(0)
+ (x) + . . . . (28)

Hence with respect to the 5D flat metric the fermion zero mode profile is

ψ̃
(0)
+ (y) ∝ e(

1

2
−c)ky . (29)

When c > 1/2 (c < 1/2) the fermion zero mode is localised towards the UV (IR)
brane while the zero mode fermion is flat for c = 1/2. So, just like the scalar field
zero mode the fermion zero mode can be localised anywhere in the 5D bulk.

The nonzero Kaluza-Klein fermion modes can be obtained by solving the cou-
pled equations of motion for the Dirac components ψ

(n)
± . This leads to a pair of

decoupled second order equations that can be easily solved. The expressions for the
corresponding wave functions and Kaluza-Klein masses are summarised in the next
subsection.

2.2.3 Summary

A similar analysis can also be done for the bulk graviton [15] and bulk gauge field [16,
17]. In these cases there are no bulk or boundary masses and the corresponding
graviton zero mode is localised on the UV brane while the gauge field zero mode is
flat and not localised in the 5D bulk 1. A summary of the bulk zero mode profiles is
given in Table 1.

Similarly the Kaluza-Klein mode (mn 6= 0) solutions can be obtained for all types
of bulk fields and combined into one general expression [11]

f (n)(y) =
e
s
2
ky

Nn

[
Jα

( mn

ke−ky

)
+ bαYα

( mn

ke−ky

)]
, (30)

for f (n) = (φ(n), ψ̂
(n)
± , A

(n)
µ ) where

bα = − (−r + s
2
)Jα(

mn
k

) + mn
k
J ′
α(

mn
k

)

(−r + s
2
)Yα(

mn
k

) + mn
k
Y ′
α(

mn
k

)
, (31)

1Note however that bulk and boundary masses can be introduced for the graviton [18] and gauge
field [19], thereby changing their localization profile and corresponding operator dimensions. But
this is beyond the applications that will be considered in these lectures.
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Table 1: The zero mode profiles of bulk fields and the corresponding CFT operator
dimensions.

Field Profile dim O
scalar φ(0)(y) e(1±

√
4+a)ky 2 +

√
4 + a

fermion ψ
(0)
+ (y) e(

1

2
−c)ky 3

2
+ |c+ 1

2
|

vector A
(0)
µ (y) 1 3

graviton h
(0)
µν (y) e−ky 4

and

Nn ≃ 1√
π2R mn e−πkR

, (32)

with s = (4, 1, 2), r = (b,∓c, 0) and α = (
√

4 + a, |c ± 1
2
|, 1). The graviton modes

h
(n)
µν are identical to the scalar modes φ(n) except that a = b = 0. The Kaluza-Klein

mass spectrum is approximately given by

mn ≃
(
n +

1

2
(α− 1) ∓ 1

4

)
πk e−πkR , (33)

for even (odd) modes and n = 1, 2, . . . . Note that the Kaluza-Klein modes for all
types of bulk fields are always localised near the IR brane. Unlike the zero mode
there is no freedom to delocalise the Kaluza-Klein (nonzero) modes away from the
IR brane.

3 The Standard Model in the Bulk

We can now use the freedom to localise scalar and fermion zero mode fields anywhere
in the warped bulk to construct a bulk Standard Model. Recall that the hierarchy
problem only affects the Higgs boson. Hence to solve the hierarchy problem the
Higgs scalar field must be localised very near the TeV brane, and for simplicity we
will assume that the Higgs is confined on the TeV brane (as in RS1). However we
will now consider the possible effects of allowing fermions and gauge bosons to live
in the warped bulk.

3.1 Yukawa couplings

One consequence of allowing fermions to be localised anywhere in the bulk, is that
Yukawa coupling hierarchies are naturally generated by separating the fermions from
the Higgs on the TeV brane. Each Standard Model fermion is identified with the zero
mode of a corresponding 5D Dirac spinor Ψ. For example, the left-handed electron
doublet eL is identified with the zero mode of ΨeL+, which is the even component of
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the 5D Dirac spinor ΨeL = ΨeL+ + ΨeL−. The odd component ΨeL− does not have a
zero mode, but at the massive level it pairs up with the massive modes of ΨeL+ to form
a vectorlike Dirac mass. This embedding of 4D fermions into 5D fermions is repeated
for each Standard Model fermion. The Standard Model Yukawa interactions, such as
Ψ̄eLΨeRH , are then promoted to 5D interactions in the warped bulk. This gives

∫
d4x

∫
dy

√−g λ(5)
ij

[
Ψ̄iL(x, y)ΨjR(x, y) + h.c.

]
H(x)δ(y − πR)

≡
∫
d4x λij (Ψ̄

(0)
iL+(x)Ψ

(0)
jR+(x)H(x) + h.c. + . . . ) , (34)

where i, j are flavour indices, λ
(5)
ij is the (dimensionful) 5D Yukawa coupling and λij

is the (dimensionless) 4D Yukawa coupling. Given that the zero mode profile is

ψ̃
(0)
iL+,R+(y) ∝ e(

1

2
−ciL,R)ky , (35)

this leads to an exponential hierarchy in the 4D Yukawa coupling [11]

λij ≃ λ
(5)
ij k

√
(ciL − 1/2)(ciR − 1/2) e(1−ciL−cjR)πkR , (36)

for ciL,R > 1/2. Assuming ciL = cjR for simplicity then the electron Yukawa coupling
λe ∼ 10−6 is obtained for ce ≃ 0.64. Instead when ciL,R < 1/2, both fermions are
localised near the IR brane giving

λij ≃ λ
(5)
ij k

√
(1/2 − ciL)(1/2 − ciR) , (37)

with no exponential suppression. Hence the top Yukawa coupling λt ∼ 1 is obtained
for ct ≃ −0.5. The remaining fermion Yukawa couplings, cf then range from ct < cf <
ce [11, 20]. Thus, we see that for bulk mass parameters c of O(1) the fermion mass
hierarchy is explained. The fermion mass problem is now reduced to determining the
c parameters in the 5D theory. This requires a UV completion of the 5D warped bulk
model with fermions, such as string theory.

Since bulk fermions naturally lead to Yukawa coupling hierarchies, the gauge
bosons must also necessarily be in the bulk. From Table 1 the gauge field zero mode
is flat and therefore couples with equal strength to both the UV and IR brane. Only
the Higgs field is confined to the IR brane (or TeV brane). Thus the picture that
emerges is a Standard Model in the warped bulk as depicted in Figure 2. The fermions
are localised to varying degrees in the bulk with the electron zero mode, being the
lightest fermion, furthest away from the Higgs on the TeV brane while the top, being
the heaviest, is closest to the Higgs. This enables one to not only solve the hierarchy
problem but also address the Yukawa coupling hierarchies.

The warped bulk can also be used to obtain naturally small neutrino masses.
Various scenarios are possible. If the right (left) handed neutrino is localised near
the UV (IR) brane then a tiny Dirac neutrino mass is obtained [14]. However this
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Figure 2: The Standard Model in the warped five-dimensional bulk.

requires that lepton number is conserved on the UV brane. Instead in the “reversed”
scenario one can place the right (left) handed neutrino near the IR (UV) brane. In
this case even though lepton number is violated on the UV brane, the neutrinos will
still obtain naturally tiny Dirac masses [21].

3.2 Higher-dimension operators

Let us consider the following generic four-fermion operators which are relevant for
proton decay and K − K̄ mixing

∫
d4x

∫
dy

√−g 1

M3
5

Ψ̄iΨjΨ̄kΨl ≡
∫
d4x

1

M2
4

Ψ̄
(0)
i+ Ψ

(0)
j+Ψ̄

(0)
k+Ψ

(0)
l+ , (38)

where the effective 4D mass scale M4 for 1/2 <∼ ci <∼ 1 is approximately given by[11]

1

M2
4

≃ k

M3
5

e(4−ci−cj−ck−cl)πkR . (39)

If we want the suppression scale for higher-dimension proton decay operators to be
M4 ∼MP then (39) requires ci ≃ 1 assuming k ∼M5 ∼ MP . Unfortunately for these
values of ci the corresponding Yukawa couplings would be too small. Nevertheless, the
values of c needed to explain the Yukawa coupling hierarchies still suppresses proton
decay by a mass scale larger than the TeV scale [11, 22]. Thus there is no need to
impose a discrete symmetry which forbids very large higher-dimension operators.

On the other hand the suppression scale for FCNC processes only needs to be
M4

>∼ 1000 TeV. This can easily be achieved for the values of c that are needed
to explain the Yukawa coupling hierarchies. In fact the FCNC constraints can be
used to obtain a lower bound on the Kaluza-Klein mass scale mKK . For example
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Kaluza-Klein gluons can mediate ∆S = 2 FCNC processes at tree level because
the fermions are located at different points. In flat space with split fermions this
leads to strong constraints mKK

>∼ 25 − 300 TeV (with the range depending on
whether FCNC processes violate CP) [23]. However in warped space for c >∼ 1/2, the
Kaluza-Klein gauge boson coupling to fermions is universal even though fermions are
split. This is because in warped space the Kaluza-Klein gauge boson wave functions
are approximately flat near the UV brane. The corresponding bound for warped
dimensions is mKK

>∼ 2 − 30 TeV. This fact that the Kaluza-Klein gauge bosons
couple universally to spatially separated fermions is akin to a GIM-like mechanism
in the 5D bulk [11]. Thus, warped dimensions ameliorate the bounds on the Kaluza-
Klein scale.

