

SMR/1847-16

Summer School on Particle Physics

11 - 22 June 2007

Fermion Masses and Unification (Lecture 1)

S. King University of Southampton, UK

Fermion Masses and Unification

Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3), GUTs and SUSY Flavour

> Steve King University of Southampton

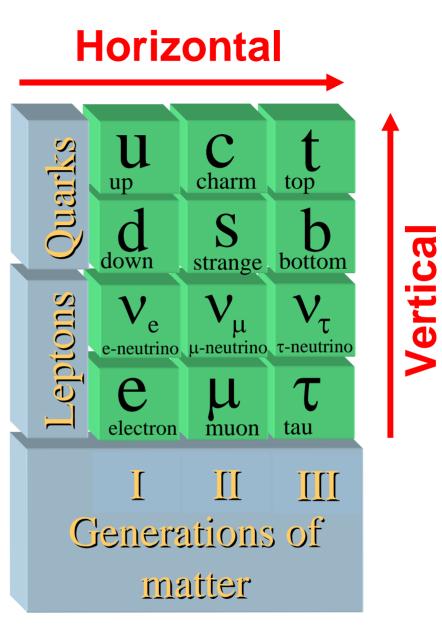
Lecture I Fermion Masses and Mixings

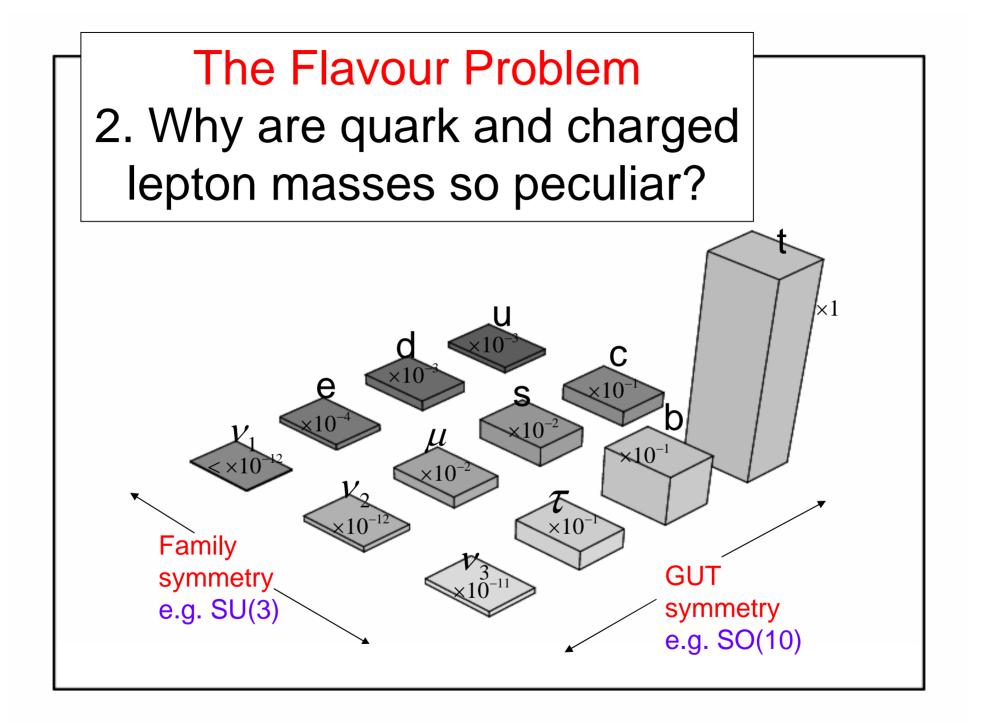
- 1. The Flavour Problem and See-Saw
- 2. From low energy data to high energy data
- 3. Textures in a basis

Appendix 1 References Appendix 2 Basis Changing

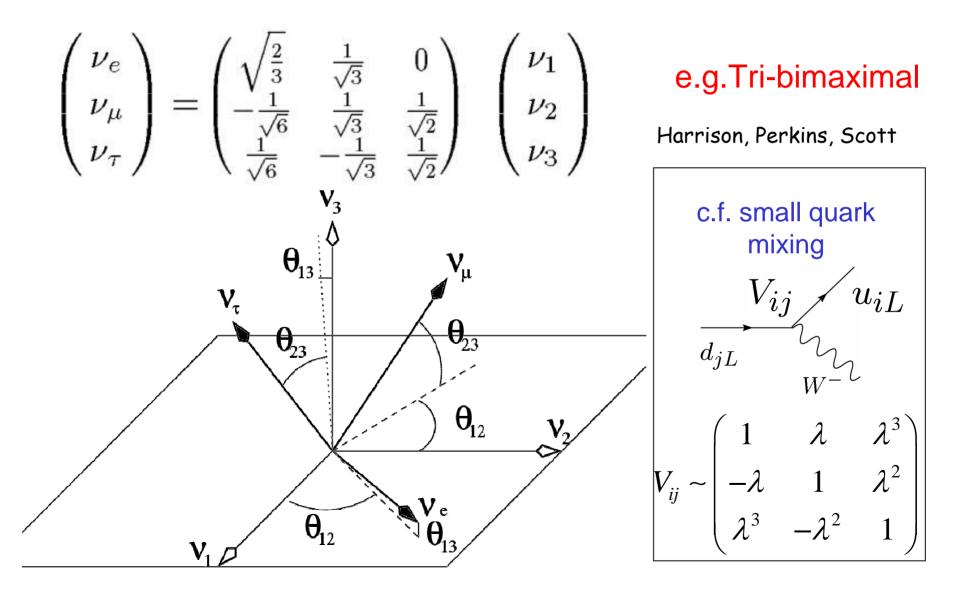
1.The Flavour Problem and See-Saw

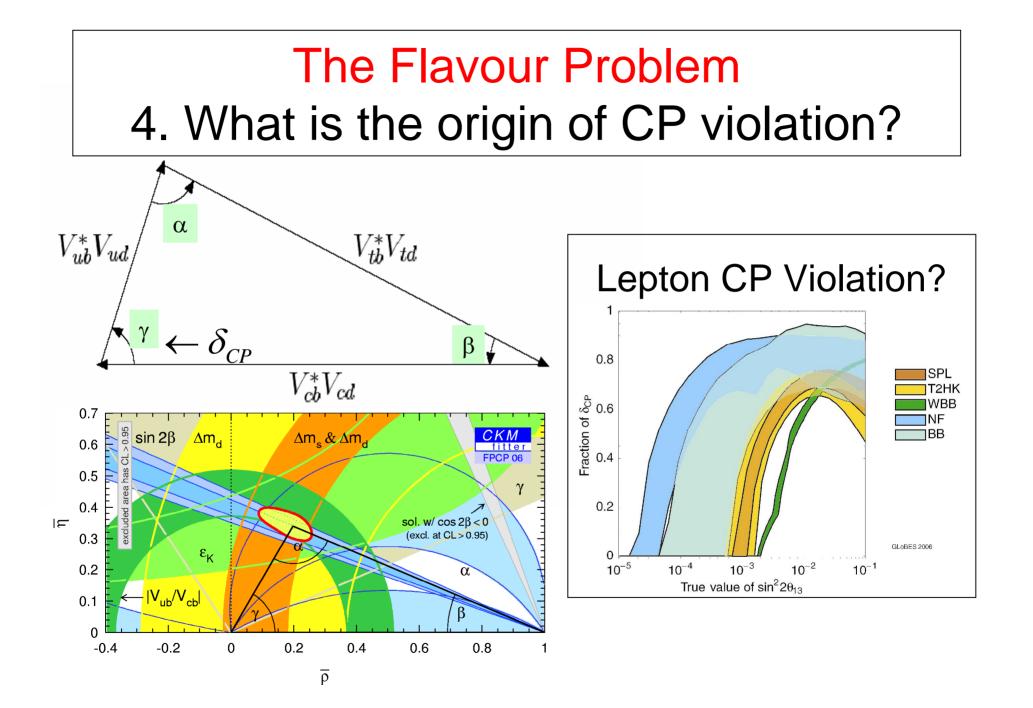
The Flavour Problem 1. Why are there three families of quarks and leptons?



