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Abstract

This is a written version of a series of lectures aimed at graduate students in the field of (theoret-

ical and experimental) high energy physics. The main topics covered are: (i) The flavor sector of

the Standard Model and the Kobayashi-Maskawa mechanism of CP violation; (ii) Formalism and

theoretical interpretation of CP violation in meson decays; (iii) K decays; (iv) D decays; (v) B

decays: b → cc̄s, b → ss̄s, b → uūd and b → cūs, uc̄s; (vi) CP violation as a probe of new physics

and, in particular, of supersymmetry.

∗ Lectures given at the ‘Third CERN-CLAF School of High Energy Physics’ Malargüe, Argentina, 27

February - 12 March 2005 and at the Les Houches Summer School (Session LXXXIV) on ‘Particle Physics

Beyond the Standard Model,’ Les Houches, France, August 1–26, 2005.
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I. INTRODUCTION

The Standard Model predicts that the only way that CP is violated is through the

Kobayashi-Maskawa mechanism [1]. Specifically, the source of CP violation is a single phase

in the mixing matrix that describes the charged current weak interactions of quarks. In the

introductory chapter, we briefly review the present evidence that supports the Kobayashi-

Maskawa picture of CP violation, as well as the various arguments against this picture.

A. Why believe the Kobayashi-Maskawa mechanism?

Experiments have measured to date nine independent CP violating observables:1

1 The list of measured observables in B decays is somewhat conservative. I include only observables where

the combined significance of Babar and Belle measurements (taking an inflated error in case of inconsis-
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1. Indirect CP violation in K → ππ decays [2] and in K → πℓν decays is given by

εK = (2.28 ± 0.02) × 10−3 eiπ/4. (1)

2. Direct CP violation in K → ππ decays [3, 4, 5] is given by

ε′/ε = (1.72 ± 0.18) × 10−3. (2)

3. CP violation in the interference of mixing and decay in the B → ψKS and other,

related modes is given by [6, 7]:

SψKS
= +0.69 ± 0.03. (3)

4. CP violation in the interference of mixing and decay in the B → K+K−KS mode is

given by [8, 9]

SK+K−KS
= −0.45 ± 0.13. (4)

5. CP violation in the interference of mixing and decay in the B → D∗+D∗− mode is

given by [10, 11]

SD∗+D∗− = −0.75 ± 0.23. (5)

6. CP violation in the interference of mixing and decay in the B → η′K0 modes is given

by [12, 13, 14]

Sη′KS
= +0.50 ± 0.09(0.13). (6)

7. CP violation in the interference of mixing and decay in the B → f0KS mode is given

by [13, 15]

Sf0KS
= −0.75 ± 0.24. (7)

8. Direct CP violation in the B0 → K−π+ mode is given by [16, 17]

AK∓π± = −0.115 ± 0.018. (8)

9. Direct CP violation in the B → ρπ mode is given by [18, 19]

A−+
ρπ = −0.48 ± 0.14. (9)

tencies) is above 3σ.
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All nine measurements – as well as many other, where CP violation is not (yet) observed at

a level higher than 3σ – are consistent with the Kobayashi-Maskawa picture of CP violation.

In particular, the measurement of the phase β from the CP asymmetry B → ψK, the

measurement of the phase α from CP asymmetries and decay rates in the B → ππ, ρπ and

ρρ modes, and the measurement of the phase γ from B → DK decays, have provided the

first three precision tests of CP violation in the Standard Model. Since the model has passed

these tests successfully, we are able, for the first time, to make the following statement: The

Kobayashi-Maskawa phase is, very likely, the dominant source of CP violation in low-energy

flavor-changing processes.

In contrast, various alternative scenarios of CP violation that have been phenomenologi-

cally viable for many years are now unambiguously excluded. Two important examples are

the following:

• The superweak framework [20], that is, the idea that CP violation is purely indirect,

is excluded by the evidence that ε′/ε 6= 0.

• Approximate CP, that is, the idea that all CP violating phases are small (see, for

example, [21]), is excluded by the evidence that SψKS
= O(1).

Indeed, I am not aware of any viable, reasonably motivated, scenario which provides a

complete alternative to the KM mechanism, that is of a framework where the KM phase

plays no significant role in the observed CP violation.

The experimental results from the B-factories, such as those in Eqs. (3-9), and their

implications for theory signify a new era in the study of CP violation. In this series of

lectures we explain these recent developments and their significance.

B. Why doubt the Kobayashi-Maskawa mechanism?

1. The baryon asymmetry of the Universe

Baryogenesis is a consequence of CP violating processes [22]. Therefore the present baryon

number, which is accurately deduced from nucleosynthesis and CMBR constraints,

YB ≡ nB − nB
s

≃ 9 × 10−11, (10)
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is essentially a CP violating observable! It can be added to the list of known CP violating

observables, Eqs. (1-9). Within a given model of CP violation, one can check for consistency

between the data from cosmology, Eq. (10), and those from laboratory experiments.

The surprising point is that the Kobayashi-Maskawa mechanism for CP violation fails to

account for (10). It predicts present baryon number density that is many orders of magnitude

below the observed value [23, 24, 25]. This failure is independent of other aspects of the

Standard Model: the suppression of YB from CP violation is much too strong, even if the

departure from thermal equilibrium is induced by mechanisms beyond the Standard Model.

This situation allows us to make the following statement: There must exist sources of CP

violation beyond the Kobayashi-Maskawa phase.

Two important examples of viable models of baryogenesis are the following:

1. Leptogenesis [26]: a lepton asymmetry is induced by CP violating decays of heavy

fermions that are singlets of the Standard Model gauge group (sterile neutrinos). Departure

from thermal equilibrium is provided if the lifetime of the heavy neutrino is long enough

that it decays when the temperature is below its mass. Processes that violate B + L are

fast before the electroweak phase transition and partially convert the lepton asymmetry into

a baryon asymmetry. The CP violating parameters may be related to CP violation in the

mixing matrix for the light neutrinos (but this is a model dependent issue [27]).

2. Electroweak baryogenesis (for a review see [28]): the source of the baryon asymme-

try is the interactions of top (anti)quarks with the Higgs field during the electroweak phase

transition. CP violation is induced, for example, by supersymmetric interactions. Sphaleron

configurations provide baryon number violating interactions. Departure from thermal equi-

librium is provided by the wall between the false vacuum (〈φ〉 = 0) and the expanding

bubble with the true vacuum, where electroweak symmetry is broken.

2. The strong CP problem

Nonperturbative QCD effects induce an additional term in the SM Lagrangian,

Lθ =
θQCD

32π2
ǫµνρσF

µνaF ρσa. (11)
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This term violates CP. In particular, it induces an electric dipole moment (EDM) to the

neutron. The leading contribution in the chiral limit is given by [29]

dN =
gπNN ḡπNN

4π2MN

ln
MN

mπ

≈ 5 × 10−16 θQCD e cm, (12)

where MN is the nucleon mass, and gπNN (ḡπNN) is the pseudoscalar coupling (CP-violating

scalar coupling) of the pion to the nucleon. (The leading contribution in the large Nc limit

was calculated in the Skyrme model [30] and leads to a similar estimate.) The experimental

bound on dN is given by [31]

dN ≤ 6.3 × 10−26 e cm. (13)

It leads to the following bound on θQCD:

θQCD ∼< 10−10. (14)

Since θQCD arises from nonperturbative QCD effects, it is impossible to calculate it. Yet,

there are good reasons to expect that these effects should yield θQCD = O(1) (for a review,

see [32]). Within the SM, a value as small as in Eq. (14) is unnatural, since setting θQCD

to zero does not add symmetry to the model. [In particular, as we will see below, CP is

violated by δKM = O(1).] Understanding why CP is so small in the strong interactions is

the strong CP problem.

It seems then that the strong CP problem is a clue to new physics. Among the solutions

that have been proposed are a massless u-quark (for a review, see [33]), the Peccei-Quinn

mechanism [34, 35] and spontaneous CP violation.

3. New Physics

Almost any extension of the Standard Model provides new sources of CP violation. For

example, in the supersymmetric extension of the Standard Model (with R-parity), there are

44 independent phases, most of them in flavor changing couplings. If there is new physics

at or below the TeV scale, it is quite likely that the KM phase is not the only source of CP

violation that is playing a role in meson decays.
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C. Will new CP violation be observed in experiments?

The SM picture of CP violation is testable because the Kobayashi-Maskawa mechanism

is unique and predictive. These features are mainly related to the fact that there is a single

phase that is responsible to all CP violation. As a consequence of this situation, one finds

two classes of tests:

(i) Correlations: many independent CP violating observables are correlated within the

SM. For example, the SM predicts that the CP asymmetries in B → ψKS and in B → φKS,

which proceed through different quark transitions, are equal to each other (to a few percent

accuracy) [36, 37]. Another important example is the strong SM correlation between CP vio-

lation in B → ψKS and in K → πνν̄ [38, 39, 40]. It is a significant fact, in this context, that

several CP violating observables can be calculated with very small hadronic uncertainties.

To search for violations of the correlations, precise measurements are important.

(ii) Zeros: since the KM phase appears in flavor-changing, weak-interaction couplings

of quarks, and only if all three generations are involved, many CP violating observables

are predicted to be negligibly small. For example, the transverse lepton polarization in

semileptonic meson decays, CP violation in tt̄ production, tree level D decays, and (assuming

θQCD = 0) the electric dipole moment of the neutron are all predicted to be orders of

magnitude below the (present and near future) experimental sensitivity. To search for lifted

zeros, measurements of CP violation in many different systems should be performed.

The strongest argument that new sources of CP violation must exist in Nature comes

from baryogenesis. Whether the CP violation that is responsible for baryogenesis would be

manifest in measurements of CP asymmetries in B decays depends on two issues:

(i) The scale of the new CP violation: if the relevant scale is very high, such as in

leptogenesis, the effects cannot be signalled in these measurements. To estimate the limit

on the scale, the following three facts are relevant: First, the Standard Model contributions

to CP asymmetries in B decays are O(1). Second, the expected experimental accuracy

would reach in some cases the few percent level. Third, the contributions from new physics

are expected to be suppressed by (ΛEW/ΛNP)2. The conclusion is that, if the new source

of CP violation is related to physics at ΛNP ≫ 1 TeV , it cannot be signalled in B decays.

Only if the true mechanism is electroweak baryogenesis, it can potentially affect B decays.

(ii) The flavor dependence of the new CP violation: if it is flavor diagonal, its effects on
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B decays would be highly suppressed. It can still manifest itself in other, flavor diagonal

CP violating observables, such as electric dipole moments.

We conclude that new measurements of CP asymmetries in meson decays are particularly

sensitive to new sources of CP violation that come from physics at (or below) the few TeV

scale and that are related to flavor changing couplings. This is, for example, the case,

in certain supersymmetric models of baryogenesis [41, 42]. The search for electric dipole

moments can reveal the existence of new flavor diagonal CP violation.

Of course, there could be new flavor physics at the TeV scale that is not related to the

baryon asymmetry and may give signals in B decays. The best motivated extension of the

SM where this situation is likely is that of supersymmetry.

Finally, we would like to mention that, in the past, flavor physics and the physics of CP

violation led indeed to the discovery of new physics or to probing it before it was directly

observed in experiments:

• The smallness of Γ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;

• The size of ∆mK led to a successful prediction of the charm mass;

• The size of ∆mB led to a successful prediction of the top mass;

• The measurement of εK led to predicting the third generation.

