

SMR/1847-19

Summer School on Particle Physics

11 - 22 June 2007

Gauge-Higgs Unification (Extra material)

C. Csaki *Cornell University, USA*

Lecture 5: Gauge Lecture 5: Gauge -Higgs Unification Higgs Unification

Csaba Cs áki (Cornell University) (Cornell University)

2007 ICTP Summer School 2007 ICTP Summer School

<u>1. Basics of gauge-Higgs unification (GHU)</u>

 \bullet Idea: A $_5$ 4D scalar could be Higgs. How to find a setup where A_5 is a doublet of SU(2)xU(1) with correct hypercharge? •Ideally, use flat space, and NO induced Scalars, just orbifold BCs

History: 1979 Manton, use 6D with monopole in sphere

1983 Hosotani, "Wilson line" breaking: "Hosotani mechanism" 1998 Hatanaka, Inami, Lim: revive idea, no concrete model 2001 Antoniadis, Benakli, Quiros: basic model, Higgs

potential calculation

- **2002 C.C., Grojean, Murayama; von Gersdorrf, Irges, Quiros: 6D problems, basics of flavor construction**
- **2003 Scrucca, Serone, Silvestrini (+Wulzer): basic 5D model introduced and alayzed**
- **2005 Cacciapaglia, C.C., Park; Panico, Serone, Wulzer: close to realistic model**

 \bullet A $_5$ is in adjoint of gauge group, but Higgs is doublet: need to enlarge gauge group. •If we want to use simplest orbifold (does not reduce rank): extended gauge group would be rank 2

•Simplest rank 2 group SU(3)

2. Orbifolds Orbifolds

•Next simplest possibility: instead of circle comapctify on a line segment S^{1}/Z_{2} . Will look in two silghtly different approaches (orbifold vs. interval).

Effects on the fields Effects on the fields

• **W=** have to be symmetries of action •Fields have to agree UP TO a symmetry transformation **T,Z** (**T** is SS-twist)

$$
\tau(2\pi R)\varphi(y) = T^{-1}\varphi(y + 2\pi R)
$$

$$
\mathcal{Z}\varphi(y) = Z\varphi(-y)
$$

•Field identification will be

$$
\varphi(y + 2\pi R) = T\varphi(y)
$$

$$
\varphi(-y) = Z\varphi(y)
$$

\bullet **ZT** is a reflection around π **R** •A generic S^1/Z_2 is a combination of two (not necessarily commuting) parities **Z** and **ZT**

A simple way to picture the orbifold **BC**'s

•Need to assign + or – parities to fields •Parity assignments don't have to be in same basis (eg. there could be a Scherk-Schwarz twist if parities don't commute)

The orbifold orbifold BC's

•Assign parities under two Z_2 's:

•Scalars: **ij(-y)=Pij(y).** P=±1 \cdot Gauge fields: $A_\mu(\cdot y) = PA_\mu(y)P^{-1}$ $A_5(-y) = -P A_5(y)P^{-1}$ \cdot **Fermions:** χ (\cdot **y**)=**P** χ (**y**) **\(-y)=-P\(y)**

•Reason: •A₅ opposite parity as A_µ (vector) •Term in fermion action: $\psi \partial_5 \chi$

•The KK spectrum

 \bullet Gauge bosons: If A_μ has zero mode, ${\sf A}_5$ will NOT (and vice versa) •LH (χ) and RH (ψ) fermions have opposite BC's: if one has zero mode, the other doesn't \rightarrow \rightarrow theory CHIRAL

3. Application to GH unification 3. Application to GH unification

•The necessary projection (at both endpoints):

•Why is this interesting? 5D gauge invariance:

$$
A_{\mu} \rightarrow A_{\mu} + \partial_{\mu}\epsilon(x, y) + i[\epsilon(x, y), A_{\mu}]
$$

$$
A_{5} \rightarrow A_{5} + \partial_{5}\epsilon(x, y) + i[\epsilon(x, y), A_{5}]
$$

- •ε: gauge transformation param., has its own KK expansion (same as A $_{\scriptscriptstyle\rm \mu}$). For broken dir. ε(0,πR)=0, BUT ∂₅ε≠0.
- \bullet •Shift symmetry protects A₅ from mass even at fixed points where gauge symmetry broken •Shift symmetry analog of broken global sym. in little Higgs models protecting Higgs.