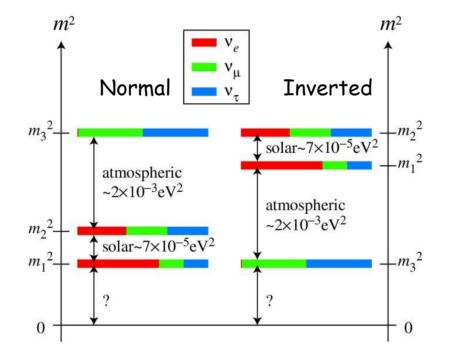


The Flavour Problem 3. Why is lepton mixing so large?





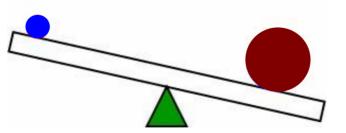
The Flavour Problem 5. Why are neutrino masses so small?



See-saw mechanism is most elegant solution

The See-Saw Mechanism

Light neutrinos

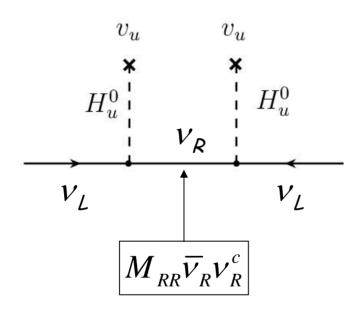


Heavy particles

The see-saw mechanism

Type I see-saw mechanism

P. Minkowski (1977), Gell-Mann, Glashow, Mohapatra, Ramond, Senjanovic, Slanski, Yanagida (1979/1980)

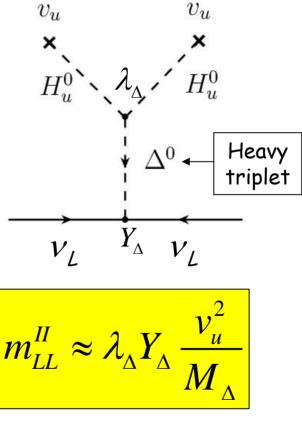


$$m_{LL}^{I} \approx -m_{LR} M_{RR}^{-1} m_{LR}^{T}$$

Type I

Type II see-saw mechanism (SUSY)

Lazarides, Magg, Mohapatra, Senjanovic, Shafi, Wetterich (1981)



See-Saw Standard Model (type I)

Yukawa couplings to 2 Higgs doublets (or one with $H_d \equiv H_u^c$)

$$\mathcal{L}_{mass} = -\epsilon_{ab} \left[\tilde{Y}_{ij}^{e} H_d^{a} L_i^{b} e_j^{c} - \tilde{Y}_{ij}^{\nu} H_u^{a} L_i^{b} \nu_j^{c} + \frac{1}{2} \nu_i^{c} \tilde{M}_{RR}^{ij} \nu_j^{c} \right] + H.c.$$

$$< H_u^2 >= v_2, < H_d^1 >= v_1 \quad \tan \beta \equiv v_2/v_1 \quad \epsilon_{ab} = -\epsilon_{ba}, \ \epsilon_{12} = 1$$

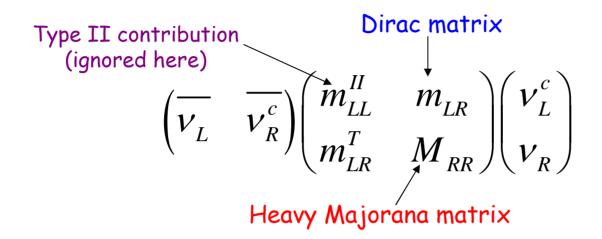
Insert the vevs

$$\mathcal{L}_{mass} = -v_1 \tilde{Y}_{ij}^e e_i e_j^c - v_2 \tilde{Y}_{ij}^\nu \nu_i \nu_j^c - \frac{1}{2} \tilde{M}_{RR}^{ij} \nu_i^c \nu_j^c + H.c.$$

Rewrite in terms of L and R chiral fields, in matrix notation

$$\mathcal{L}_{mass} = -\bar{e}_L v_1 \tilde{Y}^{e^*} e_R - \bar{\nu}_L v_2 \tilde{Y}^{\nu^*} \nu_R - \frac{1}{2} \nu_R^T \tilde{M}_{RR}^* \nu_R + H.c.$$
$$= -\overline{e}_L m_{LR}^E e_R - \overline{\nu}_L m_{LR}^\nu \nu_R - \frac{1}{2} \overline{\nu}_R^c M_{RR} \nu_R + H.c.$$

The See-Saw Matrix



Diagonalise to give effective mass $\rightarrow m_{LL} \overline{V}_L V_L^c$

Light Majorana matrix
$$\longrightarrow m_{LL}^{\nu} = m_{LL}^{II} - m_{LR}^{\nu} M_{RR}^{-1} m_{LR}^{T}$$

Lepton mixing matrix V_{MNS}

Neutrino mass matrix (Majorana)

$$V^{E_{L}}m_{LR}^{E}V^{E_{R}^{\dagger}} = \begin{pmatrix} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix} \quad V^{v_{L}}m_{LL}^{v_{V}}V^{v_{L}^{T}} = \begin{pmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{pmatrix}$$

Defined as $V_{MNS} = V^{E_L} V^{\nu_L \dagger}$

Can be parametrised as $V_{MNS} = V_{23}V_{13}V_{12}$

$$V_{MNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23}e^{-i\delta_{23}} \\ 0 & -s_{23}e^{i\delta_{23}} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12}e^{-i\delta_{12}} & 0 \\ -s_{12}e^{i\delta_{12}} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric

Reactor

Julu

Oscillation phase $\delta = \delta_{13} - \delta_{23} - \delta_{12}$

$$V^{U_{L}}m_{LR}^{U}V^{U_{R}^{\dagger}} = \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{c} & 0 \\ 0 & 0 & m_{t} \end{pmatrix} \quad V^{D_{L}}m_{LR}^{D}V^{D_{R}^{\dagger}} = \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix}$$

Defined as $V_{CKM} = V_{CKM}^{U_L} V_{13}^{U_L}^{U_L}$ Can be parametrised as $V_{CKM} = R_{23} V_{13} R_{12}$

$$V_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\operatorname{Im}\left[V_{ij}V_{kl}V_{il}^*V_{kj}^*\right] = J\sum_{m,n}\varepsilon_{ikm}\varepsilon_{jln}$ $J_{CP} = c_{13}^2 c_{12} c_{23} \sin \delta s_{12} s_{23} s_{13}$ Phase convention independent

2. From low energy data to high energy data

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3×3 unitary matrix. It can be parameterized by three mixing angles and a *CP*-violating phase. Of the many possible parameterizations, a standard choice is [3]

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix},$$
(11.3)

where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$, and δ is the KM phase [2] responsible for all *CP*-violating phenomena in flavor changing processes in the SM. The angles θ_{ij} can be chosen to lie in the first quadrant, so $s_{ij}, c_{ij} \ge 0$.