3.3 Higgs as a pseudo Nambu-Goldstone Boson

So far we have said very little about electroweak symmetry breaking and the Higgs
mass. If the Higgs is confined to the IR (or TeV) brane then the tree-level Higgs
mass parameter is naturally of order ΛIR = ΛUV e

−πkR. Since there are fermions
and gauge bosons in the bulk the effects of their corresponding Kaluza-Klein modes
must be sufficiently suppressed. This requires ke−πkR ∼ O(TeV) and since in RS1
ΛUV ∼ 10k we have ΛIR ∼ O(10 TeV). Consequently a modest amount of fine-tuning
would be required to obtain a physical Higgs mass of order 100 GeV, as suggested by
electroweak precision data [24]. Clearly, it is desirable to invoke a symmetry to keep
the Higgs mass naturally lighter than the IR cutoff scale, such as the spontaneous
breaking of a global symmetry2.

Motivated by the fact that the dimensional reduction of a five-dimensional gauge
boson AM = (Aµ, A5) contains a scalar field A5, one can suppose that the Higgs
scalar field is part of a higher-dimensional gauge field [25]. In a slice of AdS5 the A5

terms in the gauge boson kinetic term of the bulk Lagrangian (6) are

−1

2

∫
d4x dy e−2ky((∂A5)

2 − 2ηµν∂µA5∂5Aν) + . . . . (40)

In particular notice that the higher-dimensional gauge symmetry prevents a tree-level
mass for A5. However the zero mode of the A5 scalar field must be localised near the
IR brane for the hierarchy problem to be solved. The solution for A5 can be obtained
by adding a gauge fixing term that cancels the mixed A5Aν term [26, 27]. This gives

the zero mode solution A
(0)
5 with y dependence ∝ e+2ky and substituting back into

the action leads to

−1

2

∫
d4x dy e+2ky(∂µA

(0)
5 (x))2 + . . . . (41)

2But this is not the unique possibility. As we will see later supersymmetry (instead of a global
symmetry) can also be used to obtain a light Higgs mass.
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Hence with respect to the flat 5D metric the massless scalar mode A
(0)
5 is indeed

localised towards the IR brane and therefore can play the role of the Higgs boson.
To obtain a realistic model one assumes an SO(5)×U(1)B−L gauge symmetry in

the bulk for the electroweak sector [27]. On the IR brane this symmetry is spon-
taneously broken by boundary conditions to SO(4)×U(1)B−L. This leads to four
Nambu-Goldstone bosons that can be identified with the Standard Model Higgs dou-
blet. A Higgs mass is then generated because SO(5) gauge symmetry is explicitly
broken in the fermion sector, in particular by the top quark. At one loop this gen-
erates an effective potential and electroweak symmetry is broken dynamically via
top-quark loop corrections [28]. This effect is finite and arises from the Hosotani
mechanism with nonlocal operators in the bulk [29]. An unbroken SO(3) custodial
symmetry guarantees that the Peskin-Takeuichi parameter T = 0. The important
point however is that radiative corrections to the Higgs mass depend on ke−πkR and
not on ΛUV e

−πkR. Together with the accompanying one-loop factor 1
16π2 this guaran-

tees a light Higgs mass of order mHiggs
<∼ 140 GeV. Furthermore this model can be

shown to pass stringent electroweak precision tests without a significant amount of
fine-tuning [30].

In summary, the hierarchy problem can be solved by placing the Standard Model
in the warped bulk together with identifying the Higgs scalar field as a pseudo Nambu-
Goldstone boson. This leads to a very predictive scenario for the electroweak sym-
metry breaking sector. Moreover the setup is radiatively stable and valid up to the
Planck scale with (as we will see later) grand unification incorporated in an inter-
esting way! This makes the 5D warped bulk a compelling alternative framework to
address the hierarchy problem in a complete scenario compared to the usual 4D sce-
narios. But even more compelling is that this framework can be given a purely 4D
holographic description in terms of a strongly coupled gauge theory as will be shown
in the next section.

4 AdS/CFT and holography

Remarkably 5D warped models in a slice of AdS can be given a purely 4D description.
This holographic correspondence between the 5D theory and the 4D theory originates
from the AdS/CFT correspondence in string theory. In 1997 Maldacena conjectured
that [31]

type IIB string theory
on AdS5 × S5

DUAL⇐⇒ N = 4 SU(N) 4D gauge theory (42)

where N is the number of supersymmetry generators and

R4
AdS

l4s
= 4πg2

YMN , (43)
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with RAdS ≡ 1/k, ls is the string length and gYM is the SU(N) Yang-Mills gauge
coupling. Qualitatively we can see that the isometry of the five-dimensional sphere
S5 is the rotation group SO(6) ∼= SU(4), which is the R-symmetry group of the
supersymmetric gauge theory. Moreover the N = 4 gauge theory is a conformal
field theory because the isometry group of AdS5 is precisely the conformal group in
four dimensions. In particular this means that the gauge couplings do not receive
quantum corrections and therefore do not run with energy.

In the warped bulk we have only considered gravity. This represents the effective
low energy theory of the full string theory. In order to neglect the string corrections,
so that the bulk gravity description is valid, we require that RAdS ≫ ls. This leads
to the condition that g2

YMN ≫ 1, which means that the 4D dual CFT is strongly
coupled! Thus for our purposes the correspondence takes the form of a duality in
which the weakly coupled 5D gravity description is dual to a strongly coupled 4D
CFT. This remarkable duality means that any geometric configuration of fields in
the bulk can be given a purely 4D description in terms of a strongly coupled gauge
theory. Therefore warped models provide a new way to study strongly coupled gauge
theories.

While there is no rigorous mathematical proof of the AdS/CFT conjecture, it
has passed many nontrivial tests and an AdS/CFT dictionary to relate the two dual
descriptions can be established. For every bulk field Φ there is an associated operator
O of the CFT. In the AdS5 metric (1) the boundary of AdS space is located at
y = −∞. The boundary value of the bulk field Φ(xµ, y = −∞) ≡ φ0(x

µ) acts as
a source field for the CFT operator O. The AdS/CFT correspondence can then be
quantified in the following way [32, 33]

∫
DφCFT e−SCFT [φCFT ]−

∫
d4x φ0O =

∫

φ0

Dφ e−Sbulk[φ] ≡ eiSeff [φ0] , (44)

where SCFT is the CFT action with φCFT generically denoting the CFT fields and Sbulk
is the bulk 5D action. The on-shell gravity action, Seff is obtained by integrating out
the bulk degrees of freedom for suitably chosen IR boundary conditions. In general
n-point functions can be calculated via

〈O . . .O〉 =
δnSeff

δφ0 . . . δφ0
. (45)

In this way we see that the on-shell bulk action is the generating functional for
connected Greens functions in the CFT.

So far the correspondence has been formulated purely in AdS5 without the pres-
ence of the UV and IR branes. In particular notice from (44) that the source field φ0

is a nondynamical field with no kinetic term. However since we are interested in the
4D dual of a slice of AdS5 (and not the full AdS space) we will need the corresponding
dual description in the presence of two branes.
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Suppose that a UV brane is placed at y = 0. The −∞ < y < 0 part of AdS space
is chopped off and the remaining 0 < y < ∞ part is reflected about y = 0 with a
Z2 symmetry. The presence of the UV brane with an associated UV scale ΛUV thus
corresponds to an explicit breaking of the conformal invariance in the CFT at the UV
scale (but only by nonrenormalisable terms) [34, 35, 36]. The fact that the CFT now
has a finite UV cutoff means that the source field φ0 becomes dynamical. A kinetic
term for the source field will always be induced by the CFT but one can directly add
an explicit kinetic term for the source field at the UV scale. Thus in the presence of
a UV brane the AdS/CFT correspondence is modified to the form

∫
Dφ0 e

−SUV [φ0]

∫

ΛUV

DφCFT e−SCFT [φCFT ]−
∫
d4x φ0O

=

∫
Dφ0 e

−SUV [φ0]

∫

φ0

Dφ e−Sbulk[φ] , (46)

where SUV is the UV Lagrangian for the source field φ0. It is understood that now
the source field φ0 = Φ(x, y = 0). Moving away from the UV brane at y = 0 in the
bulk corresponds in the 4D dual to running down from the UV scale to lower energy
scales. Since the bulk is AdS the 4D dual gauge theory quickly becomes conformal
at energies below the UV scale.

The presence of the IR brane at y = πR corresponds to a spontaneous breaking of
the conformal invariance in the CFT at the IR scale ΛIR = ΛUV e

−πkR [34, 35]. The
conformal symmetry is nonlinearly realised and particle bound states of the CFT
can now appear. Formally this can be understood by noting that the (massless)
radion field in RS1 is localised on the IR brane, since by sending the UV brane to the
AdS boundary (at y → −∞), while keeping the IR scale fixed, formally decouples
the source field and keeps the radion in the spectrum. This means that at the IR
scale the CFT must contain a massless particle which is interpreted as the Nambu-
Goldstone boson of spontaneously broken conformal symmetry. This so called dilaton
is therefore the dual interpretation of the radion. A similar phenomenon also occurs
in QCD where massless pions are the Nambu-Goldstone bosons of the spontaneously
broken chiral symmetry at ΛQCD. Indeed the AdS/CFT correspondence suggests
that QCD may be the holographic description of a bulk (string) theory.