•Shift symmetry forbids tree-level potential Also **local** radiative potential for Higgs forbidden (formulation as SS theory) •**Non -local** loop effects could still give a **finite** Higgs potential (loop has to stretch from one fixed point to other – does not shrink to zero – result must be finite…)

•Gauge-Higgs unification protects Higgs from divergences due to higher dim. gauge invar. •Higgs potential only generated through finite loop effects

4. The calculation of the Higgs potential 4. The calculation of the Higgs potential

- •Need Coleman-Weinberg potential for Higgs •Assume simplest SU(3) model for now
- •Higgs VEV normalization:

$$
A_5 = \frac{1}{\sqrt{2}} \begin{pmatrix} - & H_5 \\ H_5^+ & - \end{pmatrix} \begin{pmatrix} H_5 \end{pmatrix} = \sqrt{2} \begin{pmatrix} 0 \\ \alpha/R \end{pmatrix}
$$

•a: VEV in units of radius. For realistic model needs to be **i 1** (to separate KK modes from) SM particles

•For Coleman-Weinberg need a-dependent Mass spectrum. For example gauge KK:

•The mass matrix mixes various components In the 8x8 basis A₁-A₈ the mixing matrix is:

•TeXForm on the Mathematica output:

n 2/R 2 $\times 2 \leftarrow \gamma$ **(n ± Į) 2/R 2** x2 ĸ W ±**(n±2 Į) 2/R** $2 \times 1 \leftarrow Z$ •Eigenvalues:

•Implies most problematic part of model: $M_{Z}^{2}/M_{W}^{2}=2$

•Obviously due to wrong U(1) quantum number of Higgs

 \bullet Unbroken U(1) after orbifolding: T $_{8}$ •Higgs quantum number:

Usual normalization:

•g→1/2 diag (1,-1), etc •g'→Higgs quantum number 1/2

 \bullet Here: for Tr T $_{\rm a}$ \bullet Higgs quantum number $\sqrt{3}/2$. Rescale U(1): T_{b} =1/2: T₈=1/(2 $\sqrt{3}$) diag(1,1,-2) • **¥3/2g=g '/2 sin 2 θ_w=g 2/(g 2+g '2)=3/(1+3)=3/4)=3/(1+3)=3/4**

•Wrong U(1) normalization, need another U(1)

The Coleman The Coleman-Weinberg potential Weinberg potential

(Antoniadis, Benakli, Quiros)

$$
V_{CW}(\phi) = \frac{1}{2} \sum_I (-1)^{F_I} \int \frac{d^4p}{(2\pi)^4} \log(p^2 + M_I^2(\phi))
$$

•General form of KK mass spectrum (ABQ)

$$
M_{\vec{m}}^2 = \mu^2 + \sum_{i=1}^d \frac{(m_i + a_i(\phi))^2}{R_i^2}
$$

•Expression for potential in general case in 5D:

$$
V_{eff}(\beta) = \frac{\mp 1}{32\pi^2} \frac{1}{(\pi R)^4} \mathcal{F}(\beta)
$$
 B=k a

•Where for no bulk mass term $m_n^2 = (n+β)^2/R$ **2**

•With bulk mass term $\mathbf{m}_{\mathbf{n}}$ **2 = M 2 + (n+ ȕ) 2/R 2**

$$
\mathcal{F}_{\kappa}(\beta) = \frac{3}{2} \sum_{n=1}^{\infty} \frac{e^{-\kappa n} \cos(2\pi \beta n)}{n^3} \left(\frac{\kappa^2}{3} + \frac{\kappa}{n} + \frac{1}{n^2}\right)
$$

•Where κ=2πMR. For large κ exponentially suppressed.