II. THE KOBAYASHI-MASKAWA MECHANISM

A. Yukawa interactions are the source of CP violation

A model of elementary particles and their interactions is defined by three ingredients:

1. The symmetries of the Lagrangian;

2. The representations of fermions and scalars;

3. The pattern of spontaneous symmetry breaking.

The Standard Model (SM) is defined as follows:

1. The gauge symmetry is

GSM = SU(3)C × SU(2)L × U(1)Y. (15)
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2. There are three fermion generations, each consisting of five representations of GSM:

QI
Li(3, 2)+1/6, U I

Ri(3, 1)+2/3, DI
Ri(3, 1)−1/3, LILi(1, 2)−1/2, EI

Ri(1, 1)−1. (16)

Our notations mean that, for example, left-handed quarks, QI
L, are triplets of SU(3)C,

doublets of SU(2)L and carry hypercharge Y = +1/6. The super-index I denotes interaction

eigenstates. The sub-index i = 1, 2, 3 is the flavor (or generation) index. There is a single

scalar representation,

φ(1, 2)+1/2. (17)

3. The scalar φ assumes a VEV,

〈φ〉 =

(

0

v√
2

)

, (18)

so that the gauge group is spontaneously broken,

GSM → SU(3)C × U(1)EM. (19)

The Standard Model Lagrangian, LSM, is the most general renormalizable Lagrangian

that is consistent with the gauge symmetry (15), the particle content (16,17) and the pattern

of spontaneous symmetry breaking (18). It can be divided to three parts:

LSM = Lkinetic + LHiggs + LYukawa. (20)

As concerns the kinetic terms, to maintain gauge invariance, one has to replace the

derivative with a covariant derivative:

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY. (21)

Here Gµ
a are the eight gluon fields, W µ

b the three weak interaction bosons and Bµ the single

hypercharge boson. The La’s are SU(3)C generators (the 3 × 3 Gell-Mann matrices 1
2
λa

for triplets, 0 for singlets), the Tb’s are SU(2)L generators (the 2 × 2 Pauli matrices 1
2
τb for

doublets, 0 for singlets), and the Y ’s are the U(1)Y charges. For example, for the left-handed

quarks QI
L, we have

Lkinetic(QL) = iQI
Liγµ

(

∂µ +
i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ

)

QI
Li, (22)

while for the left-handed leptons LIL, we have

Lkinetic(LL) = iLILiγµ

(

∂µ +
i

2
gW µ

b τb − ig′Bµ
)

LILi. (23)
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These parts of the interaction Lagrangian are always CP conserving.

The Higgs potential, which describes the scalar self interactions, is given by:

LHiggs = µ2φ†φ− λ(φ†φ)2. (24)

For the Standard Model scalar sector, where there is a single doublet, this part of the

Lagrangian is also CP conserving. For extended scalar sectors, such as that of a two Higgs

doublet model, LHiggs can be CP violating. Even in case that it is CP symmetric, it may

lead to spontaneous CP violation.

The quark Yukawa interactions are given by

− Lquarks
Yukawa = Y d

ijQ
I
LiφD

I
Rj + Y u

ijQ
I
Liφ̃U

I
Rj + h.c.. (25)

This part of the Lagrangian is, in general, CP violating. More precisely, CP is violated if

and only if [43]

Im(det[Y dY d†, Y uY u†]) 6= 0. (26)

An intuitive explanation of why CP violation is related to complex Yukawa couplings goes

as follows. The hermiticity of the Lagrangian implies that LYukawa has its terms in pairs of

the form

YijψLiφψRj + Y ∗
ijψRjφ

†ψLi. (27)

A CP transformation exchanges the operators

ψLiφψRj ↔ ψRjφ
†ψLi, (28)

but leaves their coefficients, Yij and Y ∗
ij , unchanged. This means that CP is a symmetry of

LYukawa if Yij = Y ∗
ij .

The lepton Yukawa interactions are given by

− Lleptons
Yukawa = Y e

ijL
I
LiφE

I
Rj + h.c.. (29)

It leads, as we will see in the next section, to charged lepton masses but predicts massless

neutrinos. Recent measurements of the fluxes of atmospheric and solar neutrinos provide

evidence for neutrino masses (for a review, see [44]). That means that LSM cannot be a

complete description of Nature. The simplest way to allow for neutrino masses is to add
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dimension-five (and, therefore, non-renormalizable) terms, consistent with the SM symmetry

and particle content:

−Ldim−5
Yukawa =

Y ν
ij

M
LiLjφφ+ h.c.. (30)

The parameter M has dimension of mass. The dimensionless couplings Y ν
ij are symmetric

(Y ν
ij = Y ν

ji). We refer to the SM extended to include the terms Ldim−5
Yukawa of Eq. (30) as the

“extended SM” (ESM):

LESM = Lkinetic + LHiggs + LYukawa + Ldim−5
Yukawa. (31)

The inclusion of non-renormalizable terms is equivalent to postulating that the SM is only

a low energy effective theory, and that new physics appears at the scale M .

How many independent CP violating parameters are there in Lquarks
Yukawa? Each of the two

Yukawa matrices Y q (q = u, d) is 3 × 3 and complex. Consequently, there are 18 real and

18 imaginary parameters in these matrices. Not all of them are, however, physical. One can

think of the quark Yukawa couplings as spurions that break a global symmetry,

U(3)Q × U(3)D × U(3)U → U(1)B. (32)

This means that there is freedom to remove 9 real and 17 imaginary parameters [the number

of parameters in three 3×3 unitary matrices minus the phase related to U(1)B]. We conclude

that there are 10 quark flavor parameters: 9 real ones and a single phase. This single phase

is the source of CP violation in the quark sector.

How many independent CP violating parameters are there in the lepton Yukawa inter-

actions? The matrix Y e is a general complex 3 × 3 matrix and depends, therefore, on 9

real and 9 imaginary parameters. The matrix Y ν is symmetric and depends on 6 real and

6 imaginary parameters. Not all of these 15 real and 15 imaginary parameters are physical.

One can think of the lepton Yukawa couplings as spurions that break (completely) a global

symmetry,

U(3)L × U(3)E . (33)

This means that 6 real and 12 imaginary parameters are not physical. We conclude that

there are 12 lepton flavor parameters: 9 real ones and three phases. These three phases

induce CP violation in the lepton sector.
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B. CKM mixing is the (only!) source of CP violation in the quark sector

Upon the replacement Re(φ0) → v+H0√
2

[see Eq. (18)], the Yukawa interactions (25) give

rise to mass terms:

−LqM = (Md)ijD
I
LiD

I
Rj + (Mu)ijU

I
LiU

I
Rj + h.c., (34)

where

Mq =
v√
2
Y q, (35)

and we decomposed the SU(2)L quark doublets into their components:

QI
Li =

(

U I
Li

DI
Li

)

. (36)

The mass basis corresponds, by definition, to diagonal mass matrices. We can always

find unitary matrices VqL and VqR such that

VqLMqV
†
qR = Mdiag

q (q = u, d), (37)

with Mdiag
q diagonal and real. The quark mass eigenstates are then identified as

qLi = (VqL)ijq
I
Lj, qRi = (VqR)ijq

I
Rj (q = u, d). (38)

The charged current interactions for quarks [that is the interactions of the charged SU(2)L

gauge bosons W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ )], which in the interaction basis are described by (22),

have a complicated form in the mass basis:

− LqW± =
g√
2
uLiγ

µ(VuLV
†
dL)ijdLjW

+
µ + h.c.. (39)

The unitary 3 × 3 matrix,

V = VuLV
†
dL, (V V † = 1), (40)

is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix for quarks [1, 45]. A unitary 3×3

matrix depends on nine parameters: three real angles and six phases.

The form of the matrix is not unique:

(i) There is freedom in defining V in that we can permute between the various generations.

This freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e.

(u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b). The elements of V are written as follows:

V =











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb











. (41)
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(ii) There is further freedom in the phase structure of V . Let us define Pq (q = u, d) to

be diagonal unitary (phase) matrices. Then, if instead of using VqL and VqR for the rotation

(38) to the mass basis we use ṼqL and ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still

maintain a legitimate mass basis since Mdiag
q remains unchanged by such transformations.

However, V does change:

V → PuV P
∗
d . (42)

This freedom is fixed by demanding that V has the minimal number of phases. In the three

generation case V has a single phase. (There are five phase differences between the elements

of Pu and Pd and, therefore, five of the six phases in the CKM matrix can be removed.)

This is the Kobayashi-Maskawa phase δKM which is the single source of CP violation in the

quark sector of the Standard Model [1].

As a result of the fact that V is not diagonal, the W± gauge bosons couple to quark (mass

eigenstates) of different generations. Within the Standard Model, this is the only source of

flavor changing quark interactions.

C. The three phases in the lepton mixing matrix

The leptonic Yukawa interactions (29) and (30) give rise to mass terms:

− LℓM = (Me)ijeILie
I
Rj + (Mν)ijν

I
Liν

I
Lj + h.c., (43)

where

Me =
v√
2
Y e, Mν =

v2

2M
Y ν , (44)

and we decomposed the SU(2)L lepton doublets into their components:

LILi =

(

νILi

eILi

)

. (45)

We can always find unitary matrices VeL and Vν such that

VeLMeM
†
eV

†
eL = diag(m2

e, m
2
µ, m

2
τ ), VνM

†
νMνV

†
ν = diag(m2

1, m
2
1, m

2
3). (46)

The charged current interactions for leptons, which in the interaction basis are described by

(23), have the following form in the mass basis:

−LℓW± =
g√
2
eLiγ

µ(VeLV
†
ν )ijνLjW

−
µ + h.c.. (47)
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The unitary 3 × 3 matrix,

U = VeLV
†
ν , (48)

is the lepton mixing matrix [46]. Similarly to the CKM matrix, the form of the lepton mixing

matrix is not unique. But there are differences in choosing conventions:

(i) We can permute between the various generations. This freedom is usually fixed in the

following way. We order the charged leptons by their masses, i.e. (e1, e2, e3) → (e, µ, τ). As

concerns the neutrinos, one takes into account that the atmospheric and solar neutrino data

imply that ∆m2
atm ≫ ∆m2

sol. It follows that one of the neutrino mass eigenstates is separated

in its mass from the other two, which have a smaller mass difference. The convention is to

denote this separated state by ν3. For the remaining two neutrinos, ν1 and ν2, the convention

is to call the heavier state ν2. In other words, the three mass eigenstates are defined by the

following conventions:

|∆m2
3i| ≫ |∆m2

21|, ∆m2
21 > 0. (49)

Note in particular that ν3 can be either heavier (‘normal hierarchy’) or lighter (‘inverted

hierarchy’) than ν1,2. The elements of U are written as follows:

U =











Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3











. (50)

(ii) There is further freedom in the phase structure of U . One can change the charged

lepton mass basis by the transformation e(L,R)i → e′(L,R)i = (Pe)iie(L,R)i, where Pe is a phase

matrix. There is, however, no similar freedom to redefine the neutrino mass eigenstates:

From Eq. (43) one learns that a transformation νL → PννL will introduce phases into the

diagonal mass matrix. This is related to the Majorana nature of neutrino masses, assumed

in Eq. (30). The allowed transformation modifies U :

U → PeU. (51)

This freedom is fixed by demanding that U will have the minimal number of phases. Out of

six phases of a generic unitary 3× 3 matrix, the multiplication by Pe can be used to remove

three. We conclude that the three generation U matrix has three phases. One of these is the

analog of the Kobayashi-Maskawa phase. It is the only source of CP violation in processes

that conserve lepton number, such as neutrino flavor oscillations. The other two phases can

affect lepton number changing processes.
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With U 6= 1, the W± gauge bosons couple to lepton (mass eigenstates) of different

generations. Within the ESM, this is the only source of flavor changing lepton interactions.

