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Lecture 1:

Motivation 
and 

Introduction to Supersymmetry



            The Standard ModelThe Standard Model

A quantum theory that describes how all  known fundamental particles interact

                                 via the strong, weak and electromagnetic forces

A gauge field theory with a symmetry group SU(3)
c
! SU(2)

L
!U(1)

Y

Matter fields :  
3 families of quarks and leptons with 

the same quantum numbers  under 

the gauge groups

12 fundamental gauge  fields:  

 8 gluons,  3       ‘s  andµW µB

3,21
, gggand 3 gauge couplings:

Force Carriers:

 SM particle masses and interactions have been tested at Collider experiments

 ==> incredibly successful description of nature up to energies of about 100 GeV 



• Is not possible to give mass to the gauge bosons respecting the gauge symmetry,

                   -- massless gauge bosons ==> imply long range forces --

• A fermion mass term                                                     is forbidden because it would mix

left- and right-handed fermions which have different quantum numbers

The gauge symmetries of the model do not allow to generate mass at all!

How to give mass to the Z and W gauge bosons?

� 
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The Mystery of Mass

 Crucial Problem in the SM: The origin of mass of all the fundamental particles

Weak Force Nuclear Fusion in the Sun

Determines strength

 of the weak force

Sun still burning !



•What is the origin of Mass of the Fundamental Particles ?

or

the source of Electroweak Symmetry Breakdown (EWSB)

! There is a Field that fills all the Universe

         -- it does not disturb gravity and electromagnetism but it renders

             the weak force short-ranged

         -- it slows down the fundamental particles from the speed of light

 The electromagnetic and weak forces are unified 

                    ==> electroweak theory

             

                    what breaks the symmetry

                     ==> the mysterious Field

           EWSB occurs at the electroweak scale

                  New phenomena should lie in

                       the TeV range or below

                         within LHC/ILC reach
HERA ep collider



                                      The Higgs Mechanism

A self interacting complex scalar doublet with no trivial quantum numbers under SU(2)L x U(1)Y

•  Spontaneous breakdown of the symmetry generates 3 massless Goldstone bosons

    which are absorbed to give mass to W and Z gauge bosons 

•  Higgs neutral under strong and electromagnetic interactions 

  exact symmetry SU(3)C x SU(2)Lx U(1)Y ==> SU(3)C x U(1)em 

•  One extra physical state -- Higgs Boson --  left in the spectrum

V (!) = µ2
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2
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+
!( ) 2

            µ2 < 0

Higgs vacuum condensate v ==>  scale of EWSB

M
V

2
= g!VV v 2

•  Masses of fermions and gauge bosons proportional to their couplings to the Higgs

mf = h
f
 v

m
H
SM

2
= 2!  v

2

The Higgs field acquires non-zero value 

to minimize its energy

m! = 0   m
g
= 0

v

v is the scale
 of EWSB

< φ†φ >= v2 = −µ2/λ



The Hierarchy Problem of the SM Higgs Sector

• SM is an effective theory                low energy quantities (masses,

couplings) expected to be given as a function of parameters of the

fundamental theory valid at Q>

!

low energy dimensionless couplings: receive quantum

 corrections prop. to  log (         )

what about the Higgs potential mass parameter    ?

Quantum corrections to        are quadratically divergentµ2
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Quadratic Divergent contributions:

Quantum Corrections to the Higgs Mass Parameter

Higgs Mass Parameter Corrections

One loop corrections to the Higgs mass parameter cancel if the 
couplings of scalars and fermions are equal to each other
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(If the masses proceed from the 
v.e.v. of H, there is another 
diagram that ensures also the 
cancellation of the log term. 
Observe that  the fermion and 
scalar masses are the same in 
this case, equal to hf v.) 

Supersymmetry is a symmetry that ensures the equality of these couplings.
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Higgs Mass Parameter Corrections

One loop corrections to the Higgs mass parameter cancel if the 
couplings of scalars and fermions are equal to each other
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(If the masses proceed from the 
v.e.v. of H, there is another 
diagram that ensures also the 
cancellation of the log term. 
Observe that  the fermion and 
scalar masses are the same in 
this case, equal to hf v.) 

Supersymmetry is a symmetry that ensures the equality of these couplings.
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If the mass proceed from a v.e.v of H, the cancellation of the log terms is ensured
by the presence of an additional diagram induced by trilinear Higgs couplings.