Comments Comments

- •n=1 term most important in series **±cos 2πβ**
- •For fermions min. for **β=1/₂**
- •For bosons min. for $\beta = 0$
- •For twisted fermions (will see later) spectrum

 $m_n^2 = M^2 + (n+1/2+1)\frac{2}{R^2}$

•Effect in potential **β**→**β+½ Summary Summary:**

Can calculate finite Higgs potential for arbitrary bulk fields. Need to know, what bulk fields…

6.The fermion fermion fields & flavor structure fields & flavor structure

•Apparent problem: since Higgs=A₅, Yukawa coupling=gauge coupling. How to get fermion mass hierarchy?

1.Use Arkani-Hamed Schmaltz idea of localizing fermions at different parts of 5D 2.Use bulk fermions mixed with localizedfermions at the fixed points (an X-D version of Frogatt-Nielsen)

•Will use second approach

Example: down quark Example: down quark

•Use bulk triplets **3** and no twisting

•Need to write down coupled bulk equations •Can diagonalize bulk equations •BC's will provide equation for KK masses

7.A semi 7.A semi-realistic model realistic model

 \bullet To fix $\boldsymbol{\sin}^2\theta_{\mathsf{W}}$ we add an additional $\boldsymbol{\mathsf{U}}(\mathsf{1})_{\mathsf{X}}$ •Gauge group SU(3)xU(1)_x broken by orbifold **to SU(2)_LxU(1)₈xU(1)_x, and U(1)₈xU(1)_x→U(1)_Y** on the fixed point (localized Higgs or anomaly) •This last breaking distorts wave functions, we'll have to pay the price for that…

Two main problems: Two main problems: (Scrucca, Serone, Silvestrini)

- •Higgs mass too small (& KK modes light)
- •Top mass too small

•Reason: if assume (well motivated)

- •all mixings of same order
- •fermion hierarchy only from bulk masses

•Most bulk masses very large, contribution to CW very suppressed. Basically top dominates radiative potential, and minimum of top+gauge contribution gives

$$
\alpha \sim 0.3, \quad m_h \sim 0.2 - 0.3 m_W
$$

$$
1/R \sim 3 - 5 m_W \sim 250 - 400
$$
GeV
$$
m_t \le m_W
$$

•This is obviously bad

•Fix Higgs mass and VEV: assume that some **light fermions light due to small mixing rather** than due to large bulk mass

•These bulk fermions will also contribute

•Take different representations and twist some of fermions \rightarrow get a much more versatile Higgs potential

A successful example A successful example

- •Top: rep. 6, large mixing ϵ_{LR} \sim 3, κ_t \sim 1 \cdot Bottom: twisted 3, $\kappa_b = 0$
- \cdot Tau: **10**, κ _r=1
- \cdot Light gens: twisted $3+6+10$, common κ

•The Higgs potential:

•VEV and Higgs mass

•Fix top mass: upper bound on fermion mass actually depends on representation

$$
m_t \leq k m_W
$$

•**k2:** number of indices of rep. top is embedded •For **m_t=2m_w need a 4-index irrep…** •Simplest possibility **15** dim rep:

$$
\frac{(15)_{-2/3} \rightarrow (1,2/3) + (2,1/6) + (3,-1/3) +}{(4,-5/6) + (5,-4/3)}
$$

•To get biggest top mass (2mw) need top to be a bulk zero mode. So we only add a single **15** with usual orbifold projections. Remove ad'l zero modes via mixing with localized fields

•For EWSB third generation enough (twisted fermions for **b,** τ). Possible reps (choose them as small as possible to not lower cutoff further)

•The Higgs potential

8. Summary 8. Summary

- •In extra dim's a possible solution to hierarchy problem is via gauge-Higgs unification •Need to extand gauge group and orbifold it
- to **SU(2)xU(1) SU(2)xU(1)**
- •Simplest (and most realistic) example in 5D **SU(3)xU(1)**_x
- •Generically hard to get a large separation of Higgs VEV and KK modes, and heavy Higgs, top
- •Can use many bulk fermions to generate a sufficiently generic Higgs pot.
- •Top mass fixed via large bulk representation •Constraints from **Zbb**, $\Delta \rho$: little hierarchy ...