

SMR/1847-19

Summer School on Particle Physics

11 - 22 June 2007

Gauge-Higgs Unification (Extra material)

C. Csaki Cornell University, USA

Lecture 5: Gauge-Higgs Unification

Csaba Csáki (Cornell University)

2007 ICTP Summer School

1. Basics of gauge-Higgs unification (GHU)

Idea: A₅ 4D scalar could be Higgs. How to find a setup where A₅ is a doublet of SU(2)xU(1) with correct hypercharge?
Ideally, use flat space, and NO induced Scalars, just orbifold BCs

History: 1979 Manton, use 6D with monopole in sphere

1983 Hosotani, "Wilson line" breaking: "Hosotani mechanism" 1998 Hatanaka, Inami, Lim: revive idea, no concrete model 2001 Antoniadis, Benakli, Quiros: basic model, Higgs

potential calculation

- 2002 C.C., Grojean, Murayama; von Gersdorrf, Irges, Quiros: 6D problems, basics of flavor construction
- 2003 Scrucca, Serone, Silvestrini (+Wulzer): basic 5D model introduced and alayzed
- 2005 Cacciapaglia, C.C., Park; Panico, Serone, Wulzer: close to realistic model

•A₅ is in adjoint of gauge group, but Higgs is doublet: need to enlarge gauge group.
•If we want to use simplest orbifold (does not reduce rank): extended gauge group would be rank 2
•Simplest rank 2 group SU(3)

<u>2. Orbifolds</u>

•Next simplest possibility: instead of circle comapctify on a line segment S^{1}/Z_{2} . Will look in two silghtly different approaches (orbifold vs. interval).

Effects on the fields

τ, z have to be symmetries of action
Fields have to agree UP TO a symmetry transformation T,Z (T is SS-twist)

$$\tau(2\pi R)\varphi(y) = T^{-1}\varphi(y + 2\pi R)$$
$$\mathcal{Z}\varphi(y) = Z\varphi(-y)$$

•Field identification will be

$$\varphi(y + 2\pi R) = T\varphi(y)$$
$$\varphi(-y) = Z\varphi(y)$$

•ZT is a reflection around πR •A generic S¹/Z₂ is a combination of two (not necessarily commuting) parities Z and ZT

A simple way to picture the orbifold BC's

Need to assign + or – parities to fields
Parity assignments don't have to be in same basis (eg. there could be a Scherk-Schwarz twist if parities don't commute)

The orbifold BC's

•Assign parities under two Z₂'s:

 Scalars: φ(-y)=Pφ(y). P=±1
 Gauge fields: A_μ(-y)= PA_μ(y)P⁻¹ A₅(-y)=-PA₅(y)P⁻¹
 Fermions: χ(-y)=Pχ(y) ψ(-y)=-Pψ(y)

•Reason: •A₅ opposite parity as A_{μ} (vector) •Term in fermion action: $\psi \partial_5 \chi$ The KK spectrum

•Gauge bosons: If A_{μ} has zero mode, A_5 will NOT (and vice versa) •LH (χ) and RH (ψ) fermions have opposite BC's: if one has zero mode, the other doesn't \rightarrow theory CHIRAL

3. Application to GH unification

•The necessary projection (at both endpoints):

•Why is this interesting? 5D gauge invariance:

$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \epsilon(x, y) + i[\epsilon(x, y), A_{\mu}]$$

$$A_{5} \rightarrow A_{5} + \partial_{5} \epsilon(x, y) + i[\epsilon(x, y), A_{5}]$$

- • ϵ : gauge transformation param., has its own KK expansion (same as A_{μ}). For broken dir. $\epsilon(0,\pi R)=0$, BUT $\partial_5\epsilon \neq 0$.
- Shift symmetry protects A₅ from mass even at fixed points where gauge symmetry broken
 Shift symmetry analog of broken global sym. in little Higgs models protecting Higgs.

Shift symmetry forbids tree-level potential Also local radiative potential for Higgs forbidden (formulation as SS theory)
Non-local loop effects could still give a finite Higgs potential (loop has to stretch from one fixed point to other – does not shrink to zero – result must be finite...)