It is known experimentally that $s_{13} \ll s_{23} \ll s_{12} \ll 1$, and it is convenient to exhibit this hierarchy using the Wolfenstein parameterization. We define [4–6]

$$s_{12} = \lambda = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}}, \qquad s_{23} = A\lambda^2 = \lambda \left| \frac{V_{cb}}{V_{us}} \right|,$$
$$s_{13}e^{i\delta} = V_{ub}^* = A\lambda^3(\rho + i\eta) = \frac{A\lambda^3(\bar{\rho} + i\bar{\eta})\sqrt{1 - A^2\lambda^4}}{\sqrt{1 - \lambda^2}[1 - A^2\lambda^4(\bar{\rho} + i\bar{\eta})]}.$$
(11.4)

These ensure that $\bar{\rho} + i\bar{\eta} = -(V_{ud}V_{ub}^*)/(V_{cd}V_{cb}^*)$ is phase-convention independent and the CKM matrix written in terms of λ , A, $\bar{\rho}$ and $\bar{\eta}$ is unitary to all orders in λ . The definitions of $\bar{\rho}, \bar{\eta}$ reproduce all approximate results in the literature. *E.g.*, $\bar{\rho} = \rho(1 - \lambda^2/2 + ...)$ and we can write V_{CKM} to $\mathcal{O}(\lambda^4)$ either in terms of $\bar{\rho}, \bar{\eta}$ or, traditionally,

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \,. \tag{11.5}$$

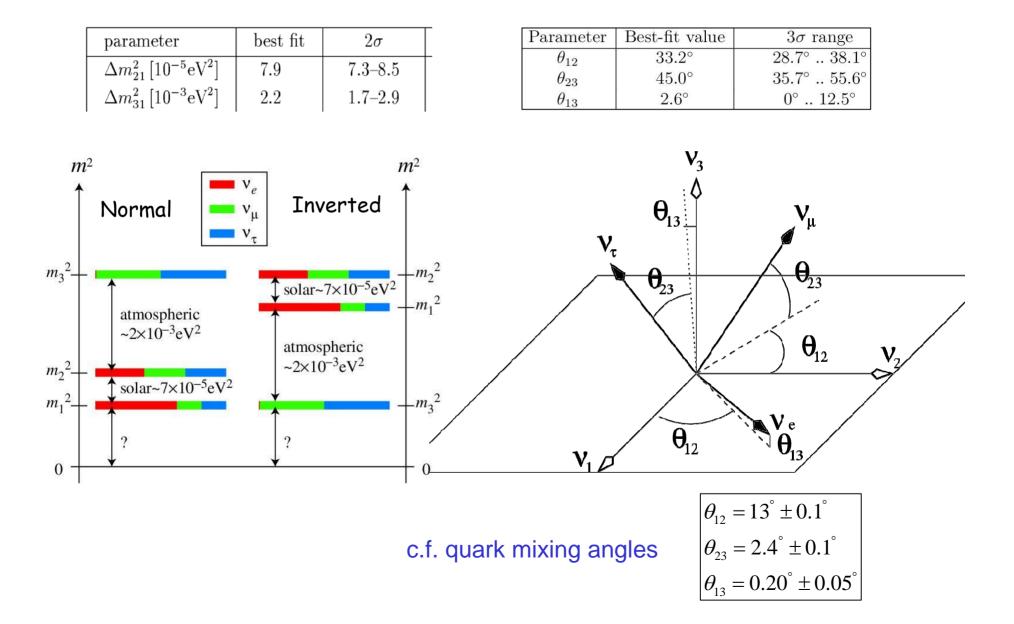
(From Particle Data Book)

Quark data (low energy)Ross and SernaLow-Energy ParameterValue(Uncertainty in last digit(s))Notes and Reference $m_u(\mu_L)/m_d(\mu_L)$ 0.45(15)PDB Estimation [1]

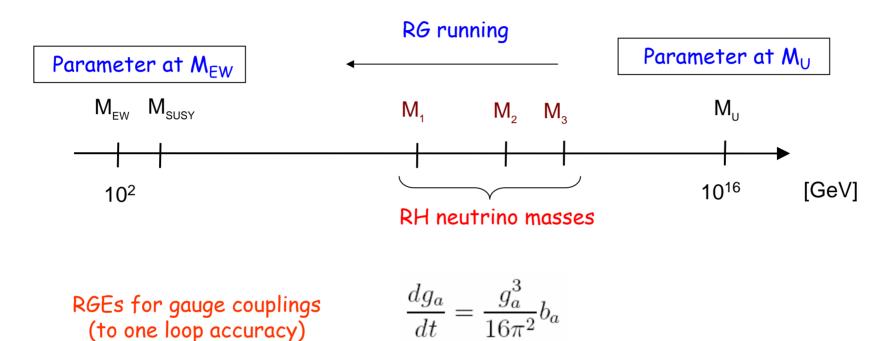
Low-Energy Parameter	Value(Uncertainty in last digit(s))	Notes and Reference
$m_u(\mu_L)/m_d(\mu_L)$	0.45(15)	PDB Estimation [1]
$m_s(\mu_L)/m_d(\mu_L)$	19.5(1.5)	PDB Estimation [1]
$m_u(\mu_L) + m_d(\mu_L)$	$[8.8(3.0), 7.6(1.6)] { m MeV}$	PDB, Quark Masses, pg 15
- 100° w 110° w		[1]. (Non-lattice, Lattice)
$Q = \sqrt{\frac{m_s^2 - (m_d + m_u)^2/4}{m_d^2 - m_u^2}}$	22.8(4)	Martemyanov and Sopov [2]
$m_s(\mu_L)$	$[103(20),95(20)]~{\rm MeV}$	PDB, Quark Masses, pg 15
		[1]. [Non-lattice, lattice]
$m_u(\mu_L)$	$3(1)~{ m MeV}$	PDB, Quark Masses, pg 15
20. 20.		[1]. Non-lattice.
$m_d(\mu_L)$	$6.0(1.5) { m MeV}$	PDB, Quark Masses, pg 15
		[1]. Non-lattice.
$m_c(m_c)$	$1.24(09) { m ~GeV}$	PDB, Quark Masses, pg 16
8		[1]. Non-lattice.
$m_b(m_b)$	4.20(07) GeV	PDB, Quark Masses, pg 16,19
		[1]. Non-lattice.
M_t	$170.9~(1.9){ m GeV}$	CDF & D0 $[3]$ Pole Mass
$(M_e, M_\mu, M_ au)$	(0.511(15), 105.6(3.1), 1777(53)) m MeV	3% uncertainty from neglect-
		ing Y^e thresholds.
A Wolfenstein parameter	0.818(17)	PDB Ch 11 Eq. 11.25 [1]
$\overline{\rho}$ Wolfenstein parameter	0.221(64)	PDB Ch 11 Eq. 11.25 [1]
λ Wolfenstein parameter	0.2272(10)	PDB Ch 11 Eq. 11.25 [1]
$\overline{\eta}$ Wolfenstein parameter	0.340(45)	PDB Ch 11 Eq. 11.25 [1]
	(0.97383(24) 0.2272(10) 0.00396(09))	
$ V_{CKM} $	0.2271(10) $0.97296(24)$ $0.04221(80)$	PDB Ch 11 Eq. 11.26 [1]
	(0.00814(64) 0.04161(78) 0.999100(34))	
$\sin 2\beta$ from CKM	0.687(32)	PDB Ch 11 Eq. 11.19 [1]
Jarlskog Invariant	$3.08(18) \times 10^{-5}$	PDB Ch 11 Eq. 11.26 [1]
$v_{Higgs}(M_Z)$	$246.221(20) { m ~GeV}$	Uncertainty expanded. [1]
$(\alpha_{EM}^{-1}(M_Z), \alpha_s(M_Z), \sin^2\theta_W(M_Z))$	(127.904(19), 0.1216(17), 0.23122(15))	PDB Sec 10.6 [1]