D. The flavor parameters

Examining the quark mass basis, one can easily identify the flavor parameters. In the

quark sector, we have six quark masses and four mixing parameters: three mixing angles

and a single phase.

The fact that there are only three real and one imaginary physical parameters in V can

be made manifest by choosing an explicit parameterization. For example, the standard

parameterization [47], used by the particle data group, is given by

V =











c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13











, (52)

where cij ≡ cos θij and sij ≡ sin θij . The three sin θij are the three real mixing parameters

while δ is the Kobayashi-Maskawa phase. Another, very useful, example is the Wolfenstein

parametrization, where the four mixing parameters are (λ,A, ρ, η) with λ = |Vus| = 0.22

playing the role of an expansion parameter and η representing the CP violating phase [48, 49]:

V =











1 − 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ + 1
2
A2λ5[1 − 2(ρ+ iη)] 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3[1 − (1 − 1
2
λ2)(ρ+ iη)] −Aλ2 + 1

2
Aλ4[1 − 2(ρ+ iη)] 1 − 1

2
A2λ4











. (53)

Various parametrizations differ in the way that the freedom of phase rotation, Eq. (42), is

used to leave a single phase in V . One can define, however, a CP violating quantity in VCKM

that is independent of the parametrization [43]. This quantity, JCKM, is defined through

Im(VijVklV
∗
ilV

∗
kj) = JCKM

3
∑

m,n=1

ǫikmǫjln, (i, j, k, l = 1, 2, 3). (54)

In terms of the explicit parametrizations given above, we have

JCKM = c12c23c
2
13s12s23s13 sin δ ≃ λ6A2η. (55)

It is interesting to translate the condition (26) to the language of the flavor parameters

in the mass basis. One finds that the following is a necessary and sufficient condition for

CP violation in the quark sector of the SM (we define ∆m2
ij ≡ m2

i −m2
j):

∆m2
tc∆m

2
tu∆m

2
cu∆m

2
bs∆m

2
bd∆m

2
sdJCKM 6= 0. (56)
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Equation (56) puts the following requirements on the SM in order that it violates CP:

(i) Within each quark sector, there should be no mass degeneracy;

(ii) None of the three mixing angles should be zero or π/2;

(iii) The phase should be neither 0 nor π.

As concerns the lepton sector of the ESM, the flavor parameters are the six lepton masses,

and six mixing parameters: three mixing angles and three phases. One can parameterize U

in a convenient way by factorizing it into U = ÛP . Here P is a diagonal unitary matrix that

depends on two phases, e.g. P = diag(eiφ1 , eiφ2, 1), while Û can be parametrized in the same

way as (52). The advantage of this parametrization is that for the purpose of analyzing lepton

number conserving processes and, in particular, neutrino flavor oscillations, the parameters

of P are usually irrelevant and one can use the same Chau-Keung parametrization as is

being used for V . (An alternative way to understand these statements is to use a single-

phase mixing matrix and put the extra two phases in the neutrino mass matrix. Then it

is obvious that the effects of these ‘Majorana-phases’ always appear in conjunction with a

factor of the Majorana mass that is lepton number violating parameter.) On the other hand,

the Wolfenstein parametrization [Eq. (53)] is inappropriate for the lepton sector: it assumes

|V23| ≪ |V12| ≪ 1, which does not hold here.

In order that the CP violating phase δ in Û would be physically meaningful, i.e. there

would be CP violation that is not related to lepton number violation, a condition similar to

Eq. (56) should hold:

∆m2
τµ∆m

2
τe∆m

2
µe∆m

2
32∆m

2
31∆m

2
21Jℓ 6= 0. (57)

E. The unitarity triangles

A very useful concept is that of the unitarity triangles. We focus on the quark sector, but

analogous triangles can be defined in the lepton sector. The unitarity of the CKM matrix

leads to various relations among the matrix elements, e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (58)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (59)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (60)
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VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

FIG. 1: Graphical representation of the unitarity constraint VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 as a

triangle in the complex plane.

Each of these three relations requires the sum of three complex quantities to vanish and so

can be geometrically represented in the complex plane as a triangle. These are “the unitarity

triangles”, though the term “unitarity triangle” is usually reserved for the relation (60) only.

The unitarity triangle related to Eq. (60) is depicted in Fig. 1.

It is a surprising feature of the CKM matrix that all unitarity triangles are equal in area:

the area of each unitarity triangle equals |JCKM|/2 while the sign of JCKM gives the direction

of the complex vectors around the triangles.

The rescaled unitarity triangle is derived from (60) by (a) choosing a phase convention

such that (VcdV
∗
cb) is real, and (b) dividing the lengths of all sides by |VcdV ∗

cb|. Step (a) aligns

one side of the triangle with the real axis, and step (b) makes the length of this side 1.

The form of the triangle is unchanged. Two vertices of the rescaled unitarity triangle are

thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex correspond to the

Wolfenstein parameters (ρ, η). The area of the rescaled unitarity triangle is |η|/2.

Depicting the rescaled unitarity triangle in the (ρ, η) plane, the lengths of the two complex

sides are

Ru ≡
∣

∣

∣

∣

VudVub
VcdVcb

∣

∣

∣

∣

=
√

ρ2 + η2, Rt ≡
∣

∣

∣

∣

VtdVtb
VcdVcb

∣

∣

∣

∣

=
√

(1 − ρ)2 + η2. (61)

The three angles of the unitarity triangle are defined as follows [50, 51]:

α ≡ arg

[

− VtdV
∗
tb

VudV ∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

. (62)

They are physical quantities and can be independently measured by CP asymmetries in B

decays. It is also useful to define the two small angles of the unitarity triangles (59) and
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(58):

βs ≡ arg

[

−VtsV
∗
tb

VcsV ∗
cb

]

, βK ≡ arg

[

− VcsV
∗
cd

VusV ∗
ud

]

. (63)

To make predictions for CP violating observables, we need to find the allowed ranges for

the CKM phases. There are three ways to determine the CKM parameters (see e.g. [52]):

(i) Direct measurements are related to SM tree level processes. At present, we have

direct measurements of |Vud|, |Vus|, |Vub|, |Vcd|, |Vcs|, |Vcb| and |Vtb|.
(ii) CKM Unitarity (V †V = 1) relates the various matrix elements. At present, these

relations are useful to constrain |Vtd|, |Vts|, |Vtb| and |Vcs|.
(iii) Indirect measurements are related to SM loop processes. At present, we constrain

in this way |VtbVtd| (from ∆mB and ∆mBs
) and the phase structure of the matrix (for

example, from εK and SψKS
).

Direct measurements are expected to hold almost model independently. Most extensions

of the SM have a special flavor structure that suppresses flavor changing couplings and,

in addition, have a mass scale ΛNP, that is higher than the electroweak breaking scale.

Consequently, new physics contributions to tree level processes are suppressed, compared to

the SM ones, by at least O(m2
Z/Λ

2
NP) ≪ 1.

Unitarity holds if the only quarks (that is fermions in color triplets with electric charge

+2/3 or −1/3) are those of the three generations of the SM. This is the situation in many

extensions of the SM, including the supersymmetric SM (SSM).

Using tree level constraints and unitarity, the 90% confidence limits on the magnitude of

the elements are [53]











0.9739 − 0.9751 0.221 − 0.227 0.0029 − 0.0045

0.221 − 0.227 0.9730 − 0.9744 0.039 − 0.044

0.0048 − 0.014 0.037 − 0.043 0.9990 − 0.9992











. (64)

Note that |Vub| and |Vtd| are the only elements with uncertainties of order one.

Indirect measurements are sensitive to new physics. Take, for example, the B0−B0 mixing

amplitude. Within the SM, the leading contribution comes from an electroweak box diagram

and is therefore O(g4) and depends on small mixing angles, (V ∗
tdVtb)

2. (It is this dependence

on the CKM elements that makes the relevant indirect measurements, particularly ∆mB and

SψKS
, very significant in improving our knowledge of the CKM matrix.) These suppression

factors do not necessarily persist in extensions of the SM. For example, in the SSM there
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are (gluino-mediated) contributions of O(g4
s) and the mixing angles could be comparable

to, or even larger than the SM ones. The validity of indirect measurements is then model

dependent. Conversely, inconsistencies among indirect measurements (or between indirect

and direct measurements) can give evidence for new physics.

When all available data are taken into account, one finds [54]:

λ = 0.226 ± 0.001, A = 0.83 ± 0.03, (65)

ρ̄ = 0.21 ± 0.04, η̄ = 0.33 ± 0.02, (66)

sin 2β = 0.720 ± 0.025, α = (99 ± 7)o, γ = (58 ± 7)o, βs = (1.03 ± 0.08)o, (67)

Ru = 0.40 ± 0.02, Rt = 0.86 ± 0.04. (68)

Of course, there are correlations between the various parameters. The present constraints

on the shape of the unitarity triangle or, equivalently, the allowed region in the ρ− η plane,

are presented in Fig. 2.

F. The uniqueness of the Standard Model picture of CP violation

In the previous subsections, we have learnt several features of CP violation as explained

by the Standard Model. It is important to understand that various reasonable (and often

well-motivated) extensions of the SM provide examples where some or all of these features do

not hold. Furthermore, until a few years ago, none of the special features of the Kobayashi-

Maskawa mechanism of CP violation has been experimentally tested. This situation has

dramatically changed recently. Let us survey some of the SM features, how they can be

modified with new physics, and whether experiment has shed light on these questions.

(i) δKM is the only source of CP violation in meson decays. This is arguably the most

unique feature of the SM and gives the model a strong predictive power. It is violated

in almost any low-energy extension. For example, in the supersymmetric extension of the

SM there are 44 physical CP violating phases, many of which affect meson decays. The

measured value of SψKS
is consistent with the correlation between K and B decays that is

predicted by the SM. The value of SφKS
is equal (within the present experimental accuracy)

with SψKS
, consistent with the SM correlation between the asymmetries in b → ss̄s and

b→ cc̄s transitions. It is therefore very likely that δKM is indeed the dominant source of CP

violation in meson decays.
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FIG. 2: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charm-

less semileptonic B decays (|Vub/Vcb|), mass differences in the B0 (∆md) and Bs (∆ms) neutral

meson systems, and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and

B → DK (γ). Taken from [54].

(ii) CP violation is small in K → ππ decays because of flavor suppression and not because

CP is an approximate symmetry. In many (though certainly not all) supersymmetric models,

the flavor suppression is too mild, or entirely ineffective, requiring approximate CP to hold.

The measurement of SψKS
= O(1) confirms that not all CP violating phases are small.

(iii) CP violation appears in both ∆F = 1 (decay) and ∆F = 2 (mixing) amplitudes.

Superweak models suggest that CP is violated only in mixing amplitudes. The measurements

of non-vanishing ε′/ε, AK∓π± and A−+
ρπ confirm that there is CP violation in ∆S = 1 and

∆B = 1 processes.