Thus, the dual interpretation of a slice of AdS not only contains a 4D dual CFT
with a UV cutoff, but also a dynamical source field φ0 with UV Lagrangian SUV [φ0].
In particular note that the source field is an elementary (point-like) state up to the
UV scale, while particles in the CFT sector are only effectively point-like below the
IR scale but are composite above the IR scale. The situation is analogous to the
(elementary) photon of QED interacting with the (composite) spin-1 mesons of QCD
with cutoff scale ΛQCD.
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4.1 Holography of scalar fields

As a simple application of the AdS/CFT correspondence in a slice of AdS5 we shall
investigate in more detail the dual theory corresponding to a bulk scalar field Φ with
boundary mass terms. The qualitative features will be very similar for other spin
fields. In order to obtain the correlation functions of the dual theory we first need to
compute the on-shell bulk action Seff . According to (30) the bulk scalar solution is
given by

Φ(p, z) = Φ(p)A−2(z)

[
Jα(iq) −

Jα±1(iq1)

Yα±1(iq1)
Yα(iq)

]
, (47)

where z = (eky−1)/k, A(z) = (1+kz)−1, q = p/(kA(z)) and Φ(p, z) is the 4D Fourier
transform of Φ(x, z). The ± refers to the two branches associated with b = b± = 2±α.
Substituting this solution into the bulk scalar action and imposing the IR boundary
condition (12) leads to the on-shell action

Seff =
1

2

∫
d4p

(2π)4

[
A3(z)Φ(p, z) (Φ′(−p, z) − b k A(z)Φ(−p, z))

] ∣∣∣∣
z=z0

=
k

2

∫
d4p

(2π)4
F (q0, q1)Φ(p)Φ(−p) , (48)

where

F (q0, q1) = ∓ iq0

[
Jν∓1(iq0) − Yν∓1(iq0)

Jν(iq1)

Yν(iq1)

]

×
[
Jν(iq0) − Yν(iq0)

Jν(iq1)

Yν(iq1)

]
, (49)

and ν ≡ ν± = α± 1.

• Exercise: Verify (48) is obtained by substituting the bulk scalar solution (47)
into the scalar part of the action (6).

The dual theory two-point function of the operator O sourced by the bulk field
Φ is contained in the self-energy Σ(p) obtained by

Σ(p) =

∫
d4x e−ip·x

δ2Seff
δ(A2(z0)Φ(x, z0))δ(A2(z0)Φ(0, z0))

,

=
k

g2
φ

q0(Iν(q0)Kν(q1) − Iν(q1)Kν(q0))

Iν∓1(q0)Kν(q1) + Iν(q1)Kν∓1(q0)
, (50)

where a coefficient 1/g2
φ has been factored out in front of the scalar kinetic term in (6),

so that gφ is a 5D expansion parameter with dim[1/g2
φ] = 1. The behaviour of Σ(p)

can now be studied for various momentum limits in order to obtain information about
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the dual 4D theory. When A1 ≡ A(z1) → 0 the effects of the conformal symmetry
breaking (from the IR brane) are completely negligible. The leading nonanalytic
piece in Σ(p) is then interpreted as the pure CFT correlator 〈OO〉 that would be
obtained in the string AdS/CFT correspondence with A0 ≡ A(z0) → ∞. However
in a slice of AdS the poles of 〈OO〉 determines the pure CFT mass spectrum with
a nondynamical source field φ0. These poles are identical to the poles of Σ(p) since
Σ(p) and 〈OO〉 only differ by analytic terms. Hence the poles of the correlator
Σ(p) correspond to the Kaluza-Klein spectrum of the bulk scalar fields with Dirichlet
boundary conditions on the UV brane.

There are also analytic terms in Σ(p). In the string version of the AdS/CFT cor-
respondence these terms are subtracted away by adding appropriate counterterms.
However with a finite UV cutoff (corresponding to the scale of the UV brane) these
terms are now interpreted as kinetic (and higher derivative terms) of the source field
φ0, so that the source becomes dynamical in the holographic dual theory. The source
field can now mix with the CFT bound states and therefore the self-energy Σ(p)
must be resummed and the modified mass spectrum is obtained by inverting the
whole quadratic term SUV + Seff . In the case with no UV boundary action SUV
this means that the zeroes of (50) are identical with the Kaluza-Klein mass spectrum
(19) corresponding to (modified) Neumann conditions for the source field. In both
cases (either Dirichlet or Neumann) these results are consistent with the fact that
the Kaluza-Klein states are identified with the CFT bound states.

• Exercise: Check that the zeroes of (50) agree with the Kaluza-Klein spectrum
(19).

At first sight it is not apparent that there are an infinite number of bound states
in the 4D dual theory required to match the infinite number of Kaluza-Klein modes
in the 5D theory. How is this possible in the 4D gauge theory? It has been known
since the early 1970’s that the two-point function in large-N QCD can be written
as [37, 38]

〈O(p)O(−p)〉 =
∞∑

n=1

F 2
n

p2 +m2
n

, (51)

where the matrix element for O to create the nth meson with mass mn from the
vacuum is Fn = 〈0|O|n〉 ∝

√
N/(4π). In the large N limit the intermediate states

are one-meson states and the sum must be infinite because we know that the two-
point function behaves logarithmically for large p2. Since the 4D dual theory is a
strongly-coupled SU(N) gauge theory that is conformal at large scales, it will have
this same behaviour. This clearly has the same qualitative features as a Kaluza-Klein
tower and therefore a dual 5D interpretation could have been posited in the 1970’s!

To obtain the holographic interpretation of the bulk scalar field, recall that the
scalar zero mode can be localised anywhere in the bulk with −∞ < b < ∞ where
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b ≡ b± = 2 ± α and −∞ < b− < 2 and 2 < b+ < ∞. Since b± = 1 ± ν± we have
−1 < ν− <∞ and 1 < ν+ <∞. The ν− branch corresponds to b− < 2, while the ν+

branch corresponds to b+ > 2. Hence the ν−(ν+) branch contains zero modes which
are localised on the UV (IR) brane.

4.1.1 ν− branch holography

We begin first with the ν− branch. In the limit A0 → ∞ and A1 → 0 one obtains

Σ(p) ≃ −2k

g2
φ

[
1

ν

(q0
2

)2

+
(q0

2

)2ν+2 Γ(−ν)
Γ(ν + 1)

+ . . .

]
, (52)

where the expansion is valid for noninteger ν. The expansion for integer ν will
contain logarithmns. Only the leading analytic term has been written in (52). The
nonanalytic term is the pure CFT contribution to the correlator 〈OO〉. Formally it
is obtained by rescaling the fields by an amount Aν+1

0 and taking the limit

〈OO〉 = lim
A0→∞

(Σ(p) + counterterms) =
1

g2
φ

Γ(−ν)
Γ(ν + 1)

p2(ν+1)

(2k)2ν+1
. (53)

Since

〈O(x)O(0)〉 =

∫
d4p

(2π)4
eipx〈OO〉 , (54)

the scaling dimension of the operator O is

dimO = 3 + ν− = 4 − b− = 2 +
√

4 + a , (55)

as shown in Table 1. If A0 is finite then the analytic term in (52) becomes the kinetic
term for the source field φ0. Placing the UV brane at z0 = 0 with A0 = 1 leads to
the dual Lagrangian below the cutoff scale Λ ∼ k

L4D = −Z0(∂φ0)
2 +

ω

Λν−
φ0O + LCFT , (56)

where Z0, ω are dimensionless couplings. This Lagrangian describes a massless dy-
namical source field φ0 interacting with the CFT via the mixing term φ0O. This
means that the mass eigenstate in the dual theory will be a mixture of the source
field and CFT particle states. The coupling of the mixing term is irrelevant for
ν− > 0 (b− < 1), marginal if ν− = 0 (b− = 1) and relevant for ν− < 0 (b− > 1).
This suggests the following dual interpretation of the massless bulk zero mode. When
the coupling is irrelevant (ν− > 0), corresponding to a UV brane localised bulk zero
mode, the mixing can be neglected at low energies, and hence to a very good ap-
proximation the bulk zero mode is dual to the massless 4D source field φ0. However
for relevant (−1 < ν− < 0) or marginal couplings (ν− = 0) the mixing can no longer
be neglected. In this case the bulk zero mode is no longer UV-brane localised, and
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the dual interpretation of the bulk zero mode is a part elementary, part composite
mixture of the source field with massive CFT particle states.

The first analytic term in (52) can be matched to the wavefunction constant giving
Z0 = 1/(2νg2

φk). However at low energies the couplings in L will change. The low
energy limit q1 ≪ 1 for Σ(p) (and noninteger ν) leads to

Σ(p)IR ≃ −2k

g2
φ

[
(1 − A

2ν−
1 )

(q0
2

)2 1

ν
+ . . .

]
, (57)

where A1 = e−πkR. Notice that there is no nonanalytic term because the massive
CFT modes have decoupled. The analytic term has now also received a contribution
from integrating out the massive CFT states. Note that when ν− > 0 the A1 con-
tribution to Z0 is negligible and the kinetic term has the correct sign. On the other
hand for relevant couplings the A1 term now dominates the Z0 term. The kinetic
term still has the correct sign because ν− < 0.

• Exercise: Show that for a marginal coupling (ν− = 0) the coefficient of the kinetic
term is logarithmic and has the correct sign.