The fermion and scalar masses are the same in this case:  mf = ms = hf v       

Supersymmetry is a symmetry between bosons and fermions 
that ensures the equality of couplings and masses

Automatic cancellation of loop corrections to the Higgs mass parameter 

One loop corrections to the Higgs mass parameter cancel if the couplings
of bosons and fermions are equal to each other



fermions                       fermions                       bosonsbosons
supersymmetrysupersymmetry

electron                        electron                        sselectronelectron
quark                              quark                              ssquarkquark
photphotinoino photonphoton
gravitgravitinoino gravitongraviton

Photino,  Zino and Neutral Higgsino:  Neutralinos

Charged Wino, charged Higgsino: Charginos

No new dimensionless couplings. Couplings of supersymmetric particles
equal to couplings of Standard Model ones.  
Two Higgs doublets necessary.  Ratio of vacuum expectation values
denoted by  tan β
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Low energy Supersymmetry

lesson from history: electron self energy         fluctuations of em fields

generate a quadratic  divergence but existence of electron antiparticle

cancels it,  otherwise QED will break down well below

Will history repeat itself? Take SM and double particle spectrum

  New Fermion-boson Symmetry: SUPERSYMMETRY (SUSY)

Pl
M

        SM particles           SM particles                                   SUSY particlesSUSY particles

No new dimensionless couplings
Couplings of SUSY particles equal to couplings of SM particles

Supersymmetry



Why Supersymmetry?

• Helps stabilize the weak scale-Planck scale hierarchy

• SUSY algebra contains the generator of space translations 

• Allows for gauge coupling Unification at a scale ~ 1016 GeV  

• Starting from positive Higgs mass parameters at high energies,                 
induces electroweak symmetry breaking radiatively       

• Provides a good Dark matter candidate : the Lightest SUSY Particle 

• Provides a solution to the baryon asymmetry of the universe                                                                                                                                                                                                 

necessary ingredient of theory of  quantum gravity



Structure of Supersymmetric Gauge Theories

• The Standard Model is based on a Gauge Theory.

• A supersymmetric extension of the Standard Model has then to
follow the rules of Supersymmetric Gauge Theories.

• These theories are based on two set of fields:

– Chiral fields, that contain left handed components of the fermion
fields and their superpartners.

– Vector fields, containing the vector gauge bosons and their
superpartners.

• Right-handed fermions are contained on chiral fields by means of
their charge conjugate representation

(ψR)C =
(
ψC

)
L

(4)

• Higgs fields are described by chiral fields, with fermion superpartners
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Structure of Supersymmetric Theories

(ψR)C = (ψC)L with ψC = iγ2ψ∗ γ2 =
(

0 σ2

σ2 0

)



For every fermion there is a boson of equal mass and couplings

Supersymmetric transformations relate bosonic to fermionic degrees of freedom
the operator Q that generates that transformation acts, schematically 

Q†|B >= |F > Q†|F >= |B >Q|B >= |F > Q|F >= |B >

Q†The SUSY generators,  Q and      
are two component anti-commuting spinors satisfying:

{Qα, Qβ} = {Q†
α, Q†

β} = 0{Qα, Q†
α} = 2σµ

αα̇Pµ

where σµ = (I,"σ), σ̄µ = (I,−"σ), and σi are Pauli Matrices

Two spinors may contract to form a Lorentz invariant:

ψαχα = ψαεαβχβ

Supersymmetry Generators

Pµ = (H, !p) is the generator of spacetime translations : part of the SUSY algebra

ψ̄α̇χ̄α̇ = ψ̄α̇εα̇β̇χ̄β̇

[Qα, Pµ] = [Q†
α̇, Pµ] = 0



Hamiltonian of Supersymmetric Theories
Since there is a relation between the momentum operator and the SUSY 
genrators, one can compute the energy operator

Two things may be concluded from here. First, the Hamiltonian operator is 
semidefinite positive.                                                         

 

Second,  if the theory is supersymmetric, then the vacuum state should be 
annihilated by supersymmetric charges

So, the vacuum state energy is zero !  The vacuum energy  is the order 
parameter for Supersymmetry breaking. 

H =
1
4

(
Q1Q

†
1 + Q†

1Q1 + Q2Q
†
2 + Q†

2Q2

)

Qα|0 >= 0, Q†
α̇|0 >= 0 =⇒ < 0|H|0 >= 0

< H > = E ≥ 0

generators,



Effective Potential of a Supersymmetric Theory

V (Φ)

Φ

Non-trivial Minimum could lead to the breakdown of gauge or global 
symmetries but SUSY is preserved, provided the value of the effective 

potential at the minimum is equal to zero, like in the Figure above. 