(iv) CP is not violated in the lepton sector. Models that allow for neutrino masses, such

as the ESM framework presented above, predict CP violation in leptonic charged current

interactions. Thus, while there is no measurement of leptonic CP violation, the data from
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neutrino oscillation experiments, which give evidence that neutrinos are massive and mix,

make it very likely that charged current weak interactions violate CP also in the lepton

sector.

(v) CP violation appears only in the charged current weak interactions and in conjunction

with flavor changing processes. Here both various extensions of the SM (such as supersym-

metry) and non-perturbative effects within the SM (θQCD) allow for CP violation in other

types of interactions and in flavor diagonal processes. In particular, it is difficult to avoid

flavor-diagonal phases in the supersymmetric framework. The fact that no electric dipole

moment has been measured yet poses difficulties to many models with diagonal CP violation

(and, of course, is responsible to the strong CP problem within the SM).

(vi) CP is explicitly broken. In various extensions of the scalar sector, it is possible to

achieve spontaneous CP violation. It is very difficult to test this question experimentally.

This situation, where the Standard Model has a very unique and predictive description

of CP violation, is the basis for the strong interest, experimental and theoretical, in CP

violation.

III. MESON DECAYS

The phenomenology of CP violation is superficially different in K, D, B, and Bs decays.

This is primarily because each of these systems is governed by a different balance between

decay rates, oscillations, and lifetime splitting. However, the underlying mechanisms of CP

violation are identical for all pseudoscalar mesons.

In this section we present a general formalism for, and classification of, CP violation in

the decay of a pseudoscalar meson P that might be a charged or neutral K, D, B, or Bs

meson. Subsequent sections describe the CP-violating phenomenology, approximations, and

alternate formalisms that are specific to each system. We follow here closely the discussion

in [55].
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A. Charged and neutral meson decays

We define decay amplitudes of a pseudoscalar meson P (which could be charged or neu-

tral) and its CP conjugate P to a multi-particle final state f and its CP conjugate f as

Af = 〈f |H|P 〉 , Af = 〈f |H|P 〉 , Af = 〈f |H|P 〉 , Af = 〈f |H|P 〉 , (69)

where H is the Hamiltonian governing weak interactions. The action of CP on these states

introduces phases ξP and ξf that depend on their flavor content, according to

CP |P 〉 = e+iξP |P 〉 , CP |f〉 = e+iξf |f〉 ,

CP |P 〉 = e−iξP |P 〉 , CP |f〉 = e−iξf |f〉 , (70)

so that (CP )2 = 1. The phases ξP and ξf are arbitrary and unphysical because of the flavor

symmetry of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, then

Af and Af have the same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξP )Af . (71)

B. Neutral meson mixing

A state that is initially a superposition of P 0 and P 0, say

|ψ(0)〉 = a(0)|P 0〉 + b(0)|P 0〉 , (72)

will evolve in time acquiring components that describe all possible decay final states

{f1, f2, . . .}, that is,

|ψ(t)〉 = a(t)|P 0〉 + b(t)|P 0〉 + c1(t)|f1〉 + c2(t)|f2〉 + · · · . (73)

If we are interested in computing only the values of a(t) and b(t) (and not the values of

all ci(t)), and if the times t in which we are interested are much larger than the typical

strong interaction scale, then we can use a much simplified formalism [56]. The simplified

time evolution is determined by a 2×2 effective Hamiltonian H that is not Hermitian, since

otherwise the mesons would only oscillate and not decay. Any complex matrix, such as H,

can be written in terms of Hermitian matrices M and Γ as

H = M − i

2
Γ . (74)
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M and Γ are associated with (P 0, P 0) ↔ (P 0, P 0) transitions via off-shell (dispersive) and

on-shell (absorptive) intermediate states, respectively. Diagonal elements of M and Γ are

associated with the flavor-conserving transitions P 0 → P 0 and P 0 → P 0 while off-diagonal

elements are associated with flavor-changing transitions P 0 ↔ P 0.

The eigenvectors of H have well defined masses and decay widths. We introduce complex

parameters pL,H and qL,H to specify the components of the strong interaction eigenstates,

P 0 and P 0, in the light (PL) and heavy (PH) mass eigenstates:

|PL,H〉 = pL,H |P 0〉 ± qL,H |P 0〉 (75)

with the normalization |pL,H|2 + |qL,H |2 = 1. (Another possible choice, which is in standard

usage for K mesons, defines the mass eigenstates according to their lifetimes: KS for the

short-lived andKL for the long-lived state. The KL is experimentally found to be the heavier

state.) If either CP or CPT is a symmetry of H (independently of whether T is conserved

or violated) then M11 = M22 and Γ11 = Γ22, and solving the eigenvalue problem for H yields

pL = pH ≡ p and qL = qH ≡ q with

(

q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12
. (76)

If either CP or T is a symmetry of H (independently of whether CPT is conserved or

violated), then M12 and Γ12 are relatively real, leading to

(

q

p

)2

= e2iξP ⇒
∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

= 1 , (77)

where ξP is the arbitrary unphysical phase introduced in Eq. (70). If, and only if, CP is a

symmetry of H (independently of CPT and T) then both of the above conditions hold, with

the result that the mass eigenstates are orthogonal

〈PH |PL〉 = |p|2 − |q|2 = 0 . (78)

From now on we assume that CPT is conserved.

The real and imaginary parts of the eigenvalues of H corresponding to |PL,H〉 repre-

sent their masses and decay-widths, respectively. The mass difference ∆m and the width

difference ∆Γ are defined as follows:

∆m ≡MH −ML, ∆Γ ≡ ΓH − ΓL. (79)
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Note that here ∆m is positive by definition, while the sign of ∆Γ is to be experimentally

determined. (Alternatively, one can use the states defined by their lifetimes to have ∆Γ ≡
ΓS − ΓL positive by definition.) The average mass and width are given by

m ≡ MH +ML

2
, Γ ≡ ΓH + ΓL

2
. (80)

It is useful to define dimensionless ratios x and y:

x ≡ ∆m

Γ
, y ≡ ∆Γ

2Γ
. (81)

Solving the eigenvalue equation gives

(∆m)2 − 1

4
(∆Γ)2 = (4|M12|2 − |Γ12|2), ∆m∆Γ = 4Re(M12Γ

∗
12). (82)

C. CP-violating observables

All CP-violating observables in P and P decays to final states f and f can be expressed in

terms of phase-convention-independent combinations of Af , Af , Af and Af , together with,

for neutral-meson decays only, q/p. CP violation in charged-meson decays depends only

on the combination |Af/Af |, while CP violation in neutral-meson decays is complicated by

P 0 ↔ P 0 oscillations and depends, additionally, on |q/p| and on λf ≡ (q/p)(Af/Af).

The decay-rates of the two neutral K mass eigenstates, KS and KL, are different enough

(ΓS/ΓL ∼ 500) that one can, in most cases, actually study their decays independently. For

neutral D, B, and Bs mesons, however, values of ∆Γ/Γ are relatively small and so both mass

eigenstates must be considered in their evolution. We denote the state of an initially pure

|P 0〉 or |P 0〉 after an elapsed proper time t as |P 0
phys(t)〉 or |P 0

phys(t)〉, respectively. Using

the effective Hamiltonian approximation, we obtain

|P 0
phys(t)〉 = g+(t) |P 0〉 − (q/p) g−(t)|P 0〉,

|P 0
phys(t)〉 = g+(t) |P 0〉 − (p/q) g−(t)|P 0〉 , (83)

where

g±(t) ≡ 1

2

(

e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt
)

. (84)

One obtains the following time-dependent decay rates:

dΓ[P 0
phys(t) → f ]/dt

e−ΓtNf
=
(

|Af |2 + |(q/p)Af |2
)

cosh(yΓt) +
(

|Af |2 − |(q/p)Af |2
)

cos(xΓt)
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+ 2Re((q/p)A∗
fAf) sinh(yΓt) − 2 Im((q/p)A∗

fAf) sin(xΓt) , (85)

dΓ[P 0
phys(t) → f ]/dt

e−ΓtNf

=
(

|(p/q)Af |2 + |Af |2
)

cosh(yΓt) −
(

|(p/q)Af |2 − |Af |2
)

cos(xΓt)

+ 2Re((p/q)AfA∗
f) sinh(yΓt) − 2 Im((p/q)AfA

∗
f) sin(xΓt) , (86)

where Nf is a time-independnet normalization factor. Decay rates to the CP-conjugate

final state f are obtained analogously, with Nf = Nf and the substitutions Af → Af and

Af → Af in Eqs. (85,86). Terms proportional to |Af |2 or |Af |2 are associated with decays

that occur without any net P ↔ P oscillation, while terms proportional to |(q/p)Af |2 or

|(p/q)Af |2 are associated with decays following a net oscillation. The sinh(yΓt) and sin(xΓt)

terms of Eqs. (85,86) are associated with the interference between these two cases. Note that,

in multi-body decays, amplitudes are functions of phase-space variables. Interference may be

present in some regions but not others, and is strongly influenced by resonant substructure.

D. Classification of CP-violating effects

We distinguish three types of CP-violating effects in meson decays [57]:

[I] CP violation in decay is defined by

|Af/Af | 6= 1 . (87)

In charged meson decays, where mixing effects are absent, this is the only possible source of

CP asymmetries:

Af± ≡ Γ(P− → f−) − Γ(P+ → f+)

Γ(P− → f−) + Γ(P+ → f+)
=

|Af−/Af+|2 − 1

|Af−/Af+|2 + 1
. (88)

[II] CP violation in mixing is defined by

|q/p| 6= 1 . (89)

In charged-current semileptonic neutral meson decays P, P → ℓ±X (taking |Aℓ+X | = |Aℓ−X |
and Aℓ−X = Aℓ+X = 0, as is the case in the Standard Model, to lowest order in GF , and

in most of its reasonable extensions), this is the only source of CP violation, and can be

measured via the asymmetry of “wrong-sign” decays induced by oscillations:

ASL(t) ≡ dΓ/dt[P 0
phys(t) → ℓ+X] − dΓ/dt[P 0

phys(t) → ℓ−X]

dΓ/dt[P 0
phys(t) → ℓ+X] + dΓ/dt[P 0

phys(t) → ℓ−X]
=

1 − |q/p|4
1 + |q/p|4 . (90)
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Note that this asymmetry of time-dependent decay rates is actually time independent.