The features of the couplings in (56) at low energies can be neatly encoded into
a renormalisation group equation. If we define a dimensionless running coupling
ξ(µ) = ω/

√
Z(µ)(µ/Λ)γ, which represents the mixing between the CFT and source

sector with a canonically normalised kinetic term, then it will satisfy the renormali-
sation group equation [39]

µ
dξ

dµ
= γ ξ + η

N

16π2
ξ3 + . . . , (58)

where η is a constant and we have replaced 1/(g2
φk) = N/(16π2). The first term

arises from the scaling of the coupling of the mixing term φ0O (i.e. γ = ν−), and the
second term arises from the CFT contribution to the wavefunction constant Z0 (i.e.
the second term in (52)). The solution of the renormalisation group equation for an
initial condition ξ(M) at the scale M ∼ Λ is

ξ(µ) =
( µ

M

)γ {
1

ξ2(M)
+ η

N

16π2γ

[
1 −

( µ

M

)2γ
]}−1/2

. (59)

When γ < 0, the constant η > 0 and the renormalisation group equation (58) has a
fixed point at ξ∗ ∼ 4π

√
−γ/(ηN), which does not depend on the initial value ξ(M).

This occurs when −1 < ν− < 0 and therefore since ξ∗ is nonnegligible the mixing
between the source and the CFT cannot be neglected.

In the opposite limit, γ > 0, the solution (59) for M ∼ Λ becomes ξ(µ) ∼
4π

√
γ/N(µ/M)γ, where the solution (59) has been matched to the low energy value

Z(ke−πkR) = 1/(2γg2
φk)(1 − e−2γπkR) arising from (57) (with γ = ν−). Thus when

ν− > 0 the mixing between the source and CFT sector quickly becomes irrelevant at
low energies.
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4.1.2 ν+ branch holography

Consider the case ν = ν+ > 1. In the limit A0 → ∞ and A1 → 0 we obtain for
noninteger ν

Σ(p) ≃ −2k

g2
φ

[
(ν − 1) +

(q0
2

)2 1

(ν − 2)
+

(q0
2

)2ν−2 Γ(2 − ν)

Γ(ν − 1)

]
,

where only the leading analytic terms have been written. The nonanalytic term is
again the pure CFT contribution to the correlator 〈OO〉 and gives rise to the scaling
dimension

dimO = 1 + ν+ = b+ = 2 +
√

4 + a . (60)

This agrees with the result for the ν− branch. At low energies q1 ≪ 1 one obtains

Σ(p)IR ≃ −2k

g2
φ

[
(ν − 1) +

(q0
2

)2 1

(ν − 2)
− ν(ν − 1)2 A

2ν
1

A2ν
0

(
2

q0

)2
]
, (61)

where the large-A0 limit was taken first. We now see that at low energies the nonan-
alytic term has a pole at p2 = 0 with the correlator

〈OO〉 =
8k3

g2
φ

ν+(ν+ − 1)2e−2ν+πkR
1

p2
, (62)

where A0 = 1 and A1 = e−πkR. This pole indicates that the CFT has a massless
scalar mode at low energies! What about the massless source field? As can be seen
from (60) and (61) the leading analytic piece is a constant term which corresponds
to a mass term for the source field [36]. This leads to the dual Lagrangian below the
cutoff scale Λ ∼ k

L4D = −Z̃0(∂φ0)
2 +m2

0φ
2
0 +

χ

Λν+−2
φ0O + LCFT , (63)

where Z̃0, χ are dimensionless parameters and m0 is a mass parameter of order the
curvature scale k. The bare parameters Z̃0 and m0 can be determined from (60).
Thus, the holographic interpretation is perfectly consistent. There is a massless
bound state in the CFT and the source field φ0 receives a mass of order the curvature
scale and decouples. In the bulk the zero mode is always localised towards the IR
brane. Indeed for ν+ > 2 the coupling between the source field and the CFT is
irrelevant and therefore the mixing from the source sector is negligible. Hence to a
good approximation the mass eigenstate is predominantly the massless CFT bound
state. When 1 ≤ ν+ ≤ 2 the mixing can no longer be neglected and the mass
eigenstate is again part elementary and part composite.
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4.2 Dual 4D description of the Standard Model in the Bulk

The qualitative features of the scalar field holographic picture can now be used to give
the 4D dual description of the Standard Model gauge fields and matter in the 5D bulk.
In general for every bulk zero mode field there is a corresponding massless eigenstate
in the dual 4D theory that is a mixture of (elementary) source and (composite) CFT
fields. If the bulk zero mode is localised towards the UV brane, then in the dual
theory the massless eigenstate is predominantly the source field. For example, as in
RS1 the graviton zero mode is localised towards the UV brane so that in the dual
theory the massless eigenstate is mostly composed of the graviton source field.

On the other hand the dual interpretation of a bulk zero mode localised towards
the TeV brane is a state that is predominantly a CFT bound state. In this instance
the source field obtains a mass of order the curvature scale and decouples from the low
energy theory. Depending on the degree of localisation the bound state mixes with
the massive source field. Only in the limit where the mode is completely localised
on the TeV brane is the dual eigenmode a pure CFT bound state. Since the Higgs
is confined to the IR brane, the Higgs field is interpreted as a pure bound state
of the CFT in the dual theory. In this way we see that the RS1 solution to the
hierarchy problem is holographically identical to the way 4D composite models solve
the problem with a low-scale cutoff. The Higgs mass is quadratically divergent but
only sensitive to the strong coupling scale ΛIR which is hierarchically smaller than
ΛUV . To obtain a large top Yukawa coupling the top quark was localised near the
IR brane, so in the dual theory the top quark is also (predominantly) a composite
of the CFT. The rest of the light fermions are localised to varying degrees towards
the UV brane, and therefore these states will be mostly elementary particle states in
the dual theory. The detailed holographic picture of bulk fermions can be found in
Ref. [39].

If zero modes are not localised in the bulk then the corresponding 4D dual massless
eigenstate is partly composed of the elementary source field and the composite CFT
state. In particular for bulk gauge fields whose zero modes are not localised in the
bulk, the 4D dual massless eigenstate will be part composite and part elementary.
Finally note that local symmetries in the bulk, such as gauge symmetries or general
coordinate invariance, also have a 4D dual interpretation. The holographic dual of a
local symmetry group G in the bulk is a CFT in which a subgroup G of the global
symmetry group of the CFT is weakly gauged by the source gauge field [34, 40].

Thus, in summary the Standard Model in the warped 5D bulk is dual to a 4D
hybrid theory with a mixture of elementary and composite states.

4.2.1 Yukawa couplings

The Yukawa coupling hierarchies can also be understood from the dual 4D theory.
Consider first an electron (or light fermion) with c > 1/2. In the dual 4D theory the
electron is predominantly an elementary field. The dual 4D Lagrangian is obtained
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from analysing Σ(p) for fermions, where the CFT induces a kinetic term for the source

field ψ
(0)
L . It is given by [39]

L4D = LCFT + Z0ψ̄
(0)
L iγµ∂µψ

(0)
L +

ω

Λ|c+ 1

2
|−1

(ψ̄
(0)
L OR + h.c.) , (64)

where Z0, ω are dimensionless couplings and dim OR = 3/2 + |c + 1/2|. The source

field ψ
(0)
L pertains to the left-handed electron eL and a similar Lagrangian is written

for the right-handed electron eR. At energy scales µ < k we have a renormalisation
group equation like (58) for the mixing parameter ξ but with γ = |c+1/2|−1. Since
c > 1/2 the first term in (58) dominates and the coupling ξ decreases in the IR. In
particular at the TeV scale (ke−πkR) the solution (59) gives

ξ(TeV) ∼
√
c− 1

2

4π√
N

(
ke−πkR

k

)c− 1

2

=

√
c− 1

2

4π√
N
e−(c− 1

2
)πkR . (65)

The actual physical Yukawa coupling λ follows from the three-point vertex between
the physical states. Since both eL and eR are predominantly elementary they can
only couple to the composite Higgs via the mixing term in (64). This is depicted in
Fig. 3. In a large-N gauge theory the matrix element 〈0|OL,R|ΨL,R〉 ∼

√
N/(4π),

and the vertex between three composite states Γ3 ∼ 4π/
√
N [38]. Thus if each of the

elementary fields eL and eR mixes in the same way with the CFT so that ceL = ceR ≡ c
then

λ ∝ 〈0|OL,R|ΨL,R〉2 Γ3 ξ
2(TeV) =

4π√
N

(c− 1/2)e−2(c− 1

2
)πkR . (66)

This agrees precisely with the bulk calculation (36) where λ
(5)
ij k ∼ 4π/

√
N .

ΨR

ΨL

H

Figure 3: The three-point Yukawa coupling vertex in the dual theory when the fermions
are predominantly elementary source fields.

• Exercise: Show that when |c| < 1/2 the coupling of the mixing term in (64)
is relevant and the renormalisation group equation (58) has a fixed point. Compare
this with the bulk calculation following (36).
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Similarly we can also obtain the Yukawa coupling for the top quark with c <∼ −1/2
in the dual theory. With this value of c the top quark is mostly a CFT bound state
in the dual theory and we can neglect the mixing coupling with the CFT. As in the
scalar field example this follows from the fact that the two point function 〈ORŌR〉
now has a massless pole. The CFT will again generate a mass term for the massless
source field, so that the only massless state in the dual theory is the CFT bound
state. The dual Lagrangian is given by [39]

L4D = LCFT + Z0 ψ̄
(0)
L iγµ∂µψ

(0)
L + Z̃0 χ̄Riγ

µ∂µχR

+ d k (χ̄Rψ
(0)
L + h.c.) +

ω

Λ|c+ 1

2
|−1

(ψ̄
(0)
L OR + h.c.) , (67)

where Z0, Z̃0, d, ω are dimensionless constants. The fermion ψ
(0)
L pertains to tL and a

similar Lagrangian is written for tR. Just as in the scalar case this dual Lagrangian
is inferred from the behaviour of Σ(p) for fermions. The CFT again induces a kinetic

term for the source field ψ
(0)
L but also generates a Dirac mass term of order the

curvature scale k with a new elementary degree of freedom χR. Hence the elementary
source field decouples from the low energy spectrum and the mixing term is no longer
relevant for the Yukawa coupling. Instead the physical Yukawa coupling will arise
from a vertex amongst three composite states so that λt ∼ Γ3 ∼ 4π/

√
N ∼ λ(5)k,

and consequently there is no exponential suppression in the Yukawa coupling. This
is again consistent with the bulk calculation.