Preservation of SUSY



V (Φ)

Φ

Spontaneous breakdown of SUSY

If the Minimum of the Potential is at a value different from zero, then
the vacuum state is not supersymmetric and SUSY has been broken
spontaneously.
A massless fermion, the Goldstino, appears in the spectrum of the 
Theory.
In Supergravity (local supersymmetry) theories, this Goldstino appears
as the longitudinal component of the Gravitino, of spin 3/2.



Four-component vs. two-component Weyl fermions

ψD =
(

χα

ψ̄α̇

)
ψC

D =
(

ψα

χ̄α̇

)
  *   A Dirac spinor is a four component object whose components are

  *   A Majorana spinor is a four component object whose components are

ψM =
(

χα

χ̄α̇

)
ψC

M = ψM

  *   Gamma Matrices

γµ =
(

0 σµ

σ̄µ 0

)
γ5 =

(
−I 0
0 I

)

  *   Observe that ψD,L = χ; ψD,R = ψ̄ ≡ ψ†



  *   Usual Dirac contractions may then be expressed in terms of two   
       components contractions

ψ̄DψD = ψχ + h.c. with ψ̄D = (ψα χ̄α̇)

In particular:

ψ̄DγµψD = ψσµψ̄ + χ̄σ̄µχ = −ψ̄σ̄µψ + χ̄σ̄µχ

Observe that Majorana particles lead to vanishing vector currents
Hence, they must be neutral under electromagnetic interactions

Chiral currents, instead, do not vanish

They may couple to the Z boson

Other relations may be found in the literature

ψ̄Dγµγ5ψD = ψσµψ̄ + χ̄σ̄µχ = −ψ̄σ̄µψ − χ̄σ̄µχ_



Superspace

• In order to describe supersymmetric theories, it proves convenient to
introduce the concept of superspace.

• Apart from the ordinary coordinates xµ, one introduces new
anticommuting spinor coordinates θα and θ̄α̇; [θ] = [θ̄] = -1/2.

• One can also define derivatives

{θα, θβ} = 0; θθθ = 0; [θQ, θ̄Q̄] = 2θθ̄σµPµ

∂α =
∂

∂θα
; ∂αθβ = δβ

α; ∂α(θβθβ) = 2θα (14)
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Superspace



Supersymmetry representationSupersymmetry representation

• Supersymmetry is a particular translation in superspace,
characterized by a Grassman parameter ξ.

• Supersymmetry generators may be given as derivative operators

Qα = i
[
−∂θ − iσµθ̄∂µ

]
(15)

• Superspace allows to represent fermion and boson fields by the same
superfield, by fields in superspace

• The operator
D̄ = −∂α̇ + iθσµ∂µ

commutes with the supersymmetry transformations.

• So, if a field depends only on the variable yµ = xµ − iθ̄σµθ, the
supersymmetric transformation of it depends also on the y.
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One can check that these differential generators fulfill the SUSY algebra. 

_yµ = xµ − iθσµθ̄, since D̄yµ = 0

the supersymmetric transformation of such field depend only on  y
satisfies D̄Φ = 0



Chiral Fields

• A generic scalar, chiral field is given by

Φ(x, θ, θ̄ = 0) = A(x) +
√

2 θ ψ(x) + θ2F (x)

Φ(x, θ, θ̄) = exp(−i∂µθσµθ̄) Φ(x, θ, θ̄ = 0) (16)

• A, ψ and F are the scalar, fermion and auxiliary components.

• Under supersymmetric transformations, the components of chiral
fields transform like

δA =
√

2ξψ, δF = −i
√

2ξ̄σ̄µ∂µψ

δψ = −i
√

2σµξ̄∂µA +
√

2ξF (17)

• The F component transforms like a total derivative.
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(D̄Φ = 0)

The supersymmetric transformation of a chiral field is chiral.

Chiral Superfields:
Chiral Fields

• A generic scalar, chiral field is given by

Φ(x, θ, θ̄ = 0) = A(x) +
√

2 θ ψ(x) + θ2F (x)

Φ(x, θ, θ̄) = exp(−i∂µθσµθ̄) Φ(x, θ, θ̄ = 0) (16)

• A, ψ and F are the scalar, fermion and auxiliary components.