[III] CP violation in interference between a decay without mixing, P 0 → f ,

and a decay with mixing, P 0 → P 0 → f (such an effect occurs only in decays to final

states that are common to P 0 and P 0, including all CP eigenstates), is defined by

Im(λf ) 6= 0 , (91)

with

λf ≡
q

p

Af
Af

. (92)

This form of CP violation can be observed, for example, using the asymmetry of neutral

meson decays into final CP eigenstates fCP

AfCP
(t) ≡ dΓ/dt[P 0

phys(t) → fCP ] − dΓ/dt[P 0
phys(t) → fCP ]

dΓ/dt[P 0
phys(t) → fCP ] + dΓ/dt[P 0

phys(t) → fCP ]
. (93)

If ∆Γ = 0 and |q/p| = 1, as expected to a good approximation for B mesons but not for K

mesons, then AfCP
has a particularly simple form [58, 59, 60]:

Af(t) = Sf sin(∆mt) − Cf cos(∆mt),

Sf ≡ 2 Im(λf )

1 + |λf |2
, Cf ≡

1 − |λf |2
1 + |λf |2

, (94)

If, in addition, the decay amplitudes fulfill |AfCP
| = |AfCP

|, the interference between decays

with and without mixing is the only source of the asymmetry and

AfCP
(t) = Im(λfCP

) sin(xΓt). (95)

IV. THEORETICAL INTERPRETATION: GENERAL CONSIDERATIONS

Consider the P → f decay amplitude Af , and the CP conjugate process, P → f , with

decay amplitude Af . There are two types of phases that may appear in these decay am-

plitudes. Complex parameters in any Lagrangian term that contributes to the amplitude

will appear in complex conjugate form in the CP-conjugate amplitude. Thus their phases

appear in Af and Af with opposite signs. In the Standard Model, these phases occur only

in the couplings of the W± bosons and hence are often called “weak phases”. The weak

phase of any single term is convention dependent. However, the difference between the weak

phases in two different terms in Af is convention independent. A second type of phase can
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appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is

the possible contribution from intermediate on-shell states in the decay process. Since these

phases are generated by CP-invariant interactions, they are the same in Af and Af . Usually

the dominant rescattering is due to strong interactions and hence the designation “strong

phases” for the phase shifts so induced. Again, only the relative strong phases between

different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-

transformation phases of Eq. (71). Those spurious phases are due to an arbitrary choice of

phase convention, and do not originate from any dynamics or induce any CP violation. For

simplicity, we set them to zero from here on.

It is useful to write each contribution ai to Af in three parts: its magnitude |ai|, its

weak phase φi, and its strong phase δi. If, for example, there are two such contributions,

Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2),

Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (96)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (97)

Each of the phases appearing in Eqs. (96,97) is convention dependent, but combinations

such as δ1 − δ2, φ1 − φ2, φM − φΓ and φM + φ1 − φ1 (where φ1 is a weak phase contributing

to Af ) are physical.

It is now straightforward to evaluate the various asymmetries in terms of the theoretical

parameters introduced here. We will do so with approximations that are often relevant to

the most interesting measured asymmetries.

1. The CP asymmetry in charged meson decays [Eq. (88)] is given by

Af± = − 2|a1a2| sin(δ2 − δ1) sin(φ2 − φ1)

|a1|2 + |a2|2 + 2|a1a2| cos(δ2 − δ1) cos(φ2 − φ1)
. (98)

The quantity of most interest to theory is the weak phase difference φ2 − φ1. Its extraction

from the asymmetry requires, however, that the amplitude ratio and the strong phase are

known. Both quantities depend on non-perturbative hadronic parameters that are difficult

to calculate.
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2. In the approximation that |Γ12/M12| ≪ 1 (valid for B and Bs mesons), the CP

asymmetry in semileptonic neutral-meson decays [Eq. (90)] is given by

ASL = −
∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

sin(φM − φΓ). (99)

The quantity of most interest to theory is the weak phase φM − φΓ. Its extraction from

the asymmetry requires, however, that |Γ12/M12| is known. This quantity depends on long

distance physics that is difficult to calculate.

3. In the approximations that only a single weak phase contributes to decay, Af =

|af |ei(δf +φf ), and that |Γ12/M12| = 0, we obtain |λf | = 1 and the CP asymmetries in decays

to a final CP eigenstate f [Eq. (93)] with eigenvalue ηf = ±1 are given by

AfCP
(t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf). (100)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are

involved in the extraction of its value from Im(λf ).

The discussion above allows us to introduce another classification:

1. Direct CP violation is one that cannot be accounted for by just φM 6= 0. CP

violation in decay (type I) belongs to this class.

2. Indirect CP violation is consistent with taking φM 6= 0 and setting all other CP

violating phases to zero. CP violation in mixing (type II) belongs to this class.

As concerns type III CP violation, observing ηf1Im(λf1) 6= ηf2Im(λf2) (for the same de-

caying meson and two different final CP eigenstates f1 and f2) would establish direct CP

violation. The significance of this classification is related to theory. In superweak models

[20], CP violation appears only in diagrams that contribute to M12, hence they predict that

there is no direct CP violation. In most models and, in particular, in the Standard Model,

CP violation is both direct and indirect. The experimental observation of ǫ′ 6= 0 (see Section

V) excluded the superweak scenario.

V. K DECAYS

CP violation was discovered in K → ππ decays in 1964 [2]. The same mode provided the

first evidence for direct CP violation [3, 4, 5].
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The decay amplitudes actually measured in neutral K decays refer to the mass eigenstates

KL andKS rather than to theK andK states referred to in Eq. (69). We define CP-violating

amplitude ratios for two-pion final states,

η00 ≡
〈π0π0|H|KL〉
〈π0π0|H|KS〉

, η+− ≡ 〈π+π−|H|KL〉
〈π+π−|H|KS〉

. (101)

Another important observable is the asymmetry of time-integrated semileptonic decay rates:

δL ≡ Γ(KL → ℓ+νℓπ
−) − Γ(KL → ℓ−ν̄ℓπ

+)

Γ(KL → ℓ+νℓπ−) + Γ(KL → ℓ−ν̄ℓπ+)
. (102)

CP violation has been observed as an appearance of KL decays to two-pion final states [53],

|η00| = (2.275 ± 0.017) × 10−3,

|η+−| = (2.286 ± 0.017) × 10−3,

|η00/η+−| = 0.9950 ± 0.0008, (103)

and, assuming CPT, φ+− = φ00 = 43.49◦ ± 0.07◦ (φij is the phase of the amplitude ratio

ηij). CP violation has also been observed in semileptonic KL decays [53]

δL = (3.27 ± 0.12) × 10−3 , (104)

where δL is a weighted average of muon and electron measurements, as well as in KL decays

to π+π−γ and π+π−e+e− [53].

Historically, CP violation in neutral K decays has been described in terms of parameters

ǫ and ǫ′. The observables η00, η+−, and δL are related to these parameters, and to those of

Section III, by

η00 =
1−λ

π0π0

1+λ
π0π0

= ǫ− 2ǫ′ ,

η+− =
1−λ

π+π−

1+λ
π+π−

= ǫ+ ǫ′ ,

δL = 1−|q/p|2
1+|q/p|2 =

2Re(ǫ)
1 + |ǫ|2

, (105)

where, in the last line, we have assumed that |Aℓ+νℓπ−| = |Aℓ−ν̄ℓπ+ | and |Aℓ−ν̄ℓπ+ | =

|Aℓ+νℓπ−| = 0. A fit to the K → ππ data yields [53]

|ǫ| = (2.283 ± 0.017) × 10−3 ,

Re(ǫ′/ǫ) = (1.67 ± 0.26) × 10−3 . (106)
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In discussing two-pion final states, it is useful to express the amplitudes Aπ0π0 and Aπ+π−

in terms of their isospin components via

Aπ0π0 =

√

1

3
|A0|ei(δ0+φ0) −

√

2

3
|A2|ei(δ2+φ2),

Aπ+π− =

√

2

3
|A0|ei(δ0+φ0) +

√

1

3
|A2|ei(δ2+φ2) , (107)

where we parameterize the amplitude AI(AI) for K0(K
0
) decay into two pions with total

isospin I = 0 or 2 as

AI ≡ 〈(ππ)I |H|K0〉 = |AI |ei(δI+φI) , AI ≡ 〈(ππ)I |H|K0〉 = |AI |ei(δI−φI) . (108)

The smallness of |η00| and |η+−| allows us to approximate

ǫ ≃ 1

2
(1 − λ(ππ)I=0

), ǫ′ ≃ 1

6
(λπ0π0 − λπ+π−) . (109)

The parameter ǫ represents indirect CP violation, while ǫ′ parameterizes direct CP violation:

Re(ǫ′) measures CP violation in decay (type I), Re(ǫ) measures CP violation in mixing (type

II), and Im(ǫ) and Im(ǫ′) measure the interference between decays with and without mixing

(type III).

The following expressions for ǫ and ǫ′ are useful for theoretical evaluations:

ǫ ≃ eiπ/4√
2

Im(M12)

∆m
, ǫ′ =

i√
2

∣

∣

∣

∣

A2

A0

∣

∣

∣

∣

ei(δ2−δ0) sin(φ2 − φ0). (110)

The expression for ǫ is only valid in a phase convention where φ2 = 0, corresponding to a

real VudV
∗
us, and in the approximation that also φ0 = 0. The phase of π/4 is approximate,

and determined by hadronic parameters, arg ǫ ≈ arctan(−2∆m/∆Γ), independently of the

electroweak model. The calculation of ǫ benefits from the fact that Im(M12) is dominated

by short distance physics. Consequently, the main source of uncertainty in theoretical in-

terpretations of ǫ are the values of matrix elements such as 〈K0|(s̄d)V−A(s̄d)V−A|K0〉. The

expression for ǫ′ is valid to first order in |A2/A0| ∼ 1/20. The phase of ǫ′ is experimentally

determined, π/2 + δ2 − δ0 ≈ π/4 and is independent of the electroweak model. Note that,

accidentally, ǫ′/ǫ is real to a good approximation.

A future measurement of much interest is that of CP violation in the rare K → πνν̄

decays. The signal for CP violation is simply observing the KL → π0νν̄ decay. The effect

here is that of interference between decays with and without mixing (type III) [61]:

Γ(KL → π0νν̄)

Γ(K+ → π+νν̄)
=

1

2

[

1 + |λπνν̄ |2 − 2Re(λπνν̄)
]

≃ 1 −Re(λπνν̄), (111)
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where in the last equation we neglect CP violation in decay and in mixing (expected, model

independently, to be of order 10−5 and 10−3, respectively). Such a measurement would be

experimentally very challenging and theoretically very rewarding [62]. Similar to the CP

asymmetry in B → J/ψKS, the CP violation in K → πνν̄ decay is predicted to be large

(the ratio in Eq. (111) is not CKM suppressed) and can be very cleanly interpreted.

Within the Standard Model, the KL → π0νν̄ decay is dominated by an intermediate

top quark contribution and, consequently, can be cleanly interpreted in terms of CKM

parameters [63]. (For the charged mode, K+ → π+νν̄, the contribution from an intermediate

charm quark is not negligible and constitutes a source of hadronic uncertainty.) In particular,

B(KL → π0νν̄) provides a theoretically clean way to determine the Wolfenstein parameter

η [64]:

B(KL → π0νν̄) = κLX
2(m2

t/m
2
W )A4η2, (112)

where κL = 1.80× 10−10 incorporates the value of the four-fermion matrix element which is

deduced, using isospin relations, from B(K+ → π0e+ν), and X(m2
t/m

2
W ) is a known function

of the top mass.

A. Implications of εK

The measurement of εK has had (and still has) important implications. Two implications

of historical importance are the following:

(i) CP violation was discovered through the measurement of εK . Hence this measurement

played a significant role in the history of particle physics.

(ii) The observation of εK 6= 0 led to the prediction that a third generation must exist,

so that CP is violated in the Standard Model. This provides an excellent example of how

precision measurements at low energy can lead to the discovery of new physics (even if, at

present, this new physics is old...)