4.2.2 Minimal Composite Higgs model

Similarly the Higgs as a pseudo Nambu-Goldstone boson scenario has a 4D dual
interpretation [28]. Since A5 is localised near the TeV-brane the Higgs boson is a
composite state in the dual theory. The bulk SO(5) gauge symmetry is interpreted as
an SO(5) global symmetry of the CFT. This global symmetry is then spontaneously
broken down to SO(4) at the IR scale by the (unknown) strong dynamics of the CFT.
This leads to a Nambu-Goldstone boson transforming as a 4 of SO(4), which is a real
bidoublet of SU(2)L×SU(2)R.

To break electroweak symmetry, an effective Higgs potential is generated at one
loop by explicitly breaking the SO(5) symmetry in the elementary (fermion) sector
and transmitting it to the CFT. The top quark plays the major role in breaking this
symmetry. However the top quark must also be localised near the IR brane to obtain
a large overlap with the Higgs field and therefore a large top mass. Moreover to
prevent large deviations from the Standard Model prediction for Z → b̄LbL the left-
handed top quark must be localised towards the UV brane (ctL <∼ 1/2)[41, 28]. Thus
to obtain a large top mass the right-handed top quark must be localised near the IR
brane. This specific localisation is compatible with electroweak symmetry breaking
where the Higgs field develops a vacuum expectation value and breaks SO(4) down to
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the custodial group SO(3). Hence in the dual theory the physical right-handed (left-
handed) top quark is mostly composite (elementary) and the custodial symmetry
prevents large contributions to the T parameter.

In summary this 4D composite Higgs model is very predictive, with minimal
particle content and is consistent with electroweak precision tests [30]. This hybrid
4D theory with elementary and composite states successfully addresses the hierarchy
problem, fermion masses and flavour problems in a complete framework.

5 Supersymmetric Models in Warped Space

Supersymmetry elegantly solves the hierarchy problem because quadratic divergences
to the Higgs mass are automatically cancelled thereby stabilising the electroweak
sector. However this success must be tempered with the fact that supersymmetry
has to be broken in nature. In order to avoid reintroducing a fine-tuning in the Higgs
mass, the soft mass scale cannot be much larger than the TeV scale. Hence one needs
an explanation for why the supersymmetry breaking scale is low. Since in warped
space hierarchies are easily generated, the warp factor can be used to explain the
scale of supersymmetry breaking, instead of the scale of electroweak breaking. This
is one motivation for studying supersymmetric models in warped space. Thus, new
possibilities open up for supersymmetric model building, and in particular for the
supersymmetry-breaking sector. Moreover by the AdS/CFT correspondence these
new scenarios have an interesting blend of supersymmetry and compositeness that
lead to phenomenological consequences at the LHC.

A second motivation arises from the fact that electroweak precision data favours a
light (compared to the TeV scale ) Higgs boson mass [24]. As noted earlier the Higgs
boson mass in a generic warped model without any symmetry is near the IR cutoff
(or from the 4D dual perspective the Higgs mass is near the compositeness scale).
Introducing supersymmetry provides a simple reason for why the Higgs boson mass
is light and below the IR cutoff of the theory.

5.1 Supersymmetry in a Slice of AdS

It is straightforward to incorporate supersymmetry in a slice of AdS [11, 42]. The
amount of supersymmetry allowed in five dimensions is determined by the dimension
of the spinor representations. In five dimensions only Dirac fermions are allowed by
the Lorentz algebra, so that there are eight supercharges which corresponds from the
4D point of view to an N = 2 supersymmetry. This means that all bulk fields are
in N = 2 representations. At the massless level only half of the supercharges remain
and the orbifold breaks the bulk supersymmetry to an N = 1 supersymmetry.

Consider an N = 1 (massless) chiral multiplet (φ(0), ψ(0)) in the bulk. We have
seen that the zero mode bulk profiles of φ(0) and ψ(0) are parametrised by their bulk
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mass parameters a and c, respectively. Since supersymmetry treats the scalar and
fermion components equally, the bulk profiles of the component fields must be the
same. It is clear that in general this is not the case except when 1±

√
4 + a = 1/2−c,

as follows from the exponent of the zero mode profiles in Table 1. This leads to the
condition that

a = c2 + c− 15/4 , (68)

and the one remaining mass parameter c determines the profile of the chiral multiplet
to be (

φ(0)

ψ(0)

)
∝ e(

1

2
−c)ky . (69)

Thus for c > 1/2 (c < 1/2) the chiral supermultiplet is localised towards the UV
(IR) brane. It can be shown that the scalar boundary mass, that was tuned to be
b = 2 ± α, follows from the invariance under a supersymmetry transformation [11]
when (68) is satisfied.

Similarly a gauge boson with bulk profile A
(0)
µ (y) ∝ 1 and a gaugino with bulk

profile λ(0)(y) ∝ e(
1

2
−cλ)ky can be combined into an N = 1 vector multiplet only for

cλ = 1/2. Of course this means that the gaugino zero-mode profile is flat like the
gauge boson. At the massive level the on-shell field content of an N = 2 vector
multiplet is (AM , λi,Σ) where λi is a symplectic-Majorana spinor (with i = 1, 2) and
Σ is a real scalar in the adjoint representation of the gauge group. Invariance under
supersymmetry transformations requires that Σ have bulk and boundary mass terms
with a = −4 and b = 2, respectively. So, if Σ is even under the orbifold symmetry
then these values will ensure a scalar zero mode.

Finally a graviton with bulk profile h
(0)
µν (y) ∝ e−ky and a gravitino with bulk

profile ψ
(0)
µ (y) ∝ e(

1

2
−cψ)ky can be combined into an N = 1 gravity multiplet only for

cψ = 3/2. In this case the gravitino zero-mode profile is localised on the UV brane.

5.2 The Warped MSSM

In the warped MSSM the warp factor is used to naturally generate TeV scale soft
masses [43]. The UV (IR) scale is identified with the Planck (TeV) scale. The IR
brane is associated with the scale of supersymmetry breaking, while the bulk and UV
brane are supersymmetric. At the massless level the particle content is identical to
the MSSM. The matter and Higgs superfields are assumed to be confined on the UV
brane. This naturally ensures that all higher-dimension operators associated with
proton decay and FCNC processes are sufficiently suppressed. In the bulk there is
only gravity and the Standard Model gauge fields. These are contained in an N = 1
gravity multiplet and vector multiplet, respectively.

Supersymmetry is broken by choosing different IR brane boundary conditions be-
tween the bosonic and fermionic components of the bulk superfields. On the bound-
aries the condition (20) defines a chirality since (1 ∓ γ5)Ψ(y∗) = 0 where y∗ = 0
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or πR. If opposite chiralities are chosen on the two boundaries then this leads to
antiperiodic conditions for the fermions, namely

Ψ(y + 2πR) = −Ψ(y) . (70)

If the gauginos in the bulk are assumed to have opposite chiralities on the two bound-
aries then supersymmetry will be broken because the gauge bosons obey periodic
boundary conditions. The gaugino zero mode is no longer massless and receives a
mass

mλ ≃
√

2

πkR
k e−πkR . (71)

Since the theory has a U(1)R symmetry this is actually a Dirac mass where the
gaugino zero mode pairs up with a Kaluza-Klein mode [43]. The Kaluza-Klein mass
spectrum of the gauginos also shifts relative to that of the gauge bosons by an amount
−1

4
πke−πkR. Similarly for the gravity multiplet the gravitino is assumed to have an-

tiperiodic boundary conditions, while the graviton has periodic boundary conditions.
The gravitino zero mode then receives a mass

m3/2 ≃
√

8 k e−2πkR , (72)

while the Kaluza-Klein modes are again shifted by an amount similar to that of the
vector multiplet.

• Exercise: Using the expressions (30) and (31), check that imposing opposite chi-
ralities on the two boundaries for the gaugino and gravitino leads to the zero mode
masses (71) and (72).

If ke−πkR = TeV then the gaugino mass (71) is mλ ≃ 0.24 TeV while the grav-
itino mass (72) is m3/2 ≃ 3 × 10−3 eV. Even though both the gaugino and gravitino
are bulk fields the difference in their supersymmetry breaking masses follows from
their coupling to the IR brane, which is where supersymmetry is broken. The gaug-
ino is not localised in the bulk and couples to the IR brane with an O(1) coupling.
Hence it receives a TeV scale mass. On the other hand the gravitino is localised on
the UV brane and its coupling to the TeV brane is exponentially suppressed. This
explains why the gravitino mass is much smaller than the gaugino mass.