Neutrino Masses and Mixings

Andre de Gouvea



Renormalisation Group running



where $t = \ln(\mu/M_X)$ (μ is the \overline{MS} scale and M_X is the high energy scale)

SM beta functions

$$b_{i} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ -22/3 \\ -11 \end{pmatrix} + N_{Fam} \begin{pmatrix} 4/3 \\ 4/3 \\ 4/3 \end{pmatrix} + N_{Higgs} \begin{pmatrix} 1/10 \\ 1/6 \\ 0 \end{pmatrix}$$
$$b_{a} = (\frac{41}{10}, -\frac{19}{6}, -7)$$

MSSM beta functions

$$b_{i} = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \\ -9 \end{pmatrix} + N_{Fam} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + N_{Higgs} \begin{pmatrix} 3/10 \\ 1/2 \\ 0 \end{pmatrix}$$
$$b_{a} = \left(\frac{33}{5}, 1, -3\right)$$

SM couplings at low energy

Latest coupling constant measurements at M_Z energy scale:

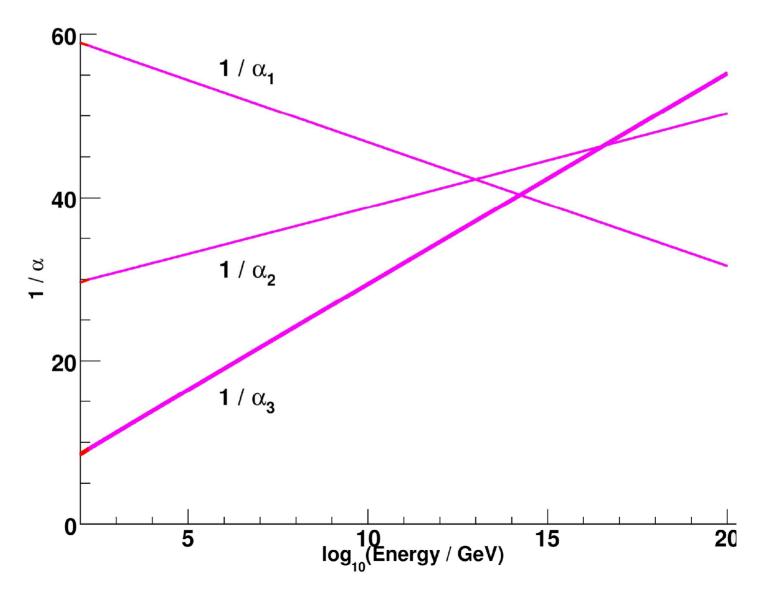
•
$$\alpha_1 \ (M_Z) \ (\overline{MS}) = 0.016947(6) \ (RPP \ 2006)$$

•
$$\alpha_2 \ (M_Z) \ (\overline{MS}) = 0.033813(27) \ (RPP \ 2006)$$

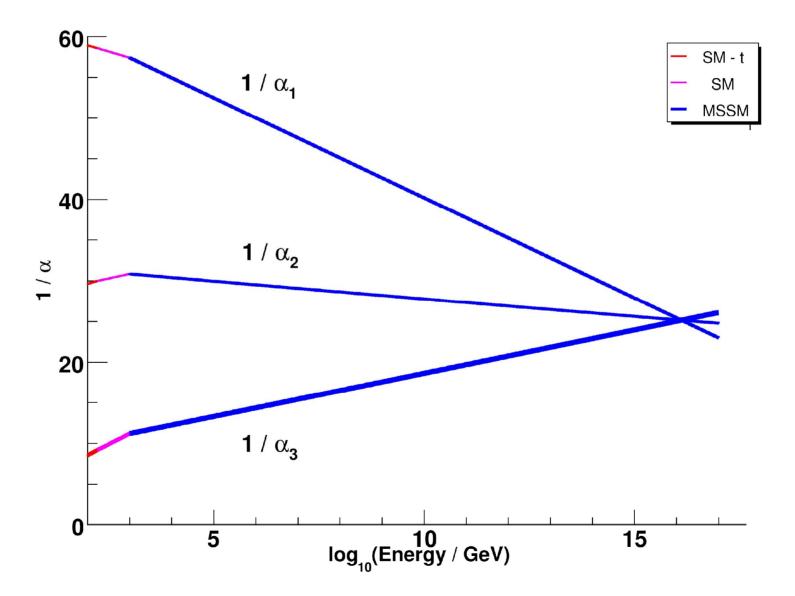
•
$$\alpha_3 (M_Z) (\overline{MS}) = 0.1187(20) (RPP \ 2006)$$

Evolution of SM couplings

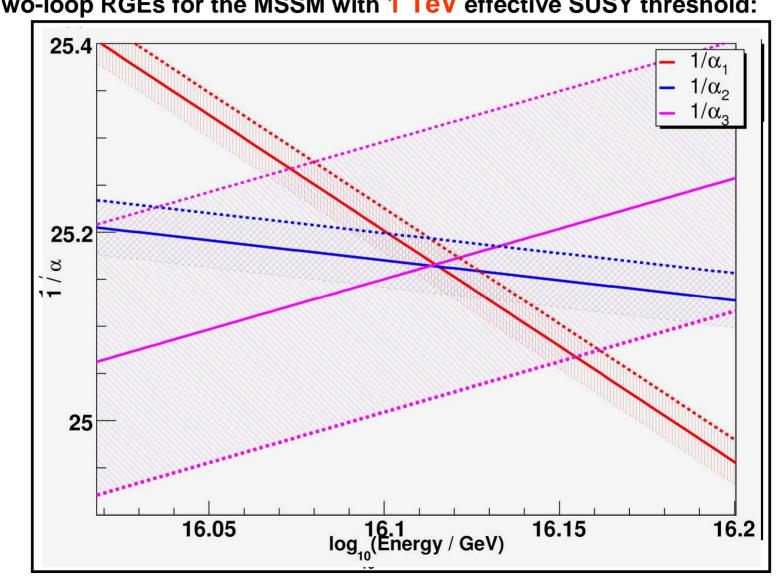
Two-loop RGEs for the SM:



Two-loop RGEs for the MSSM with 1 TeV effective SUSY threshold:

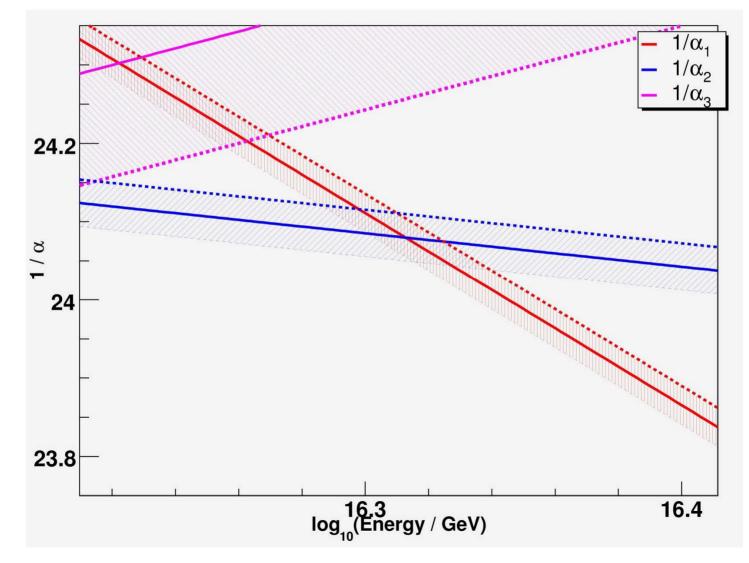


MSSM



Two-loop RGEs for the MSSM with **1** TeV effective SUSY threshold:

Two-loop RGEs for the MSSM with **250 GeV** effective SUSY threshold:



RGEs for t,b, τ in the MSSM

$$Y_u \approx \left(\begin{array}{cc} 0 \\ & 0 \\ & & Y_t \end{array} \right), \ Y_d \approx \left(\begin{array}{cc} 0 \\ & 0 \\ & & Y_b \end{array} \right), \ Y_e \approx \left(\begin{array}{cc} 0 \\ & 0 \\ & & Y_\tau \end{array} \right)$$

$$\begin{aligned} \frac{dY_t}{dt} &= \frac{1}{16\pi^2} Y_t [6|Y_t|^2 + |Y_b|^2 - (\frac{16}{3}g_3^2 + 3g_2^2 + \frac{13}{15}g_1^2)] \\ \frac{dY_b}{dt} &= \frac{1}{16\pi^2} Y_b [6|Y_b|^2 + |Y_t|^2 + |Y_\tau|^2 - (\frac{16}{3}g_3^2 + 3g_2^2 + \frac{7}{15}g_1^2)] \\ \frac{dY_\tau}{dt} &= \frac{1}{16\pi^2} Y_\tau [4|Y_\tau|^2 + 3|Y_b|^2 - (3g_2^2 + \frac{9}{5}g_1^2)], \end{aligned}$$

RGEs for Yukawa matrices in MSSM

RGEs (one-loop accuracy)

$$\frac{dY_u}{dt} = \frac{1}{16\pi^2} [N_q \cdot Y_u + Y_u \cdot N_u + (N_{H_u})Y_u]$$

$$\frac{dY_d}{dt} = \frac{1}{16\pi^2} [N_q \cdot Y_d + Y_d \cdot N_d + (N_{H_d})Y_d]$$

$$\frac{dY_\nu}{dt} = \frac{1}{16\pi^2} [N_l \cdot Y_\nu + Y_\nu \cdot N_\nu + (N_{H_u})Y_\nu]$$

$$\frac{dY_e}{dt} = \frac{1}{16\pi^2} [N_l \cdot Y_e + Y_e \cdot N_e + (N_{H_d})Y_e]$$

Wavefunction anomalous dimensions

$$\begin{split} N_{q} &= Y_{u}Y_{u}^{\dagger} + Y_{d}Y_{d}^{\dagger} - (\frac{8}{3}g_{3}^{2} + \frac{3}{2}g_{2}^{2} + \frac{1}{30}g_{1}^{2})\hat{1} \\ N_{u} &= 2Y_{u}^{\dagger}Y_{u} - (\frac{8}{3}g_{3}^{2} + \frac{8}{15}g_{1}^{2})\hat{1} \\ N_{d} &= 2Y_{d}^{\dagger}Y_{d} - (\frac{8}{3}g_{3}^{2} + \frac{2}{15}g_{1}^{2})\hat{1} \\ N_{l} &= Y_{e}Y_{e}^{\dagger} + Y_{\nu}Y_{\nu}^{\dagger} - (\frac{3}{2}g_{2}^{2} + \frac{3}{10}g_{1}^{2})\hat{1} \\ N_{e} &= 2Y_{e}^{\dagger}Y_{e} - \frac{6}{5}g_{1}^{2}\hat{1} \\ N_{\nu} &= 2Y_{\nu}^{\dagger}Y_{\nu} \\ N_{H_{u}} &= 3\text{Tr}(Y_{u}^{\dagger}Y_{u}) + \text{Tr}(Y_{\nu}^{\dagger}Y_{\nu}) - (\frac{3}{2}g_{2}^{2} + \frac{3}{10}g_{1}^{2}) \\ N_{H_{d}} &= 3\text{Tr}(Y_{d}^{\dagger}Y_{d}) + \text{Tr}(Y_{e}^{\dagger}Y_{e}) - (\frac{3}{2}g_{2}^{2} + \frac{3}{10}g_{1}^{2}) \end{split}$$

Charged fermion data (high energy) Ross and Serna

Parameters	Input SUSY Parameters						
$\tan \beta$	1.3	10	38	50	38	38	
$\left(\begin{array}{c} \gamma_b \end{array} \right)$ sus	v 0	0	0	0	-0.22	+0.22	
A (holds ⁰	0	0	0	-0.21	+0.21	
γ_t	0	0	0	0	0	-0.44	
Parameters	Correspondi	ng GUT-Sca	ale Paramete	ers with Proj	pagated Unc	ertainty	
$y^t(M_X)$	6^{+1}_{-5}	0.48(2)	0.49(2)	0.51(3)	0.51(2)	0.51(2)	
$y^b(M_X)$	$0.0113\substack{+0.0002\\-0.01}$	0.051(2)	0.23(1)	0.37(2)	0.34(3)	0.34(3)	
$y^{\tau}(M_X)$	0.0114(3)	0.070(3)	0.32(2)	0.51(4)	0.34(2)	0.34(2)	
$(m_u/m_c)(M_X)$	0.0027(6)	0.0027(6)	0.0027(6)	0.0027(6)	0.0026(6)	0.0026(6)	
$(m_d/m_s)(M_X)$	0.051(7)	0.051(7)	0.051(7)	0.051(7)	0.051(7)	0.051(7)	
$(m_e/m_\mu)(M_X)$	0.0048(2)	0.0048(2)	0.0048(2)	0.0048(2)	0.0048(2)	0.0048(2)	
$(m_c/m_t)(M_X)$	$0.0009\substack{+0.001\\-0.00006}$	0.0025(2)	0.0024(2)	0.0023(2)	0.0023(2)	0.0023(2)	
$(m_s/m_b)(M_X)$	0.014(4)	0.019(2)	0.017(2)	0.016(2)	0.018(2)	0.010(2)	
$(m_{\mu}/m_{\tau})(M_X)$	0.059(2)	0.059(2)	0.054(2)	0.050(2)	0.054(2)	0.054(2)	
$A(M_X)$	$0.56\substack{+0.34\\-0.01}$	0.77(2)	0.75(2)	0.72(2)	0.73(3)	0.46(3)	
$\lambda(M_X)$	0.227(1)	0.227(1)	0.227(1)	0.227(1)	0.227(1)	0.227(1)	
$\bar{ ho}(M_X)$	0.22(6)	0.22(6)	0.22(6)	0.22(6)	0.22(6)	0.22(6)	
$\bar{\eta}(M_X)$	0.33(4)	0.33(4)	0.33(4)	0.33(4)	0.33(4)	0.33(4)	
$J(M_X) \times 10^{-5}$	$1.4^{+2.2}_{-0.2}$	2.6(4)	2.5(4)	2.3(4)	2.3(4)	1.0(2)	
Parameters	Comparison with GUT Mass Ratios						
$(m_b/m_\tau)(M_X)$	$\begin{array}{c} 1.00 \substack{+0.04 \\ -0.4} \\ 0.70 \substack{+0.8 \\ -0.05} \end{array}$	0.73(3)	0.73(3)	0.73(4)	1.00(4)	1.00(4)	
$(3m_s/m_\mu)(M_X)$	$0.70\substack{+0.8 \\ -0.05}$	0.69(8)	0.69(8)	0.69(8)	0.9(1)	0.6(1)	
$(m_d/3m_e)(M_X)$	0.82(7)	0.83(7)	0.83(7)	0.83(7)	1.05(8)	0.68(6)	
$\left(\frac{\det Y^d}{\det Y^e}\right)(M_X)$	$0.57\substack{+0.08 \\ -0.26}$	0.42(7)	0.42(7)	0.42(7)	0.92(14)	0.39(7)	