Within the Standard Model, Im(M12) is accounted for by box diagrams:

εK = eiπ/4CεBKIm(V ∗
tsVtd) {Re(V ∗

csVcd)[η1S0(xc) − η3S0(xc, xt)] −Re(V ∗
tsVtd)η2S0(xt)} ,

(113)

where Cε ≡ G2
F
f2

K
mKm

2
W

6
√

2π2∆mK
is a well known parameter, the ηi are QCD correction factors, S0

is a kinematic factor, and BK is the ratio between the matrix element of the four quark
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operator and its value in the vacuum insertion approximation. The measurement of εK has

the following implications within the SM:

• This measurement allowed one to set the value of δKM. Furthermore, by implying

that δKM = O(1), it made the KM mechanism plausible. Having been the single

measured CP violating parameter it could not, however, serve as a test of the KM

mechanism. More precisely, a value of |εK | ≫ 10−3 would have invalidated the KM

mechanism, but any value |εK | ∼< 10−3 was acceptable. It is only the combination of

the new measurements in B decays (particularly SψKS
) with εK that provides the first

precision test of the KM mechanism.

• Within the SM, the smallness of εK is not related to suppression of CP violation but

rather to suppression of flavor violation. Specifically, it is the smallness of the ratio

|(VtdVts)/(VudVus)| ∼ λ4 that explains |εK | ∼ 10−3.

• Until recently, the measured value of εK provided a unique type of information on the

KM phase. For example, the measurement of Re(εK) > 0 tells us that η > 0 and

excludes the lower half of the ρ− η plane. Such information cannot be obtained from

any CP conserving observable.

• The εK constraint in Eq. (113) gives hyperbole in the ρ− η plane. It is shown in Fig.

2. The measured value is consistent with all other CKM-related measurements and

further narrows the allowed region.

Beyond the SM, εK is an extremely powerful probe of new physics. This aspect will be

discussed later.

VI. D DECAYS

Unlike the case of neutralK, B, andBs mixing, D0−D0 mixing has not yet been observed.

Long-distance contributions make it difficult to calculate the Standard Model prediction for

the D0 −D0 mixing parameters. Therefore, the goal of the search for D0 −D0 mixing is not

to constrain the CKM parameters but rather to probe new physics. Here CP violation plays

an important role [65]. Within the Standard Model, the CP-violating effects are predicted

to be negligibly small since the mixing and the relevant decays are described, to an excellent
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approximation, by physics of the first two generations. Observation of CP violation in

D0 − D0 mixing (at a level much higher than O(10−3)) will constitute an unambiguous

signal of new physics.2 At present, the most sensitive searches involve the D → K+K− and

D → K±π∓ modes.

The neutral D mesons decay via a singly-Cabibbo-suppressed transition to the CP eigen-

state K+K−. Since the decay proceeds via a Standard-Model tree diagram, it is very likely

unaffected by new physics and, furthermore, dominated by a single weak phase. It is safe

then to assume that direct CP violation plays no role here [68, 69]. In addition, given

the experimental bounds [53], x ≡ ∆m/Γ ∼< 0.03 and y ≡ ∆Γ/(2Γ) = 0.008 ± 0.005, we

can expand the decay rates to first order in these parameters. Using Eq. (85) with these

assumptions and approximations yields, for xt, yt ∼< Γ−1,

Γ[D0
phys(t) → K+K−] = e−Γt|AKK|2[1 − |q/p|(y cosφD − x sinφD)Γt],

Γ[D0
phys(t) → K+K−] = e−Γt|AKK|2[1 − |p/q|(y cosφD + x sinφD)Γt], (114)

where φD is defined via λK+K− = −|q/p|eiφD . (In the limit of CP conservation, choosing

φD = 0 is equivalent to defining the mass eigenstates by their CP eigenvalue: |D∓〉 =

p|D0〉±q|D0〉, with D−(D+) being the CP -odd (CP-even) state; that is, the state that does

not (does) decay into K+K−.) Given the small values of x and y, the time dependences

of the rates in Eq. (114) can be recast into purely exponential forms, but with modified

decay-rate parameters [70]:

ΓD0→K+K− = Γ × [1 + |q/p|(y cosφD − x sinφD)] ,

ΓD0→K+K− = Γ × [1 + |p/q|(y cosφD + x sin φD)] . (115)

One can define CP-conserving and CP-violating combinations of these two observables (nor-

malized to the true width Γ):

Y ≡ ΓD0→K+K− + ΓD0→K+K−

2Γ
− 1

=
|q/p| + |p/q|

2
y cosφD − |q/p| − |p/q|

2
x sinφD,

∆Y ≡ ΓD0→K+K− − ΓD0→K+K−

2Γ

=
|q/p| + |p/q|

2
x sin φD − |q/p| − |p/q|

2
y cosφD. (116)

2 In contrast, neither yD ∼ 10−2 [66], nor xD ∼ 10−2 [67] can be considered as evidence for new physics.
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In the limit of CP conservation (and, in particular, within the Standard Model), Y = y and

∆Y = 0.

The K±π∓ states are not CP eigenstates but they are still common final states for D0

and D0 decays. Since D0(D0) → K−π+ is a Cabibbo-favored (doubly-Cabibbo-suppressed)

process, these processes are particularly sensitive to x and/or y = O(λ2). Taking into

account that |λK−π+ |, |λ−1
K+π−| ≪ 1 and x, y ≪ 1, assuming that there is no direct CP

violation (again, these are Standard Model tree level decays dominated by a single weak

phase) and expanding the time dependent rates for xt, yt ∼< Γ−1, one obtains

Γ[D0
phys(t) → K+π−]

Γ[D0
phys(t) → K+π−]

= r2
d + rd

∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

(y′ cosφD − x′ sin φD)Γt+

∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

2
y2 + x2

4
(Γt)2,

Γ[D0
phys(t) → K−π+]

Γ[D0
phys(t) → K−π+]

= r2
d + rd

∣

∣

∣

∣

∣

p

q

∣

∣

∣

∣

∣

(y′ cosφD + x′ sinφD)Γt+

∣

∣

∣

∣

∣

p

q

∣

∣

∣

∣

∣

2
y2 + x2

4
(Γt)2, (117)

where

y′ ≡ y cos δ − x sin δ,

x′ ≡ x cos δ + y sin δ. (118)

The weak phase φD is the same as that of Eq. (114) (a consequence of the absence of direct

CP violation), δ is a strong phase difference for these processes, and rd = O(tan2 θc) is the

amplitude ratio, rd = |AK−π+/AK−π+ | = |AK+π−/AK+π−|, that is, λK−π+ = rd(q/p)e
−i(δ−φD)

and λ−1
K+π− = rd(p/q)e

−i(δ+φD). By fitting to the six coefficients of the various times depen-

dences, one can extract rd, |q/p|, (x2 +y2), y′ cosφD, and x′ sinφD. In particular, finding CP

violation, that is, |q/p| 6= 1 and/or sinφD 6= 0, would constitute evidence for new physics.

VII. B DECAYS

The upper bound on the CP asymmetry in semileptonic B decays [53] implies that CP

violation in B0 − B
0

mixing is a small effect [we use ASL/2 ≈ 1 − |q/p|, see Eq. (90)]:

ASL = (0.3 ± 1.3) × 10−2 =⇒ |q/p| = 0.998 ± 0.007. (119)

The Standard Model prediction is

ASL = O
(

m2
c

m2
t

sin β

)

∼< 0.001. (120)
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In models where Γ12/M12 is approximately real, such as the Standard Model, an upper

bound on ∆Γ/∆m ≈ Re(Γ12/M12) provides yet another upper bound on the deviation of

|q/p| from one. This constraint does not hold if Γ12/M12 is approximately imaginary.

The small deviation (less than one percent) of |q/p| from 1 implies that, at the present

level of experimental precision, CP violation in B mixing is a negligible effect. Thus, for the

purpose of analyzing CP asymmetries in hadronic B decays, we can use

λf = e−iφB(Af/Af) , (121)

where φB refers to the phase of M12 [see Eq. (97)]. Within the Standard Model, the corre-

sponding phase factor is given by

e−iφB = (V ∗
tbVtd)/(VtbV

∗
td) . (122)

Some of the most interesting decays involve final states that are common to B0 and

B
0

[71, 72, 73]. Here Eq. (94) applies [58, 59, 60]. The processes of interest proceed

via quark transitions of the form b̄ → q̄qq̄′ with q′ = s or d. For q = c or u, there are

contributions from both tree (t) and penguin (pqu, where qu = u, c, t is the quark in the

loop) diagrams (see Fig. 3) which carry different weak phases:

Af =
(

V ∗
qbVqq′

)

tf +
∑

qu=u,c,t

(

V ∗
qubVquq′

)

pquf . (123)

(The distinction between tree and penguin contributions is a heuristic one, the separation

by the operator that enters is more precise. For a detailed discussion of the more complete

operator product approach, which also includes higher order QCD corrections, see, for ex-

ample, ref. [74].) Using CKM unitarity, these decay amplitudes can always be written in

terms of just two CKM combinations. For example, for f = ππ, which proceeds via b̄→ ūud̄

transition, we can write

Aππ = (V ∗
ubVud)Tππ + (V ∗

tbVtd)P
t
ππ, (124)

where Tππ = tππ + puππ − pcππ and P t
ππ = ptππ − pcππ. CP violating phases in Eq. (124) appear

only in the CKM elements, so that

Aππ
Aππ

=
(VubV

∗
ud)Tππ + (VtbV

∗
td)P

t
ππ

(V ∗
ubVud)Tππ + (V ∗

tbVtd)P
t
ππ

. (125)

For f = J/ψK, which proceeds via b̄→ c̄cs̄ transition, we can write

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (126)
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where TψK = tψK + pcψK − ptψK and P u
ψK = puψK − ptψK . A subtlety arises in this decay that

is related to the fact that B0 decays into J/ψK0 while B
0

decays into J/ψK0. A common

final state, e.g. J/ψKS, is reached only via K0−K0 mixing. Consequently, the phase factor

corresponding to neutral K mixing, e−iφK = (V ∗
cdVcs)/(VcdV

∗
cs), plays a role:

AψKS

AψKS

= −(VcbV
∗
cs)TψK + (VubV

∗
us)P

u
ψK

(V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK

× V ∗
cdVcs
VcdV

∗
cs

. (127)

For q = s or d, there are only penguin contributions to Af , that is, tf = 0 in Eq. (123).

(The tree b̄ → ūuq̄′ transition followed by ūu→ q̄q rescattering is included below in the P u

terms.) Again, CKM unitarity allows us to write Af in terms of two CKM combinations.

For example, for f = φKS, which proceeds via b̄→ s̄ss̄ transition, we can write

AφKS

AφKS

= −(VcbV
∗
cs)P

c
φK + (VubV

∗
us)P

u
φK

(V ∗
cbVcs)P

c
φK + (V ∗

ubVus)P
u
φK

× V ∗
cdVcs
VcdV

∗
cs

, (128)

where P c
φK = pcφK − ptφK and P u

φK = puφK − ptφK .