The scalars on the UV brane will obtain a supersymmetry breaking mass at one
loop via gauge interactions with the bulk vector multiplets. The gravity interactions
with the gravity multiplet are negligible. A one loop calculation leads to the soft
mass spectrum

m̃2
j ∝

αi
4π

(TeV)2 , (73)

where αi = g2
i /(4π) are individual gauge contributions corresponding to the particular

gauge quantum numbers of the particle state. The exact expressions are given in
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Ref. [43]. Unlike loop corrections to the usual 4D supersymmetric soft masses, the
masses in (73) are finite. Normally UV divergences in a two-point function arise when
the two spacetime points coincide. But the spacetime points in the 5D loop diagram
can never coincide, because the two branes are assumed to be a fixed distance apart,
and therefore the 5D one-loop calculation leads to a finite result (see Figure 4). This

)UV (M  P

SUSY

φ

IR (TeV)

φ

SUSY

Figure 4: The transmission of supersymmetry breaking in the warped MSSM to UV-
brane localised matter fields via bulk gauge interactions which couple directly to the
IR brane.

is similar to the cancellation of divergences in the Casimir effect [44]. Since the
contribution to the scalar masses is due to gauge interactions the scalar masses are
naturally flavour diagonal. This means that the right-handed slepton is the lightest
scalar particle since it has the smallest gauge coupling dependence. The lightest
supersymmetric particle will be the superlight gravitino.

5.2.1 The dual 4D interpretation

We can use the AdS/CFT dictionary to obtain the dual 4D interpretation of the
warped MSSM. Clearly the matter and Higgs fields confined to the UV brane are
elementary fields external to the CFT. This is also true for the zero modes of the
gravity multiplet since it is localised towards the UV brane. However, the bulk gauge
field zero modes are partly composite since they are not localised. The Kaluza-Klein
states, which are bound states of the CFT and localised near the IR brane, do not
respect supersymmetry. Therefore at the TeV scale not only is conformal symmetry
broken by the CFT but also supersymmetry. This requires some (unknown) nontrivial
IR dynamics of the CFT, but the point is that supersymmetry is dynamically broken.
Since the CFT is charged under the Standard Model gauge group, the gauginos (and
gravitinos) will receive a tree-level supersymmetry breaking mass, while the squarks
and sleptons will receive their soft mass at one loop. In some sense this model is very
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similar to 4D gauge-mediated models except that there is no messenger sector since
the CFT, responsible for supersymmetry breaking, is charged under the Standard
Model gauge group.

In particular the bulk gaugino mass formula (71) can be understood in the dual
theory. Since the gaugino mass is of the Dirac type the gaugino (source) field must
marry a fermion bound state to become massive. This occurs from the mixing term
L = ωλOψ. Since cλ = 1/2, we have from Table 1 that dimOψ = 5/2 and therefore
ω is dimensionless. This means that the mixing term coupling runs logarithmically
so that at low energies the solution of (58) is

ξ2(µ) ∼ 16π2

N log k
µ

. (74)

Thus at µ = ke−πkR we obtain the correct factor in (71) since the Dirac mass mλ ∝
ξ 〈0|Oψ|Ψ〉, where in the large-N limit the matrix element for Oψ to create a bound
state fermion is 〈0|Oψ|Ψ〉 ∼

√
N/(4π) [38].

Thus, in summary we have the dual picture

5D warped
MSSM

DUAL⇐⇒
4D MSSM ⊕ gravity
⊕ strongly coupled 4D CFT

(75)

The warped MSSM is a very economical model of dynamical supersymmetry breaking
in which the soft mass spectrum is calculable and finite, and unlike the usual 4D
gauge-mediated models does not require a messenger sector. The soft mass TeV
scale is naturally explained and the scalar masses are flavour diagonal. In addition,
as we will show later, gauge coupling unification occurs with logarithmic running [45]
arising primarily from the elementary (supersymmetric) sector as in the usual 4D
MSSM[46].

5.3 The Partly Supersymmetric Standard Model

Besides solving the hierarchy problem the supersymmetric standard model has two
added bonuses. First, it successfully predicts gauge coupling unification and second,
it provides a suitable dark matter candidate. Generically, however, there are FCNC
and CP violation problems arising from the soft mass Lagrangian, as well as the
gravitino and moduli problems in cosmology [47]. These problems stem from the fact
that the soft masses are of order the TeV scale, as required for a natural solution to
the hierarchy problem. Of course clever mechanisms exist that avoid these problems
but perhaps the simplest solution would be to have all scalar masses at the Planck
scale while still naturally solving the hierarchy problem. In the partly supersymmetric
standard model [48] this is precisely what happens while still preserving the successes
of the MSSM.

In 5D warped space the setup of the model is as follows. Supersymmetry is
assumed to be broken on the UV brane while it is preserved in the bulk and the IR
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brane. The vector, matter, and gravity superfields are in the bulk while the Higgs
superfield is confined to the IR brane. On the UV brane the supersymmetry breaking
can be parametrised by a spurion field η = θ2F , where F ∼M2

P . In the gauge sector
we can add the following UV brane term

∫
d2θ

η

M2
P

1

g2
5

W αWαδ(y) + h.c. (76)

This term leads to a gaugino mass for the zero mode mλ ∼ MP , so that the gaugino
decouples from the low energy spectrum. The gravitino also receives a Planck scale
mass via a UV brane coupling and decouples from the low energy spectrum [49].
Similarly a supersymmetry breaking mass term for the squarks and sleptons can be
added to the UV brane ∫

d4θ
η†η

M4
P

k S†S δ(y) , (77)

where S denotes a squark or slepton superfield. This leads to a soft scalar mass
m̃ ∼ MP , so that the squark and slepton zero modes also decouple from the low
energy spectrum.

The Higgs sector is different because the Higgs lives on the IR brane and there is
no direct coupling to the UV brane. Hence, at tree-level the Higgs mass is zero, but
a (finite) soft Higgs mass will be induced at one loop via the gauge interactions in
the bulk of order

m2
H ∼ α

4π
(ke−πkR)2 ≪M2

P . (78)

As noted earlier the finiteness is due to the fact that the two 5D spacetime points
on the UV and IR branes can never coincide (see Figure 5). Thus, we see that
because of the warp factor the induced Higgs soft mass is much smaller than the
scale of supersymmetry breaking at the Planck scale. So while at the massless level
the gauginos, squarks and sleptons have received Planck scale masses, the Higgs
sector remains (approximately) supersymmetric. In summary at the massless level
the particle spectrum consists of the Standard Model gauge fields and matter (quarks
and leptons) plus a Higgs scalar and Higgsino. This is why the model is referred to
as partly supersymmetric.

At the massive level the Kaluza-Klein modes are also approximately supersym-
metric. This is because they are localised towards the IR brane and have a small
coupling to the UV brane. So the Planck scale supersymmetry breaking translates
into an order TeV scale splitting between the fermionic and bosonic components of
the Kaluza-Klein superfields.

Given that there are no gauginos, squarks or sleptons in the low energy spectrum
it may seem puzzling how the quadratic divergences cancel in this model. Normally in
the supersymmetric standard model the quadratic divergences in the Higgs mass are
cancelled by a superpartner contribution of the opposite sign. However in the partly
supersymmetric standard model there are no superpartners at the massless level.
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Figure 5: The transmission of supersymmetry breaking in the partly supersymmetric
standard model to the supersymmetric Higgs sector via bulk gauge interactions which
couple directly to the UV brane.

Instead what happens is that the difference between the Kaluza-Klein fermions and
bosons sums up to cancel the zero mode quadratic divergence. Thus the Kaluza-Klein
tower is responsible for keeping the Higgs mass natural even though supersymmetry
is broken at the Planck scale.

5.3.1 Higgs sector possibilities

The motivation for making the Higgs sector supersymmetric is that the Higgs mass
is induced at loop level and therefore the Higgs mass is naturally suppressed below
the IR cutoff. In addition the supersymmetric partner of the Higgs, the Higgsino,
provides a suitable dark matter candidate [48, 50]. However since the Higgsino is a
fermion, gauge anomalies could be generated and these must be cancelled. This leads
us to consider the following three possibilities:

(i) Two Higgs doublets: As in the MSSM we can introduce two Higgs doublet
superfields H1 and H2, so that the gauge anomaly from the two Higgsinos cancel
amongst themselves. In this scenario we can add the following superpotential on the
IR brane ∫

d2θ (ydH1Qd+ yuH2Qu+ yeH1Le + µH1H2) . (79)

Thus the quarks and leptons receive their masses in the usual way. In addition the
µ term in (79) is naturally of order the TeV scale so that there is no µ problem.
The IR brane is approximately supersymmetric and the supersymmetric mass µ has
a natural TeV value. This is unlike the MSSM where the natural scale of µ is MP

and consequently a problem for phenomenology.

31



(ii) One Higgs doublet: At first this possibility seems to be ruled since one
massless Higgsino gives rise to a gauge anomaly. However starting with a bulk Higgs
N = 2 hypermultiplet H = (H1, H2) with bulk mass parameter cH = 1/2 that
consists of two N = 1 chiral multiplets H1,2 we can generate a Higgsino Dirac mass
and only one Higgs scalar doublet in the low energy spectrum. The trick is to use
mixed boundary conditions where H1 has Neumann (Dirichlet) boundary conditions
on the UV (IR) brane and vice versa for H2. This leads to a µ term

µ ≃
√

2

πkR
k e−πkR , (80)

which is similar to the gaugino mass term (71) obtained in the warped MSSM. In this
case the µ-term is naturally suppressed below TeV scale by the factor 1/

√
πkR. Only

one Higgs scalar remains in the low energy spectrum because the twisted boundary
conditions localise one Higgs scalar doublet towards the UV brane where it obtains a
Planck scale mass, and the other Higgs scalar is localised towards the IR brane where
it obtains a mass squared µ2.

