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Motivation for this model
– Scale invariance is a very powerful concept with wide 

applications. In particle physics it is very predictive in 

analysing the asymptotic behaviour of correlation 

functions at high energies

– Scale invariance at low energies is broken by the 

masses of particles

– Our quantum mechanical world seems well described 

by particles

– But why can’t we have a scale invariant sector in our 

theory?

– An interacting scale invariant theory would have no 

particles, it is made of unparticles

– So what would unparticles look like?



Scale invariance: a feature of objects or laws that do not 

change if the length of energy scales are multiplied by a 

common factor

An Effective theory is an approximate theory that contains 

the appropriate degrees of freedom to describe physical 

phenomena occurring at a chosen length scale, but 

ignores the substructure and the degrees of freedom at 

shorter distances.

That is, we shall use the degrees of freedom 

appropriate to the scale of the problem, for example, we 

don’t use quantum gravity to calculate projectile motion!

Some definitions of use



More generally, any theory at momentum p<<M can be 

described by an effective Lagrangian

0
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where the Ci’s are the short distance quantities (in QCD 

these are perturbatively calculable if M>> QCD)

and the Oi’s are the long distance quantities



The Basic Set-up

• Imagine that at very high energies our theory contains 
the SM fields and a conformal sector due to fields of a 
theory with a nontrivial IR fixed point (call them BZ fields)

• These two sets interact through the exchange of 
particles with a mass scale MU

• Below the scale MU, there are nonrenormalizable
couplings involving both SM and BZ fields suppressed 
by powers of MU

• As in massless non-Abelian gauge theories, 
renormalization affects the scale invariant BZ sector 
inducing dimensional transmutation at an energy scale 

U

1
SM BZk

U

O O
M

for k > 1



• In the effective theory below the scale U the BZ 

operators must match onto the new (unparticle) operators, 

which have the following form in the effective interaction

BZ Ud d

U U
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M

where dU is the scaling dimension of the unparticle operator

CU is a coefficient determined by the matching condition

• As a nontrivial scale invariant IR fixed point theory is 

thoroughly nonlinear and complicated, the matching of the 

BZ physics to the unparticle will be complicated

cf. high-energy QCD and low-energy hadron states

As such, we shall estimate these constants only roughly.



• First note though, that this scaling dimension dU can be 

a non-integer number

The reason for this is (by analogy):

• This is a CFT defined in terms of an OPE 

• When one does an OPE and then tries to evaluate the 

overlap of two operators we get a Taylor-like series

(basically the perturbative expansion of the diagrams) in 

terms of the coupling constants 

• The first term of the expansion is like the correlator function

• Higher order terms give us the anomalous dimension 

(higher order diagrams changing the classical dimension, 

hence anomalous)

• This anomalous dimension need not be an integer one 

Typical of scale invariant theories where one needs an OPE. 

Note that this also happens for B-decays, as we use an OPE 

there also.



Note that in the previous equation, the unparticle operator 

was a Lorentz scalar, but there are other possible Lorentz 

structures, some of which we shall present later

So what physics do we have below U?

Note that we shall focus on the production of the unparticle

stuff

• The most important effects will be those involving only one 

factor of
BZ Ud d

U U

k

U

C

M

The result will be the production of unparticle stuff, 

contributing to missing energy and momentum



Density of final states

• To calculate probability distributions we need to know 

the density of final states

Note that this is essentially determined by the scale 

invariance
4
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From scale invariance the matrix element scales with 

dimension 2dU, requiring
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Lets compare this to the phase space for n massless

particles
4
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Thus we could say that

Unparticle stuff with scale dimension dU

looks like a non-integral number dU of

invisible particles

Let us then identify An above with the AdU from earlier

Note that any other choice could always be absorbed into 

our choice for CU earlier



The Operators

Re-writing our parameters into the form

U

i
SM Ud

U

O O

we note that below the scale U our effective theory will 

give us four-Fermi like interactions, with powers of dU from

dimensional analysis. For example
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As my examples will focus on lepton based processes I will 

only use the above interactions.

However, other interactions are just as easily constructed



Example 1: t u + U 
H. Georgi, arXiv:hep-ph/0703260
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To illustrate the procedure in a realistic situation, consider 

the decay t u + U, from the coupling

where the constant

Ignoring the u mass, the final state densities are
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The phase space factor is then
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dln /dEu versus Eu in

units of mt with

dU = 1.3 to 2.8.

The dashes get 

smaller as j increases

As dU 1 from above, dln /dEU becomes more peaked at 

Eu = mt/2, matching smoothly onto the 2-particle decay limit, 

as expected.

For higher dU the shape depends sensitively on dU

The kind of peculiar distributions of missing energy that we 

see in this figure may allow us to discover unparticles

experimentally!
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The Unparticle Propagator

We shall now consider some virtual effects of unparticles.