Gauge-Higgs unification protects Higgs from divergences due to higher dim. gauge invar.
Higgs potential only generated through finite loop effects

4. The calculation of the Higgs potential

- •Need Coleman-Weinberg potential for Higgs
- •Assume simplest SU(3) model for now
- •Higgs VEV normalization:

$$A_{5} = \frac{1}{\sqrt{2}} \begin{pmatrix} - & H_{5} \\ H_{5}^{\dagger} & - \end{pmatrix} \quad \langle H_{5} \rangle = \sqrt{2} \begin{pmatrix} 0 \\ \alpha/R \end{pmatrix}$$

•α: VEV in units of radius. For realistic model needs to be *«*1 (to separate KK modes from)
 SM particles

•For Coleman-Weinberg need **α**-dependent Mass spectrum. For example gauge KK:

•The mass matrix mixes various components In the 8x8 basis A_1 - A_8 the mixing matrix is:

•TeXForm on the Mathematica output:

$\frac{1}{R^2}$	$(2(\alpha^2 + n^2))$	0	0	0	$4 \alpha n$	0	0	0)
	0	$2(\alpha^2 + n^2)$	0	$-4\alpha n$	0	0	0	0
	0	0	$2\left(\alpha^2+n^2\right)$	0	0	0	$-4\alpha n$	$-2\sqrt{3}\alpha^2$
	0	-4lpha n	0	$2(\alpha^2 + n^2)$	0	0	0	0
	$4 \alpha n$	0	0	0	$2(\alpha^2 + n^2)$	0	0	0
	0	0	0	0	0 `	$2n^2$	0	0
	0	0	$-4\alpha n$	0	0	0	$2(4\alpha^2 + n^2)$	$4\sqrt{3}\alpha n$
	0	0	$-2\sqrt{3}\alpha^2$	0	0	0	$4\sqrt{3}\alpha n$	$2\left(3\alpha^2+n^2\right)$

•Implies most problematic part of model: $M_z^2/M_w^2=2$

•Obviously due to wrong U(1) quantum number of Higgs

•Unbroken U(1) after orbifolding: T₈
•Higgs quantum number:

Usual normalization:

•g→1/2 diag (1,-1), etc •g'→Higgs quantum number 1/2

Here: for Tr T_aT_b=1/2: T₈=1/(2√3) diag(1,1,-2)
Higgs quantum number √3/2. Rescale U(1):
√3/2g=g'/2 sin²θ_W=g'²/(g²+g'²)=3/(1+3)=3/4

•Wrong U(1) normalization, need another U(1)

The Coleman-Weinberg potential

(Antoniadis, Benakli, Quiros)

$$V_{CW}(\phi) = \frac{1}{2} \sum_{I} (-1)^{F_I} \int \frac{d^4 p}{(2\pi)^4} \log(p^2 + M_I^2(\phi))$$

•General form of KK mass spectrum (ABQ)

$$M_{\vec{m}}^2 = \mu^2 + \sum_{i=1}^d \frac{(m_i + a_i(\phi))^2}{R_i^2}$$

•Expression for potential in general case in 5D:

$$V_{eff}(eta) = rac{\mp 1}{32\pi^2} rac{1}{(\pi R)^4} \mathcal{F}(eta)$$
 eta =k a

•Where for no bulk mass term m_n²=(n+β)²/R²

$\mathcal{F}(\mathcal{A})$	$-3\nabla\infty$	$\cos(2\pi\beta n)$		
J (P)	$-\overline{2} \angle n=1$	n^5		

•With bulk mass term $m_n^2 = M^2 + (n+\beta)^2/R^2$

$$\mathcal{F}_{\kappa}(\beta) = \frac{3}{2} \sum_{n=1}^{\infty} \frac{e^{-\kappa n} \cos(2\pi\beta n)}{n^3} \left(\frac{\kappa^2}{3} + \frac{\kappa}{n} + \frac{1}{n^2}\right)$$

•Where $\kappa=2\pi MR$. For large κ exponentially suppressed.