3. Textures in a basis

Hierarchical Symmetric Textures

Symmetric hierarchical matrices with 11 texture zero motivated by

$$m_{LR} = \begin{pmatrix} 0 & m_{12} \\ m_{12} & m_{22} \end{pmatrix} \longrightarrow |V_{us}| \approx \left| \sqrt{\frac{m_d}{m_s}} \right| \approx \lambda \quad \text{Gatto et al}$$

This motivates the symmetric down texture at GUT scale of form

$$Y_{LR}^{d} \sim \begin{pmatrix} 0 & \lambda^{3} & \lambda^{3} \\ \lambda^{3} & \lambda^{2} & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix} \qquad |V_{cb}| \approx \left| \frac{(m_{LR}^{D})_{23}}{m_{b}} \right| \approx \lambda^{2} \qquad |V_{ub}| \approx \left| \frac{(m_{LR}^{D})_{13}}{m_{b}} \right| \approx \lambda^{3}$$

 $\lambda \approx$ 0.2 is the Wolfenstein Parameter

Up quarks are more hierarchical than down quarks This suggests different expansion parameters for up and down

$$\frac{m_{LR}^{D}}{m_{b}} \sim \begin{pmatrix} 0 & \overline{\varepsilon}^{3} & \overline{\varepsilon}^{3} \\ \overline{\varepsilon}^{3} & \overline{\varepsilon}^{2} & \overline{\varepsilon}^{2} \\ \overline{\varepsilon}^{3} & \overline{\varepsilon}^{2} & 1 \end{pmatrix} \quad \overline{\varepsilon} \sim 0.15 \qquad \qquad \frac{m_{LR}^{U}}{m_{t}} = \begin{pmatrix} 0 & \varepsilon^{3} & \varepsilon^{3} \\ \varepsilon^{3} & \varepsilon^{2} & \varepsilon^{2} \\ \varepsilon^{3} & \varepsilon^{2} & 1 \end{pmatrix} \quad \varepsilon \sim 0.05$$
$$m_{d} : m_{s} : m_{b} = \overline{\varepsilon}^{4} : \overline{\varepsilon}^{2} : 1 \qquad \qquad m_{u} : m_{c} : m_{t} = \varepsilon^{4} : \varepsilon^{2} : 1$$

Detailed fits require numerical (order unity) coefficients

$$Y^{d}(M_{X}) = y^{d}_{33} \begin{pmatrix} d \epsilon^{4}_{d} & b \epsilon^{3}_{d} & c \epsilon^{3}_{d} \\ b \epsilon^{3}_{d} & f \epsilon^{2}_{d} & a \epsilon^{2}_{d} \\ c \epsilon^{3}_{d} & a \epsilon^{2}_{d} & 1 \end{pmatrix} \qquad Y^{u}(M_{X}) = y^{u}_{33} \begin{pmatrix} d' \epsilon^{4}_{u} & b' \epsilon^{3}_{u} & c' \epsilon^{3}_{u} \\ b' \epsilon^{3}_{u} & f' \epsilon^{2}_{u} & a' \epsilon^{2}_{u} \\ c' \epsilon^{3}_{u} & a' \epsilon^{2}_{u} & 1 \end{pmatrix}$$

Ross and Serna

Detailed fits at the GUT Scale

No SUSY thresholds

Parameter	2001 RRRV	Fit A0	Fit B0	Fit A1	Fit B1	Fit A2	Fit B2
aneta	Small	1.3	1.3	38	38	38	38
a'	$\mathcal{O}(1)$	0	0	0	0	-2.0	-2.0
ϵ_u	0.05	0.030(1)	0.030(1)	0.0491(16)	0.0491(15)	0.0493(16)	0.0493(14)
ϵ_d	0.15(1)	0.117(4)	0.117(4)	0.134(7)	0.134(7)	0.132(7)	0.132(7)
b'	1.0	1.75(20)	1.75(21)	1.05(12)	1.05(13)	1.04(12)	1.04(13)
$\arg(b')$	90^{o}	$+93(16)^{o}$	$-93(13)^{o}$	$+91(16)^{o}$	$-91(13)^{o}$	$+93(16)^{o}$	$-93(13)^{o}$
a	1.31(14)	2.05(14)	2.05(14)	2.16(23)	2.16(24)	1.92(21)	1.92(22)
b	1.50(10)	1.92(14)	1.92(15)	1.66(13)	1.66(13)	1.70(13)	1.70(13)
c	0.40(2)	0.85(13)	2.30(20)	0.78(15)	2.12(36)	0.83(17)	2.19(38)
$\arg(c)$	$-24(3)^{o}$	$-39(18)^{o}$	$-61(14)^{o}$	$-43(14)^{o}$	$-59(13)^{o}$	$-37(25)^{o}$	$-60(13)^{o}$

 $c^\prime=d^\prime=d=0$ and $f=f^\prime=1$

$$Y^{u}(M_{X}) = y^{u}_{33} \begin{pmatrix} d'\epsilon^{4}_{u} & b'\epsilon^{3}_{u} & c'\epsilon^{3}_{u} \\ b'\epsilon^{3}_{u} & f'\epsilon^{2}_{u} & a'\epsilon^{2}_{u} \\ c'\epsilon^{3}_{u} & a'\epsilon^{2}_{u} & 1 \end{pmatrix} \quad Y^{d}(M_{X}) = y^{d}_{33} \begin{pmatrix} d\epsilon^{4}_{d} & b\epsilon^{3}_{d} & c\epsilon^{3}_{d} \\ b\epsilon^{3}_{d} & f\epsilon^{2}_{d} & a\epsilon^{2}_{d} \\ c\epsilon^{3}_{d} & a\epsilon^{2}_{d} & 1 \end{pmatrix}.$$