Note that interference between SM and virtual unparticle

amplitudes can be a very sensitive probe of high-energy 

processes (as we shall see)

Working, as before, to lowest trivial order in the small 

couplings of unparticles to SM fields, we will require our 

unparticle operators to be Hermitian and transverse

Note that unparticle operators with different tensor 

structures can be dealt with in a similar way

0UO



The transverse 4-vector unparticle propagator is given by
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Where the tensor structure reflects our requirement on the 

operator

And the powers of dU such that we maintain scale invariance

Note that there will be an imaginary part to the propagator 

when P2 > 0 (spacelike) and none when P2 < 0



This can be checked by finding the discontinuity across 

the cut for P2 > 0
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Note that while the discontinuity is not singular for integer 

dU > 1, the propagator is singular in the denominator.

This would be a real effect

As such we shall look to see what virtual effects, from 

unparticles, this imaginary part will have 



Example 2: e+ + e- + + -

H. Georgi, arXiv:0704.2457[hep-ph]
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Let us compute the cross-section for e+ + e- + + - in the 

presence of the interactions 

ignoring lepton mass where q2 = s, the total CM energy, 

and is the angle between the - and the e-

where
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The d’s and ’s are
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Note that we have assumed that unparticles are 

lepton-flavour blind, but our earlier expression is 

entirely general

Consider now the total cross-section in the LEP 

region, where we are used to thinking the Z pole is a 

poor place to look for interference effects

This prejudice is not warranted for unparticle

interactions as this can interfere with both real and 

imaginary parts of the SM



25 50 75 100 125 150 175 200

Beginning with cV =0

photon and U do not 

directly contribute.

Expect only 

interference with Z

Shown is the 

fractional change in 

total for small cA

for various dU

between 1 and 2.

5|cA|2

-5|cA|2 s GeV

This is extremely sensitive to dU. We can understand this by 

thinking about the phase of the U propagator along the cut

dU = – (dU – 1) 

The real part is positive for 1 < dU < 3/2 and negative for 

3/2 < dU < 2. Thus away from the Z pole we expect 

destructive (constructive) interference below (above) the 

pole for 1 < dU < 3/2 and vice-versa for 3/2 < dU < 1.



90 91 92 93

|cA|2
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A closer view of the 

previous plot around 

the Z pole

As can be seen from this plot, things are much more 

complicated near the Z pole, as both real and imaginary 

parts contribute to the interference



25 50 75 100 125 150 175 200

|cA|2/2
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The situation simplifies in an interesting way for dU = 3/2.

In this case the unparticle amplitude interferes only with the 

imaginary part of the Z exchange. This is a smaller effect as it 

is proportional to the Z width, rather than s – MZ
2.

It gives constructive interference that peaks on the Z pole and 

goes to zero far from the pole.

Here our values of dU

are closer to 1.5

(that is, 1.48, 1.49, 

1.51 and 1.52)



25 50 75 100 125 150 175 200
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Now we consider the 

case of purely vector 

coupling, where we 

expect interference with 

the photon, and only 

weakly with the Z

We now expect constructive interference for 1 < dU < 3/2 and

destructive for 3/2 < dU < 2.

Note that the dip at the Z pole arises from our plotting the 

fractional change, and the large contribution from the pole is in 

the denominator.



Note that the unparticle interference in the matrix element 

also gives rise to a complicated pattern of changes in the FB 

asymmetry, which we won’t cover here.

However, this does point to some very interesting and 

detailed interference effects, unique to unparticle stuff, even 

though we lack a truly detailed picture of what it looks like!



Example 3: LFV decay e- + e+ + e-

T. M. Aliev, A. S. Cornell and N. Gaur, arXiv:0705.1326[hep-ph]
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For our study we will consider the following set of effective 

interactions for the unparticle operators which have 

couplings to leptons:

The scalar operator, in principle, couples with SM 

fermions, however, their contributions are proportional to 

fermion mass and are suppressed here
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The decay is described by the Feynman diagrams above, 

with the matrix element:
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where P = p1 – p2 and Q = p1 – p3. If we take the particles 

as massless, then
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Our calculation will be done in the CM frame of the outgoing 

electron and positron, as denoted by the momenta p3 and p4
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Note that the present 

experimental limits are 

BR < 1 x 10-12

Here we have 

presented variation of 

BR against dU for

various values of U

As can be seen, the branching ratio is very sensitive to the 

scaling dimension
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Here we show the dependence of BR against the various 

ai’s, where a1 and a2 correspond to the LFV interactions

Again this is done for different values of U

This shows how sensitive the BR is dU and LFV couplings



Note that the same LFV couplings will be involved in other 

LFV processes, such as e .