(iii) Zero Higgs doublet–Higgs as a Slepton: No anomalies will occur if
the Higgs is considered to be the superpartner of the tau (or other lepton). This
idea is not new and dates back to the early days of supersymmetry [51]. The major
obstacle in implementing this possibility in the MSSM is that the gauginos induce an
effective operator g2

mλ
ννhh that leads to neutrino masses of order 10 GeV which are

experimentally ruled out. However in the partly supersymmetric model mλ ∼ MP

and neutrinos masses are typically of order 10−5 eV. This is phenomenologically
acceptable and at least makes this a viable possibility. However the stumbling block
is to generate a realistic spectrum of fermion masses without introducing abnormally
large coefficients [48].

5.3.2 Electroweak symmetry breaking

In this model electroweak symmetry breaking can be studied and calculated using
the 5D bulk propagators. Consider, for simplicity, a one Higgs doublet version of the
model. The scalar potential is

V (h) = µ2|h|2 +
1

8
(g2 + g′2)|h|4 + Vgauge(h) + Vtop(h) , (81)

where Vgauge(h) and Vtop(h)) are one-loop contributions to the effective potential
arising from gauge boson and top quark loops, respectively. The first two terms in
(81), which arise at tree-level, are monotonically increasing giving rise to a minimum
at 〈|h|〉 = 0 and therefore do not break electroweak symmetry. This is why we need
to calculate the one-loop contributions. The one-loop gauge contribution is given by

Vgauge(h) = 6

∫ ∞

0

dp

8π2
p3 log

[
1 + g2|h|2GB(p)

1 + g2|h|2GF (p)

]
, (82)
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where GB,F (p) are the boson (fermion) gauge propagators in the bulk whose expres-
sions can be found in Ref. [48]. The contribution to the effective potential from Vgauge
is again monotonically increasing. However there is also a sizeable contribution from
top quark loops (due to the large top Yukawa coupling) given by

Vtop(h) = 6

∫ ∞

0

dp

8π2
p3 log

[
1 + p2y2

t |h|2G2
B(p)

1 + p2y2
t |h|2GF (p)

]
. (83)

This contribution generates a potential that monotonically decreases with |h|, desta-
bilising the vacuum and thus triggering electroweak symmetry breaking. In order for
this to occur the top quark needs to be localised near the IR brane with a bulk mass
parameter ct ≃ −0.5. Since the top quark N = 1 chiral multiplet is localised near
the IR brane, the top squark will only receive a TeV scale soft mass and consequently
will remain in the low energy spectrum. In fact this radiative breaking of electroweak
symmetry due to a large top Yukawa coupling is similar to that occuring in the usual
MSSM. As in the MSSM the value of the Higgs mass is very model dependent but if
no large tuning of parameters is imposed one obtains a light Higgs boson with mass
mHiggs

<∼ 120 GeV.

5.3.3 Dual 4D interpretation

The dual 4D interpretation of the partly supersymmetric model follows from applying
the rules of the AdS/CFT dictionary. Supersymmetry is broken at the Planck scale
in the dual 4D theory and is approximately supersymmetric at the IR scale. Thus
from a 4D point of view supersymmetry is really just an accidental symmetry at low
energies. At the massless level the Higgs is confined on the IR brane and the top
quark is localised towards the TeV brane so both of these states are CFT composites
and supersymmetric at tree level. The compositeness of the Higgs and stop explains
why these states are not sensitive to the UV breaking of supersymmetry. These
states are “fat” with a size of order TeV−1, and are transparent to high momenta
or short wavelength probes that transmit the breaking of supersymmetry. At one
loop TeV-scale supersymmetry breaking effects arise from the small mixing with the
elementary source fields, which directly feel the Planck scale supersymmetry breaking.
The bulk gauge fields are partly composite and the light fermions which are localised
to varying degrees near the UV brane are predominantly elementary fields. Since the
light fermion superpartners are predominantly source fields they obtain Planck scale
soft masses.

Thus the dual picture can be summarised as follows

5D partly
supersymmetric SM

DUAL⇐⇒
4D SM ⊕ Higgsino ⊕ stop
⊕ gravity
⊕ strongly coupled 4D CFT

(84)

The partly supersymmetric standard model is a natural model of high-scale super-
symmetry breaking. Supersymmetry is realised in the most economical way. Only
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the Higgs sector and top quark are supersymmetric and composite, while all other
squarks and sleptons have Planck scale masses. The Higgsino is the dark matter
candidate and even gauge coupling unification is achieved as we show in the next
section.

6 Grand Unification

The unification of the gauge couplings strongly suggests that there is an underlying
simplifying structure based on grand unified theories with gauge groups such as SU(5)
and SO(10). We would like to preserve this structure in warped extra dimensions as
well. At the quantum level gauge couplings are sensitive to particle states that can
be excited in the vacuum and this leads to an energy dependence or running. At one
loop the general expression for this energy dependence is

1

g2
a(p)

=
1

g2
U

+
ba
8π2

log
MU

p
, (85)

where gU is the unified gauge coupling, MU is the unification scale and a = 1, 2, 3
represents the gauge couplings of U(1)Y , SU(2)L and SU(3), respectively. The coef-
ficients ba depend on the charged particle states that can be excited in the quantum
vacuum. At low energies the three gauge couplings are different and if these couplings
are to unify at a high energy scale then ba must be different. From the measurement
of the three gauge couplings at the scale MZ we can use the three equations (85) to
obtain the experimental prediction for the ratio

B =
b3 − b2
b2 − b1

= 0.717 ± 0.008 , (86)

where the error is due to the experimental values of the gauge couplings [52]. This
ratio can also be calculated theoretically for the particle content of any model. Note
that any constant or universal contribution to ba does not affect the ratio B, since it
is a ratio of differences.

In the Standard Model the quarks and leptons contribute universally to the run-
ning because they form complete SU(5) multiplets. Therefore they do not affect
the relative running of the couplings and hence the value of B. Only the Higgs
and Standard Model gauge bosons, which do not form complete SU(5) multiplets at
low energies, affect the relative running. This leads to a Standard Model prediction
B = 0.528, which does not agree with the experimental value (86), even allowing for
a 10% theoretical uncertainty due to threshold corrections and higher-loop effects.

On the other hand the MSSM doubles the particle spectrum with the addition
of gauginos, Higgsinos, squarks and sleptons. Again the squarks and sleptons form
complete SU(5) multiplets and do not contribute to the relative running. However the
extra contributions from the gauginos and Higgsinos combined with the gauge bosons
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and Higgs scalar field leads to the MSSM prediction B = 0.714. This is remarkably
close to the experimental value (86), even if one accounts for theoretical uncertainties,
and is one reason why supersymmetry is a leading solution to the hierarchy problem.
The question we would like to now address is how does gauge coupling unification
work for models in warped space?

6.1 Logarithmic Running in 5D Warped Space

Given that models in 5D warped space can be given a 4D dual description the gauge
couplings should run logarithmically. But how does this happen given that the 5D
model has Kaluza-Klein modes? To answer this question let us consider the one-loop
corrections to the U(1) gauge coupling of the zero mode generated by an even bulk
5D scalar φ with charge +1 [45]. The Kaluza-Klein spectrum of the scalar is given by
the expressions (33) with αφ = 2. To regulate the model we introduce a Pauli-Villars
(PV) regulator scalar field Φ with bulk mass Λ <∼ k and no boundary mass terms.
This means that the PV field has no massless mode and the zero mode obtains a
mass m0 ≃ Λ/

√
2. On the other hand the Kaluza-Klein spectrum remains relatively

unaffected by the bulk mass and is given by mΦn = (n + αΦ

2
− 3

4
)π k e−πkR, with

αΦ =
√

4 + Λ2

k2 ≃ 2 + Λ2

4k2 . This can also be understood as follows: Adding a bulk

mass term Λ has the effect of locally adding a mass term Λe−ky at any point y in the
bulk. Since the zero mode of a massless bulk scalar field is localised towards y ≃ 0
the affect of adding a bulk mass shifts the mass of the zero mode by ∼ Λ. On the
other hand the Kaluza-Klein modes are localised near y = πR, so adding the bulk
mass term affects them by an amount ∼ Λe−πkR. Thus the Kaluza-Klein spectrum
of the φ and the PV field is approximately the same while zero modes are separated
by a mass scale Λ.

The corrections to the photon self energy Πµν(q
2) = (q2ηµν − qµqν)Π(q2) are given

by [45]

Π(0) ∝
∑

n

∫
d4p

[
1

(p2 +m2
φn

)2
− 1

(p2 +m2
Φn

)2

]
,

≃ bφ
8π2

log
µ

Λ
− bφ

64π2

Λ2

k2
(πkR) , (87)

where we have introduced an infrared cutoff µ and bφ = 1/3 is the β-function coef-
ficient. For µ ≪ Λ < k the Kaluza-Klein contribution is negligible since the contri-
butions from the Kaluza-Klein modes effectively cancels out. Instead the dominant
contribution arises purely from the zero modes and is given by

Π(0) ≃ bφ
8π2

log
µ

Λ
. (88)

This logarithmic dependence on the cutoff Λ is exactly what we would obtain in four
dimensions and consistently agrees with the AdS/CFT correspondence.
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This result can be contrasted with what one obtains in 5D flat space. If we add a
bulk mass Λ to a bulk scalar field the whole Kaluza-Klein tower shifts by an amount
∼ Λ. Only the Kaluza-Klein states above this scale cancel with the PV field, leaving
behind the contribution from the Kaluza-Klein states below Λ. This leads to the
contribution

Π(0) ≃ bφ
8π2

ΛR , (89)

which are the power-law corrections [53].
It is also important to note that (88) can only be understood as the running

of gauge couplings if matter is localised towards the UV brane. In this case the
effective (field theory) cutoff is the Planck scale and the couplings can be interpreted
as a running up to that scale. However for matter localised on the IR brane the
effective (field theory) cutoff is the TeV scale. Above this scale the effective field
theory description breaks down and there will be contributions from the fundamental
(string) theory [45, 54].