With SUSY thresholds

Ross and Serna

Parameter	А	В	\mathbf{C}	B2	C2	
aneta	30	38	38	38	38	
γ_b	0.20	-0.22	+0.22	-0.22	+0.22	
γ_t	-0.03	0	-0.44	0	-0.44	
γ_d	0.20	-0.21	+0.21	-0.21	+0.21	
a'	0.0	0.0	0.0	-2	-2	
ϵ_u	0.0495(17)	0.0483(16)	0.0483(18)	0.0485(17)	0.0485(18)	
ϵ_d	0.131(7)	0.128(7)	0.102(9)	0.127(7)	0.101(9)	
b'	1.04(12)	1.07(12)	1.07(11)	1.05(12)	1.06(10)	
$\arg(b')$	$90(12)^{o}$	$91(12)^{o}$	$93(12)^{o}$	$95(12)^{o}$	$95(12)^{o}$	
a	2.17(24)	2.27(26)	2.30(42)	2.03(24)	1.89(35)	
b	1.69(13)	1.73(13)	2.21(18)	1.74(10)	2.26(20)	
c	0.80(16)	0.86(17)	1.09(33)	0.81(17)	1.10(35)	
$\arg(c)$	$-41(18)^{o}$	$-42(19)^{o}$	$-41(14)^{o}$	$-53(10)^{o}$	$-41(12)^{o}$	
Y^u_{33}	0.48(2)	0.51(2)	0.51(2)	0.51(2)	0.51(2)	
Y^d_{33}	0.15(1)	0.34(3)	0.34(3)	0.34(3)	0.34(3)	
Y^{e}_{33}	0.23(1)	0.34(2)	0.34(2)	0.34(2)	0.34(2)	
$(m_b/m_{ au})(M_X)$	0.67(4)	(1.00(4))	1.00(4)	(1.00(4))	1.00(4)	
$(3m_s/m_\mu)(M_X)$	0.60(3)	(0.9(1))	0.6(1)	(0.9(1))	0.6(1)	
$(m_d/3m_e)(M_X)$	0.71(7)	(1.04(8))	0.68(6)	1.04(8)	0.68(6)	
$\frac{\det Y^d(M_X)}{\det Y^e(M_X)}$	0.3(1)	0.92(14)	0.4(1)	0.92(14)	0.4(1)	
$Y^{d}(M_{X}) = y_{33}^{d} \begin{pmatrix} d \varepsilon_{d}^{4} & 1.7 \varepsilon_{d}^{3} & e^{-i\pi/4} \varepsilon_{d}^{3} \\ 1.7 \varepsilon_{d}^{3} & \varepsilon_{d}^{2} & 2 \varepsilon_{d}^{2} \\ e^{-i\pi/4} \varepsilon_{d}^{3} & 2 \varepsilon_{d}^{2} & 1 \end{pmatrix} \qquad \qquad$						
$\mathcal{T}^d(M) = v^d \left[17 \varepsilon^3 \right]$	e^2 ?	£ ²			gi-Jarlskog	
$(i x_X) - y_{33}$ $1.7 C_d$	d^3	$\begin{bmatrix} n \\ 1 \end{bmatrix} \begin{bmatrix} n \\ -n \end{bmatrix}$	$\frac{m_b}{m_b}(M_{GUT}) = 1,$	$\frac{m_s}{m_{\mu}}(M_{GUT}) = \frac{1}{3}$	$\frac{m_d}{m}(M_{GUT}) =$	
$(e \epsilon)$	$d \qquad 2 \mathcal{E}_d^2$	1) <i>1</i>	n_{τ}	m_{μ} 3	m _e	

Final remarks on choice of basis

We have considered a particular choice of quark texture in a particular basis

$$\frac{m_{LR}^{D}}{m_{b}} \sim \begin{pmatrix} 0 & \overline{\varepsilon}^{3} & \overline{\varepsilon}^{3} \\ \overline{\varepsilon}^{3} & \overline{\varepsilon}^{2} & \overline{\varepsilon}^{2} \\ \overline{\varepsilon}^{3} & \overline{\varepsilon}^{2} & 1 \end{pmatrix} \quad \overline{\varepsilon} \sim 0.15 \qquad \qquad \frac{m_{LR}^{U}}{m_{t}} \sim \begin{pmatrix} 0 & \varepsilon^{3} & \varepsilon^{3} \\ \varepsilon^{3} & \varepsilon^{2} & \varepsilon^{2} \\ \varepsilon^{3} & \varepsilon^{2} & 1 \end{pmatrix} \quad \varepsilon \sim 0.05$$

But it is shown in the Appendix that all choices of quark mass matrices that lead to the same quark masses and mixing angles may be related to each other under a change of basis.

For example all quark mass matrices are equivalent to the choice

$$m_{LR}^{D} \sim V_{CKM} \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix} \qquad \qquad m_{LR}^{U} \sim \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{c} & 0 \\ 0 & 0 & m_{t} \end{pmatrix}$$

However this is only true in the Standard Model, and a given high energy theory of flavour will select a particular preferred basis. Also in the see-saw mechanism all choices of see-saw matrices are NOT equivalent.

Appendix 1 References

- W. De Boer hep-ph/9402266
- S.Raby ICTP Lectures 1994
- G.G.Ross ICTP Lectures 2001
- J.C. Pati ICTP Lectures 2001
- S. Barr ICTP Lectures 2003
- S. Raby hep-ph/0401115
- S.Raby PDB 2006
- A. Ceccucci et al PDB 2006
- G. Ross and M. Serna 0704.1248
- D. Chung et al hep-ph/0312378
- S.F. King hep-ph/0310204

S.F. King hep-ph/0610239

Appendix 2 Basis Changing

2.1 Quark sector2.2 Effective Majorana sector2.3 See-saw sector

2.1 Quark sector

In the quark sector the Dirac mass matrices of the up and down quarks are given by $m_{LR}^U = Y_{LR}^U v_u$, and $m_{LR}^D = Y_{LR}^D v_d$ where $v_u = \langle H_u^0 \rangle$ and $v_d = \langle H_d^0 \rangle$, and the Lagrangian is of the form $\mathcal{L} = -\bar{\psi}_L Y_{LR} H \psi_R + H.c$. The change from flavour basis to mass eigenstate basis can be performed with the unitary diagonalization matrices V_{U_L}, V_{U_R} and V_{D_L}, V_{D_R} by

$$V_{U_L} m_{LR}^U V_{U_R}^{\dagger} = \text{diag}(m_u, m_c, m_t), \quad V_{D_L} m_{LR}^D V_{D_R}^{\dagger} = \text{diag}(m_d, m_s, m_b).$$
(1)

The CKM mixing matrix is then obtained from

$$V_{CKM}' = V_{U_L} V_{D_L}^{\dagger} \tag{2}$$

where quark phase rotations which leave the quark masses real and positive may be used to remove five of the phases leaving one physical phase in the CKM matrix V_{CKM} . The Standard Model quark sector clearly respects the symmetry

$$G_{quark} = U_Q(3) \times U_{U_R}(3) \times U_{D_R}(3) \tag{3}$$

corresponding to quark doublet, right-handed up quark and right-handed down quark rotations, which change the quark basis and the form of the Yukawa matrices, but leave the physics (quark masses and mixings) unchanged. In the quark sector it is well known that the only physical quantities are basis independent invariants formed from the mass matrices, the so-called Jarlkog invariants [6], rather than the mass matrices themselves, since any pair of quark mass matrices which lead to the correct physics may be related to any other pair which lead to the same physics, by a change of basis, up to quark phases, using the symmetry G_{quark} . This can be proved, for example, by showing that any two pairs of quark mass matrices can be related by a change of basis, using the symmetry G_{quark} , to a common basis in which the up quark mass matrix is diagonal, and the down quark mass matrix is equal, up to quark phases, to the CKM matrix multiplied by a diagonal matrix of down quark masses,

$$m_{LR}^{U'} = \text{diag}(m_u, m_c, m_t), \quad m_{LR}^{D'} = V_{CKM}^{\prime} \text{diag}(m_d, m_s, m_b).$$
 (4)

Since any two pairs of mass matrices $(m_{LR}^U)_1, (m_{LR}^D)_1$ and $(m_{LR}^U)_2, (m_{LR}^D)_2$ may be related to m_{LR}^U, m_{LR}^D in Eq.4 by a change of basis, it follows that all choices of quark mass matrices which lead to the same physics can be related to each other, up to quark phases, using the symmetry G_{quark} . This implies that the quark mass matrices m_{LR}^U , m_{LR}^D are not physical quantities since they are basis dependent, i.e. not invariant under the symmetry G_{quark} . It is possible to define G_{quark} invariant combinations consisting of determinants and traces of products of the combinations $S_{LL}^U = m_{LR}^U(m_{LR}^U)^{\dagger}$ and $S_{LL}^D = m_{LR}^D(m_{LR}^D)^{\dagger}$, for example the determinant of the commutator $\det[S_{LL}^U, S_{LL}^D]$ is an invariant [6].