As such, an exploration of the phenomenology of LFV 

unparticle operators on radiative LFV processes and their 

possible correlation with this decay, would be interesting.

Compare this with the well known strong correlation of 

these LFV processes in SUSY, and how these correlations 

tend to change substantially in LHT1

1 M. Blanke, A. J. Buras, B. Duling, A. Poschenrieder and C. 

Tarantino, arXiv:hep-ph/0702136



Example 4: B K + missing energy
T. M. Aliev, A. S. Cornell and N. Gaur, arXiv:0705.4542[hep-ph]
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Decays of the form b s + missing energy have been the 

focus of much investigation at B factories, with measured 

results of

In the SM the decay B K is described at quark level 

by the Hamiltonian

After taking into account the three SM neutrino species, 

the differential decay width is

where 4 4 4 2 2 2 2 2 22 2 2B K B K B Km m q m q m q m m



Where we have made use of the form factors
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Note also that we shall use the propagator for the scalar 

unparticle field as
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In the case of B K U the following scalar operators 

can contribute
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In which case the decay rate is
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Similarly for the vector unparticle operators
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To obtain the total decay width we integrate from 

mK < EK < (mB
2 + mK

2)/2mB

Note also that the energy distribution of final hadrons is very 

different from the SM compared to unparticles, such that, 

though the present limits are one order of magnitude above the 

SM expectation (SuperB will fix this) we can still place 

constraints now.
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Here we plot the decay rate 

against EK for the different 

decay modes.

Note the striking difference in 

the high energy regime for the 

vector operators
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Here we look at the branching ratio against dU for different 

values of U

As can be seen, it is very sensitive to both dU and U

And that the vector operator is more strongly constrained 

than the scalar
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Finally we plot the branching ratio against CS and CV for

various values of dU

These plots show how the scalar process constrains CS

whilst the vector process constrains CV

To conclude, these operators also contribute to other 

processes, such as meson anti-meson mixing etc,

however, our constraints here are much stronger



Example 5: Lepton Anomalous 

Magentic Moments
K. Cheung, W-Y. Keung and T-C. Yuan, arXiv:0704.2588[hep-ph]

If we replace one photon exchange in QED by the 

unparticle associated with the vector operator OU ,

one can derive the unparticle contribution to the lepton 

anomaly a = (g – 2)/2
12 2

2 2

3 2 1

4 2

U

U

d

V d U U

U U

c Z d dm
a

d

where m is the charged lepton mass and that here we 

assume cV is lepton flavour blind.

As dU 1 we get a cV
2/8 2, and if we set cV to e we

reproduce the well known QED result
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Here we plot the muon

anomalous magnetic 

moment contribution from 

the unparticle versus dU

for various cV’s

The horizontal line is the 

experimental value less 

the SM contribution

It is amusing to see that current experimental data of 

the muon anomaly can give bounds to the effective 

coupling cV and the scale dimension dU already



Example 6: Mono-photon events in e+e-

collisions
K. Cheung, W-Y. Keung and T-C. Yuan, arXiv:0704.2588[hep-ph]
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The energy spectrum of the mono-photon from the process 

e- e+ U can also be used to probe the unparticle

Its cross-section is given by

with the matrix element squared
2 2 2

2 2 2 2 2
2 U

e V

u t sP
M e Q c

ut

where PU
2 is related to the photon energy by the 

recoil mass relation PU
2 = s – 2 s1/2 E
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Here we have plotted 

the mono-photon 

distribution for various 

choices of dU

The sensitivity of the 

scale dimension can 

be easily discerned

Note that mono-photon events have been searched quite 

extensively at LEP experiments in other contexts and a 

more detailed study by K. Cheung et al. is expected soon



Summary

• Unparticle physics, due to conformal invariance, 
might appear at the TeV scale

• An effective field theory can be used to explore the 
unparticle effects

• It can lead to interesting phenomenological 
consequences, due to the scale dimension being 
able to take non-integer values, which can be 
checked at low energy experiments

• Such as particular missing energy distributions

• The unparticle propagator in the time-like region has 
interesting properties that force us to re-examine 
preconceived ideas about interference. 



• In the LFV decay e+ + e- , we demonstrated the 

sensitivity of these processes to the scaling dimension and 

other parameters. Such that a study of other LFV 

processes will place strong constraints on this model.

• In our study of unparticle physics in the LFV e- e+ e-

we determined the decay width is sensitive to the virtual 

effects of these unparticles

• In our study of B K + missing energy, we were able to 

constrain the scalar and vector operators from 

experimental data (future results will further constrain this)

• Current experimental bounds can be used to constrain 

some of our parameters from (g – 2)

• Furthermore, these operators will appear elsewhere, 

placing additional constraints on them.