FIG. 3: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to B0 → f or

Bs → f via a b̄→ q̄qq̄′ quark-level process.
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Since the amplitude Af involves two different weak phases, the corresponding decays

can exhibit both CP violation in the interference of decays with and without mixing, Sf 6=
0, and CP violation in decays, Cf 6= 0. [At the present level of experimental precision,

the contribution to Cf from CP violation in mixing is negligible, see Eq. (119).] If the

contribution from a second weak phase is suppressed, then the interpretation of Sf in terms of

Lagrangian CP-violating parameters is clean, while Cf is small. If such a second contribution

is not suppressed, Sf depends on hadronic parameters and, if the relevant strong phase is

large, Cf is large.
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TABLE I: Summary of b̄ → q̄qq̄′ modes with q′ = s or d. The second and third columns give

examples of final hadronic states. The fourth column gives the CKM dependence of the amplitude

Af , using the notation of Eqs. (124,126,128), with the dominant term first and the sub-dominant

second. The suppression factor of the second term compared to the first is given in the last

column. “Loop” refers to a penguin versus tree suppression factor (it is mode-dependent and

roughly O(0.2 − 0.3)) and λ = 0.22 is the expansion parameter of Eq. (53).

b̄→ qq̄q̄′ B0 → f Bs → f CKM dependence of Af Suppression

b̄→ c̄cs̄ ψKS ψφ (V ∗
cbVcs)T + (V ∗

ubVus)P
u loop × λ2

b̄→ s̄ss̄ φKS φφ (V ∗
cbVcs)P

c + (V ∗
ubVus)P

u λ2

b̄→ ūus̄ π0KS K+K− (V ∗
cbVcs)P

c + (V ∗
ubVus)T λ2/loop

b̄→ c̄cd̄ D+D− ψKS (V ∗
cbVcd)T + (V ∗

tbVtd)P
t loop

b̄→ s̄sd̄ φπ φKS (V ∗
tbVtd)P

t + (V ∗
cbVcd)P

c ∼< 1

b̄→ ūud̄ π+π− π0KS (V ∗
ubVud)T + (V ∗

tbVtd)P
t loop

A summary of b̄ → q̄qq̄′ modes with q′ = s or d is given in Table I. The b̄ → d̄dq̄

transitions lead to final states that are similar to the b̄ → ūuq̄ transitions and have similar

phase dependence. Final states that consist of two vector-mesons (ψφ and φφ) are not

CP eigenstates, and angular analysis is needed to separate the CP-even from the CP-odd

contributions.

The cleanliness of the theoretical interpretation of Sf can be assessed from the information

in the last column of Table I. In case of small uncertainties, the expression for Sf in terms

of CKM phases can be deduced from the fourth column of Table I in combination with Eq.

(122) (and, for b → qq̄s decays, the example in Eq. (127)). In the next three sections, we

consider three interesting classes.

For Bs decays, one has to replace Eq. (122) with

e−iφBs = (V ∗
tbVts)/(VtbV

∗
ts). (129)

Note that one expects ∆Γs/Γs = O(0.1), and therefore yBs
should not be put to zero in

the expressions for the time dependent decay rates, but |q/p| = 1 is expected to hold to

an even better approximation than for B mesons. The CP asymmetry in Bs → D+
s D

−
s
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(or in Bs → ψφ with angular analysis to disentangle the CP-even and CP-odd components

of the final state) will determine sin 2βs, where βs is defined in Eq. (63). Since the SM

prediction is that this asymmetry is small [see Eq. (67)], sin 2βs ∼ 0.036, an observation of

a SBs→D+
s D

−
s
≫ 0.04 will provide evidence for new physics.

VIII. b→ cc̄s TRANSITIONS

For B → J/ψKS and other b̄ → c̄cs̄ processes, we can neglect the P u contribution to

AψK , in the SM, to an approximation that is better than one percent:

λψKS
= −e−2iβ ⇒ SψKS

= sin 2β, CψKS
= 0 . (130)

(Below the percent level, several effects modify this equation [75, 76].) The experimental

measurements give the following ranges [77]:

SψKS
= 0.69 ± 0.03, CψKS

= 0.02 ± 0.05 . (131)

The consistency of the experimental results (131) with the SM predictions means that

the KM mechanism of CP violation has successfully passed its first precision test. For the

first time, we can make the following statement based on experimental evidence:

Very likely, the Kobayashi-Maskawa mechanism is the dominant source of CP

violation in flavor changing processes.

There are three qualifications implicit in this statement, and we now explain them in

little more detail [78].

• ‘Very likely’: It could be that the success is accidental. It could happen, for example,

that sin 2β is significantly different from the SM value and that, at the same time,

there is a significant CP violating contribution to the B0 −B0 mixing amplitude, and

the sum of MSM
12 +MNP

12 accidentally carries the same phase as the one predicted by the

SM alone. It could also happen that the size of NP contributions to b→ d transitions

is small, or that its phase is similar to the SM one, but that in b → s transitions the

deviation is significant.

• ‘Dominant’: While SψK is measured with an accuracy of order 0.04, the accuracy of

the SM prediction for sin 2β is only at the level of 0.2. Thus, it is quite possible that

there is a new physics contribution at the level of |MNP
12 /M

SM
12 | ∼< O(0.2).
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• ‘Flavor changing’: It may well happen that the KM phase, which is closely related

to flavor violation through the CKM matrix, dominates meson decays while new,

flavor diagonal phases (such as the two unavoidable phases in the universal version of

the MSSM) dominate observables such as electric dipole moments by many orders of

magnitude.

The measurement of SψK provides a significant constraint on the unitarity triangle. In

the ρ− η plane, it reads:

sin 2β =
2η(1 − ρ)

η2 + (1 − ρ)2
= 0.69 ± 0.03. (132)

One can get an impression of the impact of this constraint by looking at Fig. 2, where the

blue region represents sin 2β = 0.69±0.03. An impression of the KM test can be achieved by

observing that the blue region has an excellent overlap with the region allowed by all other

measurements. A comparison between the constraints in the ρ−η plane from CP conserving

and CP violating processes is provided in Fig. 4. The impressive consistency between the

two allowed regions is the basis for our statement that the KM mechanism has passed its

first precision tests. The fact that the allowed region from the CP violating processes is

more strongly constrained is related to the fact that CP is a good symmetry of the strong

interactions and that, therefore, various CP violating observables – in particular SψK – can

be cleanly interpreted.

IX. PENGUIN DOMINATED b→ s TRANSITIONS

A. General considerations

The present experimental situation concerning CP asymmetries in decays to final CP

eigenstates dominated by b→ s penguins is summarized in Table II.

For B → φKS and other b̄ → s̄ss̄ processes, we can neglect the P u contribution to Af ,

in the Standard Model, to an approximation that is good to order of a few percent:

λφKS
≈ −e−2iβ ⇒ SφKS

≈ sin 2β, CφKS
≈ 0 . (133)

In the presence of new physics, both Af and M12 can get contributions that are comparable

in size to those of the Standard Model and carry new weak phases [36]. Such a situation

gives several interesting consequences for b̄→ s̄ss̄ decays:
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FIG. 4: Constraints in the ρ− η plane from (a) CP conserving or (b) CP violating loop processes.
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TABLE II: CP asymmetries in b→ s penguin dominated modes.

fCP −ηfCP
SfCP

CfCP

φKS +0.47 ± 0.19 −0.09 ± 0.15

η′KS +0.50 ± 0.09(0.13) −0.07 ± 0.07(0.10)

f0KS +0.75 ± 0.24 +0.06 ± 0.21(0.23)

π0KS +0.31 ± 0.26 −0.02 ± 0.13

ωKS +0.63 ± 0.30 −0.44 ± 0.24

KSKSKS +0.61 ± 0.23 −0.31 ± 0.17(0.20)

1. A new CP violating phase in the b → s decay amplitude will lead to a deviation of

−ηfSf from SψK .

2. The Sf ’s will be different, in general, among the various f ’s. Only if the new physics

contribution to Af dominates over the SM we should expect a universal Sf .

3. A new CP violating phase in the b→ s decay amplitude in combination with a strong

phase will lead to Cf 6= 0.
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B. Calculating the deviations from Sf = SψK

It is important to understand how large a deviation from the approximate equalities in

Eq. (133) is expected within the SM. The SM contribution to the decay amplitudes, related

to b̄ → q̄qs̄ transitions, can always be written as a sum of two terms, ASM
f = Acf + Auf , with

Acf ∝ V ∗
cbVcs and Auf ∝ V ∗

ubVus. Defining the ratio auf ≡ e−iγ(Auf/A
c
f), we have

ASM
f = Acf(1 + aufe

iγ). (134)

The size of the deviations from Eq. (133) is set by auf . For |auf | ≪ 1, we obtain

− ηfSf ≃ sin 2β + 2 cos 2β Re(auf ) sin γ,

Cf ≃ −2Im(auf ) sin γ. (135)

For charmless modes, the effects of the auf terms (often called ‘the SM pollution’) are at least

of order |(V ∗
ubVus)/(V

∗
cbVcs)| ∼ a few percent.

To calculate them explicitly, we use the operator product expansion (OPE). We follow

the notations of ref. [79]. We consider the following effective Hamiltonian for ∆B = ±1

decays:

Heff =
GF√

2

∑

p=u,c

V ∗
psVpb

(

C1O
p
1 + C2O

p
2 +

10
∑

i=3

CiOi + C7γO7γ + C8gO8g

)

+ h.c., (136)

with

Op
1 = (p̄b)V −A(s̄p)V−A, Op

2 = (p̄βbα)V−A(s̄αpβ)V−A,

O3 = (s̄b)V−A
∑

q

(q̄q)V−A, O4 = (s̄αbβ)V−A
∑

q

(q̄βqα)V−A,

O5 = (s̄b)V−A
∑

q

(q̄q)V+A, O6 = (s̄αbβ)V−A
∑

q

(q̄βqα)V+A,

O7 =
3

2
(s̄b)V −A

∑

q

eq(q̄q)V+A, O8 =
3

2
(s̄αbβ)V−A

∑

q

eq(q̄βqα)V+A,

O9 =
3

2
(s̄b)V −A

∑

q

eq(q̄q)V−A, O10 =
3

2
(s̄αbβ)V−A

∑

q

eq(q̄βqα)V−A,

O7γ = −emb

8π2
s̄σµν(1 + γ5)Fµνb, O8g = −gsmb

8π2
s̄σµν(1 + γ5)Gµνb, (137)

where (q̄1q2)V±A = q̄1γµ(1 ± γ5)q2, the sum is over active quarks, with eq denoting their

electric charge in fractions of |e| and α, β are color indices. The decay amplitudes can be

calculated from this effective Hamiltonian:

Af = 〈f |Heff |B0〉, Af = 〈f |Heff |B0〉. (138)
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The electroweak model determines the Wilson coefficients while QCD (or, more practi-

cally, a calculational method such as QCD factorization) determines the matrix elements

〈f |Oi|B0(B
0
)〉.

Take, for example, the B0 → K0π0 decay amplitude. It can be written as follows (for

simplicity, we omit the contributions from O7−10):

AcK0π0 ≈ iV ∗
cbVcs

GF

2
fKF

B→π(m2
K)(m2

B −m2
π) (a4 + rχa6) , (139)

AuK0π0 ≈ iV ∗
ubVus

GF

2

[

fKF
B→π(m2

K)(m2
B −m2

π) (a4 + rχa6) − fπF
B→K(m2

π)(m
2
B −m2

K)a2

]

,

where rχ = 2m2
K/[mb(ms + md)]. The ai parameters are related to the Wilson coefficients

as follows:

ai ≡ Ci +
1

Nc
Ci±1 for i = odd, even. (140)

Within the SM, at leading order,

C1(mW ) = 1, Ci6=1(mW ) = 0. (141)

(Strictly speaking, C7γ(mW ) and C8g(mW ) are also different from zero. Their contributions

to the decay processes of interest occur, however, at next-to-leading order which we neglect

here for simplicity.) To run the Wilson coefficients from the weak scale mW to the low scale

of order mb, we use

~C(µ) = [αs(mW )/αs(µ)]γ/2β0 , (142)

where β0 = (33− 2f)/3, with f = 5 for mb ≤ µ ≤ mW , and γ is the 12-dimensional leading-

log anomalous dimension matrix which can be found, for example, in ref. [80]. The bottom

line is the following set of values for the relevant ai parameters at the scale µ = mb:

a1 = 1.028, a2 = 0.105, a4 = −0.0233, a6 = −0.0314. (143)

We use the following values for the relevant hadronic parameters:

fπ = 131 MeV, fK = 160 MeV, FB→π(0) = 0.28, FB→K(0) = 0.34, rχ(mb) = 1.170.