• Under supersymmetric transformations, the components of chiral
fields transform like

δA =
√

2ξψ, δF = −i
√

2ξ̄σ̄µ∂µψ

δψ = −i
√

2σµξ̄∂µA +
√

2ξF (17)

• The F component transforms like a total derivative.
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Properties of chiral superfields

• The product of two superfields is another superfield.

• For instance, the F-component of the product of two superfields Φ1

and Φ2 is obtained by collecting all the terms in θ2, and is equal to

A1F2 + A2F1 + ψ1ψ2 (18)

• For a generic Polynomial function of several fields P (Φi), the result is

(∂AiP (A))Fi +
1
2

(
∂2

Ai,Aj
P (A)

)
ψiψj (19)

• Finally, a single chiral field has dimensionality [A] = [Φ] = 1, [ψ]=
3/2 and [F ] = 2. For P (A), [P (Φ)]F = [P (Φ)] + 1 ([θ] = [θ̄] = -1/2).
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-[Φ1Φ2]F =

[P (Φ)]F =

Properties of Chiral Superfields:

(∂AiP (A))Fi −
1
2

(
∂2

AiAj
P (A)

)
ψiψj



Expansion of Chiral Superfield

• In the above, we have only used the form of the chiral field at θ̄ = 0.

• However, for many applications, the full expression of the chiral
superfield is necessary. It is given by

Φ(x, θ, θ̄) = A(x) + i∂µA(x)θσµθ̄ − 1
4
∂2A(x)θ2θ̄2

+θψ(x) + i
θ2

2
∂µψ(x)σµθ̄ + F (x)θ2 (20)
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+
√

2

Chiral Fields

• A generic scalar, chiral field is given by

Φ(x, θ, θ̄ = 0) = A(x) +
√

2 θ ψ(x) + θ2F (x)

Φ(x, θ, θ̄) = exp(−i∂µθσµθ̄) Φ(x, θ, θ̄ = 0) (16)

• A, ψ and F are the scalar, fermion and auxiliary components.

• Under supersymmetric transformations, the components of chiral
fields transform like

δA =
√

2ξψ, δF = −i
√

2ξ̄σ̄µ∂µψ

δψ = −i
√

2σµξ̄∂µA +
√

2ξF (17)

• The F component transforms like a total derivative.
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Expansion of a Chiral Superfield

* In the above, we only used the form of the chiral superfield at θ̄ = 0

 However,  for many applications the full expression of the chiral superfield is
 necessary:



Vector Superfields

• Vector Superfields are generic hermitian fields. The minimal
irreducible representations may be obtained by

V (x, θ, θ̄) = −
(
θσµθ̄

)
Vµ + iθ2θ̄λ̄− iθ̄2θλ +

1
2
θ2θ̄2D (21)

• Vector Superfields contain a regular vector field Vµ, its fermionic
supersymmetric partner λ and an auxiliary scalar field D.

• Looking at the form of Qα, it is easy to see that the D-component of
a vector field transform like a total derivative.

• D = [V ] + 2; [Vµ] = [V ] + 1; [λ] = [V ] + 3/2. If Vµ describes a
physical gauge field, then [V] = 0.
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Vector Superfields

* Vector Superfields are generic hermitian fields. The minimal irreducible   
  represenations may be obtained by:

* Vector Superfields contain a regular gauge vector field      , its fermionic
  superpartner     and an auxiliary scalar field D

Vµ

λ

Under supersymmetric transformations the components transform like:

δV a
µ = −ξ̄σ̄µλa − λ̄aσ̄µξ δλa

α = − i

2
(σµσ̄νξ)αF a

µν + ξαDa

δDa = i(ξ̄σ̄µ∇µλa −∇µλ̄aσ̄µξ) with ∇µ = ∂µ + ig V a
µ T a

The D component of a vector field transforms as a total derivative

Vector Superfields

• Vector Superfields are generic hermitian fields. The minimal
irreducible representations may be obtained by

V (x, θ, θ̄) = −
(
θσµθ̄

)
Vµ + iθ2θ̄λ̄− iθ̄2θλ +

1
2
θ2θ̄2D (21)

• Vector Superfields contain a regular vector field Vµ, its fermionic
supersymmetric partner λ and an auxiliary scalar field D.

• Looking at the form of Qα, it is easy to see that the D-component of
a vector field transform like a total derivative.