2.2 Effective lepton sector

From the point of view of low energy neutrino experiments, Majorana neutrino masses arise from the effective operator: $\mathcal{L}^{eff} = -\frac{1}{2}H_uL^T\kappa H_uL + H.c.$ where L are the lepton doublets, H_u are Higgs doublets, and κ is a matrix of effective (dimensional) couplings. In our convention the effective Majorana masses are given by the Lagrangian $\mathcal{L} =$ $-\bar{\nu}_L m_{LL}^{\nu} \nu^c + H.c.$ where $m_{LL}^{\nu} = \kappa^* v_u^2$. The rotation to the mass eigenstate basis can be performed with the unitary diagonalization matrices V_{E_L}, V_{E_R} and V_{ν_L} by

$$V_{E_L} m_{LR}^E V_{E_R}^{\dagger} = \text{diag}(m_e, m_{\mu}, m_{\tau}), \quad V_{\nu_L} m_{LL}^{\nu} V_{\nu_L}^T = \text{diag}(m_1, m_2, m_3).$$
(5)

The lepton mixing matrix is then obtained from

$$V'_{MNS} = V_{E_L} V^{\dagger}_{\nu_L} \tag{6}$$

where charged lepton phases rotations which leave the charged lepton masses real and positive may be used to remove three of the phases leaving three physical phases in the MNS matrix V_{MNS} .

The effective lepton sector clearly respects the symmetry

$$G_{lepton}^{eff} = U_L(3) \times U_{E_R}(3) \tag{7}$$

corresponding to lepton doublet and right-handed charged lepton rotations, which change the lepton basis and the form of the effective lepton matrices, but leave the physics (lepton masses and mixings) unchanged. The physically measurable low energy lepton parameters are the three charged lepton masses m_e, m_μ, m_τ , the three neutrino masses $m_{1,2,3} > 0$ and the lepton mixing parameters contained in V_{MNS} . As in the quark sector, any pair of effective lepton matrices m_{LR}^E , m_{LL}^{ν} which lead to a given low energy physics may be related to any other pair which lead to the same physics, by a change of basis, using the symmetry G_{lepton}^{eff} . This is easily proved (analogous to the quark sector) by transforming to a common basis in which the charged lepton mass matrix is diagonal, and the effective Majorana neutrino mass matrix is specified in terms of the lepton mixing matrix $V'_{MNS} = V_{E_L} V_{\nu_L}^{\dagger}$ and the physical neutrino masses m_i ,

$$m_{LR}^{E}' = \text{diag}(m_e, m_\mu, m_\tau), \quad m_{LL}^{\nu}' = V_{MNS}' \text{diag}(m_1, m_2, m_3) V_{MNS}^{T}'$$
(8)

where Eq.8, often called the "flavour basis", is analogous to Eq.4. Then, as in the quark case, we can argue that since any two pairs of matrices $(m_{LR}^E)_1$, $(m_{LL}^\nu)_1$ and $(m_{LR}^E)_2$, $(m_{LL}^\nu)_2$ can be rotated to the flavour basis then they can therefore be rotated into each other, using the symmetry G_{lepton}^{eff} , analogous to the quark sector result. m_{LR}^E , m_{LL}^ν are clearly basis dependent, but invariants under G_{lepton}^{eff} can be constructed using $S_{LL}^E =$ $m_{LR}^E (m_{LR}^E)^{\dagger}$ and $S_{LL}^\nu = m_{LL}^\nu (m_{LL}^\nu)^{\dagger}$, for example the determinant of the commutator $\det[S_{LL}^E, S_{LL}^\nu]$ is invariant.

2.3 See-saw sector

The starting point of the see-saw mechanism is the Lagrangian,

$$\mathcal{L}_{seesaw} = -Y_{LR}^E H_d \overline{L} E_R - Y_{LR}^{\nu} H_u \overline{L} \nu_R + \frac{1}{2} \nu_R^T M_{RR} \nu_R + H.c.$$
(9)

where all indices have been suppressed, and we have introduced two Higgs doublets H_u , H_d as in the Supersymmetric Standard Model.² It is common to call Eq.9 the seesaw Lagrangian. After integrating out the right-handed neutrinos it leads to an effective low energy leptonic Lagrangian of the type discussed in the previous subsection where the effective Majorana mass matrix given by the (type I) see-saw formula:

$$m_{LL}^{\nu} = v_u^2 Y_{LR}^{\nu} M_{RR}^{-1} Y_{LR}^{\nu T}.$$
(10)

The effective low energy matrices are diagonalised by unitary transformations V_{E_L} , V_{E_R} and V_{ν_L} as in Eq.5, and the lepton mixing matrix is as in Eq.6.

The lepton symmetry of the see-saw Lagrangian in Eq.9 is:

$$G_{lepton} = U_L(3) \times U_{E_R}(3) \times U_{\nu_R}(3)$$

$$\tag{11}$$

corresponding to lepton doublet, right-handed charged lepton and right-handed neutrino rotations, which change the lepton basis and the form of the see-saw matrices, but leave the physics (lepton masses and mixings) unchanged. Using these symmetries we can

²In the case of the Standard Model one of the two Higgs doublets is equal to the charge conjugate of the other, $H_d \equiv H_u^c$.

ask the question whether all sets of see-saw matrices Y_{LR}^E , Y_{LR}^{ν} and M_{RR} which lead to a given set of low energy physical lepton parameters are equivalent to each other by a change of basis. Analagous to the quark sector, we may attempt to relate all sets of see-saw matrices to a common set of see-saw matrices in which the charged lepton mass matrix is diagonal, and the right-handed neutrino Majorana mass matrix is also diagonal,

$$v_d Y_{LR}^{E'} = \text{diag}(m_e, m_\mu, m_\tau), \quad M'_{RR} = \text{diag}(M_1, M_2, M_3), \quad Y_{LR}^{\nu'} = V_{EL} Y_{LR}^{\nu} V_{\nu_R}^{\dagger} \quad (12)$$

where unitary V_{ν_R} is defined by $V_{\nu_R}M_{RR}V_{\nu_R}^T = M'_{RR}$ and $M_i > 0$.

We refer to the basis of Eq.12 as the "see-saw flavour basis" in analogy to Eq.8. The difference between Eqs.4,8 and Eq.12 is that here Y_{LR}^{ν} ' is not uniquely specified since it is diagonalized by left-handed rotations which are not simply related to the lepton mixing matrix, and in addition its eigenvalues are not simply related to physical neutrino masses. Therefore, unlike the quark sector, or the effective lepton case, there is not a unique common basis. Therefore, we conclude that any two sets of see-saw matrices $(Y_{LR}^E)_1$, $(Y_{LR}^{\nu})_1$, $(M_{RR})_1$ and $(Y_{LR}^E)_2$, $(Y_{LR}^{\nu})_2$, $(M_{RR})_2$ which give the same physical right-handed neutrino masses, light effective neutrino masses, charged lepton masses and lepton mixings, cannot be transformed into each other under the lepton see-saw symmetry G_{lepton} corresponding to basis changes.