6.2 Partly Supersymmetric Grand Unification

Let us now consider gauge coupling unification in the partly supersymmetric standard
model. The dominant contribution to the running will be logarithmic and it is just
a question of determining the β-function coefficients. Consider a 5D SU(5) gauge
theory that is broken on the Planck brane, but preserved on the IR brane. We can
implement this setup by imposing boundary conditions on the bulk fields. These
can be either Neumann (+) or Dirichlet (−) conditions corresponding to even or odd
reflections, respectively, about the orbifold fixed points.

The SU(5) gauge bosons form an N = 2 vector multiplet, V = (V, S), where V (S)
is an N = 1 vector (chiral) multiplet. These fields are assumed to have the boundary
conditions

V =

[
V a
µ (+,+)

V A
µ (−,+)

]
, S =

[
Sa(−,−)
SA(+,−)

]
, (90)

where the indices a(A) run over the unbroken (broken) generators, and the first
(second) argument refers to the UV (IR) boundary condition. These boundary con-
ditions break the SU(5) symmetry on the UV brane and the only zero modes are
the Standard Model gauge bosons V a

µ (+,+). At the nonzero mode level, the X, Y
gauge bosons (contained in V A

µ (−,+)), and the SU(5) adjoint scalar states all obtain
TeV-scale masses.

Similarly, the Higgs sector is supersymmetric and contains two Higgs doublets
which are embedded into two N = 2 bulk hypermultiplets, H = (H5, H

c
5) and H̄ =

(H̄5, H̄
c
5), each transforming in the 5 of SU(5). The boundary conditions are

H5 =

[
H2(+,+)
H3(−,+)

]
, Hc

5 =

[
Hc

2(−,−)
Hc

3(+,−)

]
, (91)
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and similarly for H̄. The only zero modes are the two Higgs doublets, H2(+,+)
and H̄2(+,+), as in the MSSM. This choice of boundary conditions neatly solves the
doublet-triplet splitting problem [55].

The Standard Model matter fields are also embedded into bulk N = 2 hyper-
multiplets. However, while it would seem natural to put all the fermions of one
generation into a single 5 and 10, parity assignments actually require the quarks and
leptons to arise from different SU(5) bulk hypermultiplets [56, 57, 58]. Thus, for each
generation we will suppose that there are bulk hypermultiplets (51, 5

c
1)+(52, 5

c
2) and

(101, 10c1) + (102, 10c2) with boundary conditions

51 = L1(+,+) + dc1(−,+) , 5c1 = Lc1(−,−) + d1(+,−) , (92)

52 = L2(−,+) + dc2(+,+) , 5c2 = Lc2(+,−) + d2(−,−) , (93)

101 = Q1(+,+) + uc1(−,+) + ec1(−,+) , (94)

10c1 = Qc
1(−,−) + u1(+,−) + e1(+,−) , (95)

102 = Q2(−,+) + uc2(+,+) + ec2(+,+) , (96)

10c2 = Qc
2(+,−) + u2(−,−) + e2(−,−) , (97)

where the Standard Model fermions are identified with the zero modes of the fields
with (+,+) boundary conditions. Notice that this embedding elegantly explains why
the fermions need not satisfy the SU(5) mass relations and although each Standard
Model generation arises from different 5+10 fields, the usual charge quantization and
hypercharge assignments are still satisfied [56, 57]. This feature also explains why
tree-level proton decay is not a problem in these models. There is simply no allowed
coupling between X, Y (−,+) gauge bosons and Standard Model fields L1(+,+) and
dc2(+,+) that is even under the orbifold symmetry. This is also true for couplings
between Standard Model particles and the coloured Higgs triplets. However, a bulk
U(1) symmetry must be introduced in order to prevent proton decay from higher-
dimensional operators [59, 60].

The specific contributions to the gauge couplings are given by

1

g2
a(p)

=
πR

g2
5

+
1

g2
Ba(Λ)

+
1

8π2
∆a(p,Λ) , (98)

where gBa are boundary couplings, and ∆a are the one-loop corrections. The first
term in (98) is the universal contribution from the tree-level gauge coupling g5 in the
bulk. The second term in (98) is an SU(5) violating term that follows from breaking
the SU(5) symmetry on the Planck brane. It can be neglected because gBa(Λ) ≃ 4π,
since the theory is effectively strongly coupled at the scale Λ >∼ k [61, 46, 62]. Thus,
we see that the dominant contributions to the gauge couplings will arise from the
logarithmically enhanced terms of ∆a. These terms cannot be obtained in the strongly
coupled 4D dual theory, but instead can be calculated using the bulk zero-mode Green
functions [63].
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The exact Greens function expression can be expanded at low energies p <∼ TeV
to obtain the dominant logarithmic contributions. For vector bosons the dominant
term is

∆a(V) = baV ln
k

p
+ . . . , (99)

where baV = (0,−22
3
,−11). Recall that k ≃ MP is the AdS curvature scale so that

(99) is the usual logarithmic contribution from the Standard Model gauge bosons.
There are no corresponding gaugino zero mode contributions because these modes
have received a large supersymmetry breaking mass and decouple at low energy.

Instead for the Higgs sector, the leading contribution for the Higgs doublet is

∆a(H++) = Ta(H++) ln
T

p
+ . . . , (100)

where Ta(H++) =
(

3
10
, 1

2
, 0

)
and T is shorthand for the TeV scale. In this case the

leading contribution is again a logarithmn but it is small. This can be interpreted as
being due to the fact that the Higgs doublet is a composite particle. On the other
hand the Higgs triplet contributions for m−+

<∼ p <∼ T , with m−+ the lowest lying
massive state, are

∆a(H−+) = Ta(H−+)

[
2

3
ln
k

p
+ ln

T

p
+ . . .

]
, (101)

where Ta(H−+) =
(

1
5
, 0, 1

2

)
. There is now both a large and small logarithmic contribu-

tion. The small contribution is from the composite states, while the large contribution
is due to elementary degrees of freedom which are required to form a Dirac state.
These extra elementary states can also be inferred by directly studying the dual 4D
theory [39]. Thus, the total Higgs contribution from both Higgs hypermultiplets H
and H̄ is

∆a(H + H̄) = baH+H̄ ln
k

p
+ ln

T

p
+ . . . , (102)

where baH+H̄ =
(

4
15
, 0, 2

3

)
.

Finally the first two matter generations are (predominantly) elementary and give
rise to the contribution

∆a(5
(I)
i + 10

(I)
i ) =

4

3
ln
k

p
+ . . . . (103)

This is the usual universal contribution from one generation of Standard Model
fermions which form a complete SU(5) multiplet. On the other hand the third gen-
eration is partly composite with composite states tR, bR, τR and elementary states
tL, bL, τL, ντL. This gives the nonuniversal contribution

∆a(5
(3)
i + 10

(3)
i ) = ba(3) ln

k

p
+

4

3
ln
T

p
+ . . . , (104)
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where ba(3) =
(

8
15
, 8

3
, 4

3

)
. Clearly we see that the large logarithmic contribution that

arises from the elementary states introduces a differential running in the gauge cou-
plings.

If we now add up all the ∆a contributions (99), (102), (103) and (104) arising
from the elementary states in the model, then at the leading log level we obtain the
total contribution [64]

∆a = batotal ln
k

p
+ . . . , (105)

where batotal =
(

52
15
,−2,−19

3

)
. These β-function coefficient values give B = 0.793,

which allowing for an approximately 10% theoretical uncertainty, agrees with the
experimental value (86). Interestingly the partly composite third generation has re-
stored the gauge coupling unification without the gauginos and Higgsinos.

• Exercise: Use the one-loop gauge coupling expressions in Ref [63] for p <∼ TeV,
to verify the individual logarithmic contributions in ∆a.

Note that even though the model is partly supersymmetric, supersymmetry plays
no role in obtaining gauge coupling unification because all the differential running
contributions come from the UV-brane localised elementary sector which is nonsuper-
symmetric. This means that a similar mechanism will also work for an inherently
nonsupersymmetric model such as the minimal composite Higgs model [65].

7 Conclusion

Warped models in a slice of AdS5 provide a new framework to study solutions of the
hierarchy problem at the TeV scale. The warp factor naturally generates hierarchies
and can be used to either stabilise the electroweak scale or explain why the scale of
supersymmetry breaking is low. Remarkably by the AdS/CFT correspondence these
5D warped models are dual to strongly coupled 4D theories. The Higgs localised on
the IR brane is dual to a composite Higgs. The corresponding Higgs boson mass can
be light compared to the IR cutoff by using either a global symmetry and treating
the Higgs as a pseudo Nambu-Goldstone boson or using supersymmetry to make only
the Higgs sector supersymmetric. The good news is that these models are testable at
the LHC (and an eventual linear collider), so it will be an exciting time to discover
whether Nature makes use of the fifth dimension in this novel way. If not, there is
no bad news, because the warped fifth dimension literally provides a new theoretical
framework for studying the dynamics of strongly coupled 4D gauge theories and this
will be an invaluable tool for many years to come.
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