Comments

- •n=1 term most important in series $\pm cos 2\pi\beta$
- •For fermions min. for $\beta = \frac{1}{2}$
- •For bosons min. for $\beta=0$
- •For twisted fermions (will see later) spectrum

 $m_n^2 = M^2 + (n + \frac{1}{2} + \beta)^2 / R^2$

•Effect in potential $\beta \rightarrow \beta + \frac{1}{2}$ <u>Summary</u>:

Can calculate finite Higgs potential for arbitrary bulk fields. Need to know, what bulk fields...

6.The fermion fields & flavor structure

•Apparent problem: since Higgs=**A**₅, Yukawa coupling=gauge coupling. How to get fermion mass hierarchy?

1.Use Arkani-Hamed **Schmaltz** idea of localizing fermions at different parts of 5D 2.Use bulk fermions mixed with localized fermions at the fixed points (an X-D version of Frogatt-Nielsen)

•Will use second approach

Example: down quark

•Use bulk triplets 3 and no twisting

Need to write down coupled bulk equations
Can diagonalize bulk equations
BC's will provide equation for KK masses

7.A semi-realistic model

•To fix $\sin^2 \theta_W$ we add an additional $U(1)_X$ •Gauge group $SU(3) \times U(1)_X$ broken by orbifold to $SU(2)_L \times U(1)_8 \times U(1)_X$, and $U(1)_8 \times U(1)_X \rightarrow U(1)_Y$ on the fixed point (localized Higgs or anomaly) •This last breaking distorts wave functions, we'll have to pay the price for that...

Two main problems:

(Scrucca, Serone, Silvestrini)

- •Higgs mass too small (& KK modes light)
- •Top mass too small

•Reason: if assume (well motivated)

- •all mixings of same order
- •fermion hierarchy only from bulk masses

•Most bulk masses very large, contribution to CW very suppressed. Basically top dominates radiative potential, and minimum of top+gauge contribution gives

$$lpha\sim$$
 0.3, $m_h\sim$ 0.2 $-$ 0.3 m_W $1/R\sim$ 3 $-$ 5 $m_W\sim$ 250 $-$ 400GeV $m_t\leq m_W$

•This is obviously bad

•**Fix Higgs mass and VEV**: assume that some light fermions light **due to small mixing** rather than due to large bulk mass

•These bulk fermions will also contribute

•Take different representations and twist some of fermions→get a much more versatile Higgs potential

<u>A successful example</u>

- •Top: rep. 6, large mixing $\epsilon_{L,R} \sim 3$, $\kappa_t \sim 1$
- •Bottom: twisted **3**, $\kappa_b = 0$
- •Tau: **10**, *κ*_τ**=1**
- •Light gens: twisted 3+6+10, common κ_1

•The Higgs potential:

•VEV and Higgs mass

•**Fix top mass:** upper bound on fermion mass actually depends on representation

$$m_t \leq k m_W$$

•k²: number of indices of rep. top is embedded
•For m_t=2m_w need a 4-index irrep...
•Simplest possibility 15 dim rep:

$$egin{aligned} (ar{15})_{-2/3} &
ightarrow (1,2/3) + (2,1/6) + (3,-1/3) + \ (4,-5/6) + (5,-4/3) \end{aligned}$$

To get biggest top mass (2m_w) need top to be a bulk zero mode. So we only add a single 15 with usual orbifold projections. Remove ad'l zero modes via mixing with localized fields •For EWSB third generation enough (twisted fermions for \mathbf{b}, τ). Possible reps (choose them as small as possible to not lower cutoff further)

	bottom	tau
model a	$(3, 3)_0$	$(1, 10)_0$
model b	(3 , 6) _{1/3}	$(1, 3)_{-2/3}$

The Higgs potential

8. Summary

- In extra dim's a possible solution to hierarchy problem is via gauge-Higgs unification
- •Need to extand gauge group and orbifold it to **SU(2)xU(1)**
- Simplest (and most realistic) example in 5D
 SU(3)xU(1)x
- •Generically hard to get a large separation of Higgs VEV and KK modes, and heavy Higgs, top
- •Can use many bulk fermions to generate a sufficiently generic Higgs pot.
- •Top mass fixed via large bulk representation •Constraints from **Zbb**, $\Delta \rho$: little hierarchy ...