• D = [V ] + 2; [Vµ] = [V ] + 1; [λ] = [V ] + 3/2. If Vµ describes a
physical gauge field, then [V] = 0.
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Superfield Strength and gauge transformations

• Similarly to Fµν in the regular case, there is a field that contains the
field strength. It is a chiral field, derived from V (W = −D̄D̄DV/4),
and it is given by

Wα(x, θ, θ̄ = 0) = −iλα + (θσµν)α Fµν + θαD − θ2
(
σ̄µDµλ̄

)α (22)

• Under gauge transformations, superfields transform like

Φ → exp(−igΛ)Φ, Wα → exp(−igΛ)Wα exp(igΛ)

exp(gV ) → exp(−igΛ̄) exp(gV ) exp(igΛ) (23)

where Λ is a chiral field of dimension 0.
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Superfield Strength and Gauge transformations



Towards a Supersymmetric Lagrangian
• The aim is to construct a Lagrangian, invariant under

supersymmetry and under gauge transformations.

• One should remember, for that purpose, that both the F-component
of a chiral field, as well as the D-component of a vector field
transform under SUSY as a total derivative.

• One should also remember that, if renormalizability is imposed, then
the dimension of all interaction terms in the Lagrangian

[Lint] ≤ 4 (24)

• On the other hand,

[Φ] = 1, [Wα] = 3/2, [V ] = 0. (25)

and one should remember that [V ]D = [V ] + 2; [Φ]F = [Φ] + 1.
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Towards a SUSY Lagrangian
The aim         construct a Lagrangian invariant under supersymmetric  and    
                     gauge transformations

The variation       should be a total derivative such that the action
             is invariant

δL
S =

∫
d4x L

        Recall:   The F-component of a chiral field (or products of chiral fields) 
                          &  The D-component of a vector field 
                       transform under SUSY like a total derivative

If renormalizability is imposed, the dimension of all terms in the Lagrangian:  
[Lint] ≤ 4

On the other hand the dimensions of the chiral and vector fields are:  



Supersymmetric Lagrangian

• Once the above machinery is introduced, the total Lagrangian takes
a particular simple form. The total Lagrangian is given by

LSUSY =
1

4g2
(Tr[WαWα]F + h.c.) +

∑

i

(
Φ̄ exp(gV )Φ

)
D

+ ([P (Φ)]F + h.c.) (26)

where P (Φ) is the most generic dimension-three, gauge invariant,
polynomial function of the chiral fields Φ, and it is called
Superpotential. It has the general expression

P (Φ) = ciΦi +
mij

2
ΦiΦj +

λijk

3!
ΦiΦkΦk (27)

• The D-terms of V a and the F term of Φi do not receive any
derivative contribution: Auxiliary fields that can be integrated out
by equation of motion.
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The Supersymmetric Lagrangian



Lagrangian in terms of Component Fields
• The above Lagrangian has the usual kinetic terms for the boson and

fermion fields. It also contain generalized Yukawa interactions and
contain interactions between the gauginos, the scalar and the fermion
components of the chiral superfields.

LSUSY = (DµAi)
†DAi +

(
i

2
ψ̄iσ̄

µDµψi + h.c.
)

− 1
4

(
Ga

µν

)2 +
(

i

2
λ̄aσ̄µDµλa + h.c.

)

−
(

1
2

∂2P (A)
∂Ai∂Aj

ψiψj − i
√

2gA∗
i Taψiλ

a + h.c.

)

− V (Fi, F
∗
i , Da) (28)

• The last term is a potential term that depend only on the auxiliary
fields
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SUSY Lagrangian in term of Component Fields 

The last term is a scalar potential term that depends only on the auxiliary fields 



Notation Refreshment

• All standard matter fermion fields are described by their left-handed
components (using the charge conjugates for right-handed fields) ψi

• All standard matter fermion superpartners are described the scalar
fields Ai. There is one for each chiral fermion.

• Gauge bosons are inside covariant derivatives and in the Gµν terms.

• Gauginos, the superpartners of the gauge bosons are described by the
fermion fields λa. There is one Weyl fermion for each massless gauge
boson.

• Higgs bosons and their superpartners are described as regular chiral
fields. Their only distinction is that their scalar components acquire
a v.e.v. and, as we will see, they are the only scalars with positive
R-Parity.
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Notation  bookkeeping

There is one complex scalar for each chiral Weyl fermion



Scalar Potential

V (Fi, F
∗
i , Da) =

∑

i

F ∗
i Fi +

1
2

∑

a

(Da)2 (29)

where the auxiliary fields may be obtained from their equation of
motion, as a function of the scalar components of the chiral fields:

F ∗
i = −∂P (A)

∂Ai
, Da = −g

∑

i

(A∗
i T

aAi) (30)

Observe that the quartic couplings are governed by the gauge couplings
and that scalar potential is positive definite ! The latter is not a surprise.
From the supersymmetry algebra, one obtains,

H =
1
4

2∑

α=1

(
Q†

αQα + QαQ†
α

)
(31)

• If for a physical state the energy is zero, this is the ground state.

• Supersymmetry is broken if the vacuum energy is non-zero !
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The Scalar Potential



Couplings

P (A) =
mij

2
AiAj +

λijk

6
AiAjAk

Couplings
• The Yukawa couplings between scalar and fermion fields,

1
2

∂2P (A)
∂Ai∂Aj

ψiψj + h.c. (32)

are governed by the same couplings as the scalar interactions coming
from (

∂P (A)
∂Ai

)2

(33)

• Similarly, the gaugino-scalar-fermion interactions, coming from

− i
√

2gA∗
i Taψiλ

a + h.c. (34)

are governed by the gauge couplings.

• No new couplings ! Same couplings are obtained by replacing
particles by their superpartners and changing the spinorial structure.
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Recall the scalar part of the superpotential    

•

→ λijk ψi ψj Ak

The Feynman rules for our interacting chiral supermultiplets are:

Propagators:

−i
p2+M2

−ip·σ
p2+M2

−iMij

p2+M2

−iMij

p2+M2

Both scalars and fermions have squared mass matrixMikMkj .
√

Yukawa interactions:
j k

i

−iyijk

j k

i

−iyijk

Scalar interactions:
j k

i

−iM inynjk

j k

i

−iMinynjk

i j

k !

−iyijnyk"n

The superpotential parametersM ij , yijk determine all non-gauge interactions.
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∗
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•   Similarly, the gaugino-scalar fermion interactions coming from

   are governed by the gauge couplings

   No new Couplings!  
same couplings are obtained by replacing particles by their superpartners

 and changing the spinorial structure

Masses

   The superpotential parameters determine also the matter field masses
and give equal masses to fermions and scalars when the Higgs acquires a v.e.v     

m2
f = m2

s = λ2
ffh v2



SUSY corrections to the Higgs mass parameter:

Self energy of an elementary scalar related by SUSY to the self energy of

a fermion              only log dependence on fundamental high energy scale!

SUSY must be broken

in nature: no SUSY partner,

degenerate in mass with its

SM particle has been seen

The scale of SUSY breakdown must be of order 1 TeV, if SUSY is

    associated  with scale of electroweak symmetry breakdown

For every fermion there is a boson of equal mass and couplings 

Cancellation of quadratic divergences in Higgs mass quantum corrections has to do

with SUSY relation between couplings and bosonic and fermionic degrees of freedom

In low energy SUSY:  quadratic sensitivity to              replaced by quadratic 

sensitivity to SUSY breaking scale

!µ2
" g

hf f

2
[mf

2
# m

f
~

2
]ln($eff

2
/ mh

2
)

!eff

For every fermion there is a boson with equal mass and couplings

hh
h2

f h2
f

x x

SUSY must be broken in nature



Properties of supersymmetric theories

• To each complex scalar Ai (two degrees of freedom) there is a Weyl
fermion ψi (two degrees of freedom)

• To each gague boson V a
µ , there is a gauge fermion (gaugino) λa.

• The mass eigenvalues of fermions and bosons are the same !

• Theory has only logarithmic divergences in the ultraviolet associated
with wave-function and gauge-coupling constant renormalizations.

• Couplings in superpotential P [Φ] have no counterterms associated
with them.

• The equality of fermion and boson couplings are essential for the
cancellation of all quadratic divergences, at all oders in perturbation
theory.
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Properties of Supersymmetric theories

gauge



Types of supermultiplets

Chiral (or “Scalar” or “Matter” or “Wess-Zumino”) supermultiplet:

1 two-component Weyl fermion, helicity± 1
2 . (nF = 2)

2 real spin-0 scalars = 1 complex scalar. (nB = 2)

The Standard Model quarks, leptons and Higgs bosons must fit into these.

Gauge (or “Vector”) supermultiplet:

1 two-component Weyl fermion gaugino, helicity± 1
2 . (nF = 2)

1 real spin-1 massless gauge vector boson. (nB = 2)

The Standard Model γ, Z, W±, g must fit into these.

Gravitational supermultiplet:

1 two-component Weyl fermion gravitino, helicity± 3
2 . (nF = 2)

1 real spin-2 massless graviton. (nB = 2)
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