(144)

Thus we can estimate auπK :

auπK ≈ λ2Ru

(

1 − fπ
fK

FB→K

FB→π

a2

a4 + rχa6

)

≈ 2.75λ2Ru ≈ 0.052. (145)
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TABLE III: The auf parameters, calculated in QCD factorization at leading log and to zeroth order

in Λ/mb (except for chirally enhanced corrections), and the SM values of Sf for µ = mb and in

parentheses the respective values for µ = 2mb (first) and µ = mb/2 (second) if different from the

central one. In the last column, the results of ref. [83], using QCD factorization at NLO, are given.

Taken from [80].

f auf [80] −ηCPSf [80] −ηCPSf [83]

ψKS 0 0.69 0.69

φKS 0.019 0.71 0.71 ± 0.01

π0KS 0.052 [0.094, 0.021] 0.75 [0.79, 0.72] 0.76+0.05
−0.04

ηKS 0.08 [0.16, 0.02] 0.78 [0.84, 0.72] 0.79+0.11
−0.07

η′KS 0.007 [−0.006, 0.019] 0.70 [0.68, 0.71] 0.70 ± 0.01

ωKS 0.22 [0.37, 0.04] 0.88 [0.94, 0.74] 0.82 ± 0.08

ρ0KS −0.16 [−0.32, 0.005] 0.45 [0.15, 0.70] 0.61+0.08
−0.12

We learn that the SM and factorization predict that −Sπ0KS
− SψKS

≈ +0.05.

In Table III we give the values of the auf parameter (obtained in ref. [80] by using

factorization [79, 81, 82]) for all relevant modes.

An examination of Table III shows that the SM pollution is small (that is, at the naively

expected level of |(VubV ∗
us)/(VcbV

∗
cs)| ∼ a few percent) for f = φKS, η

′KS and π0KS. It

is larger for f = ηKS, ωKS and ρ0KS. In these modes, auf is enhanced because, within

the QCD factorization approach, there is an accidental cancellation between the leading

contributions to Acf . The reason for the suppression of the leading Acf piece in f = ρK, ωK

versus f = π0K is that the dominant QCD-penguin coefficients a4 and a6 appear in Ac(ρ,ω)K

as (a4 − rχa6) and in Acπ0K as (a4 + rχa6). Since rχ ≃ 1 and, within the Standard Model,

a4 ∼ a6, there is a cancellation in Ac(ρ,ω)K while there isn’t one in Acπ0K . The suppression for

AcηK with respect to Acη′K has a different reason: it is due to the octet-singlet mixing, which

causes destructive (constructive) interference in the η(η′)K penguin amplitude [84].
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TABLE IV: CP asymmetries in b→ cc̄d (above line) or b→ uūd (below line) modes.

fCP −ηfCP
SfCP

CfCP

ψπ0 +0.69 ± 0.25 −0.11 ± 0.20

D+D− +0.29 ± 0.63 +0.11 ± 0.35

D∗+D∗− +0.75 ± 0.23 −0.04 ± 0.14

π+π− +0.50 ± 0.12(0.18) −0.37 ± 0.10(0.23)

π0π0 −0.28 ± 0.39

ρ+ρ− +0.22 ± 0.22 −0.02 ± 0.17

X. b→ uūd TRANSITIONS

The present experimental situation concerning CP asymmetries in decays to final CP

eigenstates via b→ d transitions is summarized in Table IV.

For B → ππ and other b̄ → ūud̄ processes, the penguin-to-tree ratio can be estimated

using SU(3) relations and experimental data on related B → Kπ decays. The result is that

the suppression is of order 0.2 − 0.3 and so cannot be neglected. The expressions for Sππ

and Cππ to leading order in RPT ≡ (|VtbVtd|P t
ππ)/(|VubVud|Tππ) are:

λππ = e2iα
[

(1 −RPT e
−iα)/(1 − RPT e

+iα)
]

⇒

Sππ ≈ sin 2α+ 2Re(RPT ) cos 2α sinα, Cππ ≈ 2 Im(RPT ) sinα. (146)

RPT is mode-dependent and, in particular, could be different for π+π− and π0π0. If strong

phases can be neglected then RPT is real, resulting in Cππ = 0. As concerns Sππ, it is

clear from (146) that the relative size and strong phase of the penguin contribution must be

known to extract α. (Only one of the two is required if both Cππ and Sππ are measured.)

This is the problem of penguin pollution.

The cleanest solution involves isospin relations among the B → ππ amplitudes. Let us

derive this relation step by step. The SU(2)-isospin representations of the ππ states are as

follows:

〈π+π−| =

√

1

2
〈(1,+1)(1,−1) + (1,−1)(1,+1)| =

√

1

3
〈2, 0| +

√

2

3
〈0, 0|,

〈π0π0| = 〈(1, 0)(1, 0)| =

√

2

3
〈2, 0| −

√

1

3
〈0, 0|,
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〈π+π0| =

√

1

2
〈(1,+1)(1, 0) + (1, 0)(1,+1)| = 〈2,+1|. (147)

The Hamiltonian, with its four quark operators, has two features that are important for our

purposes:

1. There are ∆I = 1/2 and ∆I = 3/2 pieces, but no ∆I = 5/2 one. The absence of the

latter gives isospin relations among the B → ππ amplitdues.

2. The penguin operatores are purely ∆I = 1/2. Thus we will find that they do not

contribute to the π±π0 modes.

We contract the Hamiltonian with with the (B+, B0) = (1/2,±1/2) states:

H3/2,+1/2|1/2,−1/2〉 ∝
√

1

2
|2, 0〉+

√

1

2
|1, 0〉,

H3/2,+1/2|1/2,+1/2〉 ∝
√

3

4
|2, 1〉 −

√

1

4
|1, 1〉,

H1/2,+1/2|1/2,−1/2〉 ∝
√

1

2
|1, 0〉 −

√

1

2
|0, 0〉,

H1/2,+1/2|1/2,+1/2〉 ∝ |1, 0〉. (148)

Combining (147) and (148), we obtain:

Aπ+π− =
√

1/6 A3/2 −
√

1/3 A1/2,

Aπ0π0 =
√

1/3 A3/2 +
√

1/6 A1/2,

Aπ+π0 =
√

3/4 A3/2. (149)

Analogous relation hold for the CP-conjugate amplitudes, Aπiπj . These isospin decomposi-

tions lead to the Gronau-London triangle relations [85]:

1√
2
Aπ+π− + Aπ0π0 = Aπ+π0 ,

1√
2
Aπ+π− + Aπ0π0 = Aπ−π0. (150)

The method further exploits the fact that the penguin contribution to Pππ is pure ∆I = 1
2

(this is not true for the electroweak penguins which, however, are expected to be small),

while the tree contribution to Tππ contains pieces which are both ∆I = 1
2

and ∆I = 3
2
.
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A simple geometric construction then allows one to find RPT and extract α cleanly from

Sπ+π−. Explicitly, one notes that, since A3/2 comes purely from tree contributions, we have

q

p

A3/2

A3/2

= −e2iα. (151)

The branching ratios of the various modes determine |Aπiπj | and |Aπiπj | (with |Aπ+π0 | =

|Aπ−π0|). This would determine the shape of each of the triangles (150). Defining

A0 ≡ (1/
√

6) A1/2, A2 ≡ (1/
√

12) A3/2, (152)

we can obtain A2 = (1/3)Aπ+π0 and A0 = (1/
√

2)Aπ+π− − A2. Similarly, we can obtain A2

and A0. Next, we define (and obtain)

θ ≡ arg(A0A
∗
2), θ ≡ arg(A0A

∗
2). (153)

Then we have

Imλπ+π− = Im


−e−2iα |A2| − |A0|eiθ
|A2| − |A0|eiθ



 . (154)

On the other hand, we can use the experimentally measured quantities to extract Imλπ+π−:

Imλπ+π− =
Sπ+π−

1 + Cπ+π−

. (155)

The key experimental difficulty is that one must measure accurately the separate rates

for B0, B
0 → π0π0. It has been noted that an upper bound on the average rate allows one to

put a useful upper bound on the deviation of Sπ+π− from sin 2α [86, 87, 88]. Parametrizing

the asymmetry by Sπ+π−/
√

1 − (Cπ+π−)2 = sin(2αeff), the bound reads

cos(2αeff − 2α) ≥ 1
√

1 − (Cπ+π−)2

[

1 − 2B00

B+0

+
(B+− − 2B+0 + 2B00)

2

4B+−B+0

]

, (156)

where Bij are the averages over CP-conjugate branching ratios; e.g., B00 = 1
2
[B(B0 →

π0π0) +B(B
0 → π0π0)]. CP asymmetries in B → ρπ and, in particular, in B → ρρ can also

be used to determine α [89, 90, 91, 92, 93]. At present, the constraints read [54]

|απ+π−

eff − α| < 38o, Rπ+π−

PT = 0.37 ± 0.17,

|αρ+ρ−eff − α| < 14o, Rρ+ρ−

PT = 0.07+0.14
−0.07. (157)

Using isospin analyses for all three systems (ππ, ρπ and ρρ), one obtains [54]

α(ππ, πρ, ρρ) =
[

101+16
−9

]o
, (158)
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to be compared with the result of the CKM fit,

α(CKM fit) = 96 ± 16o. (159)

We would like to emphasize the following points:

• The consistency of (158) with (159) means that the KM mechanism of CP viola-

tion has successfully passed a second precision test.

• The α measurement via the b → uūd transitions provides a significant constraint on

the unitarity triangle.

• The isospin analysis determines the relative phase between the B0 −B0
mixing ampli-

tude and the tree decay amplitude A3/2, independent of the electroweak model. The

tree decay amplitude is unliley to bne significantly affected by new physics. Any new

physics modification of the mixing amplitude is measured by Sψk. Thus, the combi-

nation of SψK and the isospin analysis of Sππ,ρπ,ρρ constrains α even in the presence of

new physics in B0 − B
0

mixing.

XI. b→ cūs, uc̄s TRANSITIONS

An interesting set of measurements is that of B → DK which proceed via the quark

transitions b̄ → c̄us̄ or b̄ → ūcs̄ (and their CP conjugates). Given the quark processes, it

is clear that there is no penguin contribution here. Thus, the quark transitions are purely

tree processes. The interference between the two quark transitions (if they lead to the same

final states – see below) is sensitive to arg[(V ∗
ubVus)/(V

∗
cbVcs)] ≈ γ.

There are three variants on this method: GLW [94, 95], ADS [96] and GGSZ [97]. The

simplest one to explain involves branching ratios of charged B decays, and thus B0 − B
0

mixing plays no role. Consider the decay B± → D0
1K

±, where D0
1,2 = 1√

2
(D0 ±D

0
) are the

CP eigenstates. Taking into account that

A(B+ → D0K+) × A(D0 → D0
1) ∝ (V ∗

ubVcs) × (V ∗
csVus),

A(B+ → D
0
K+) × A(D

0 → D0
1) ∝ (V ∗

cbVus) × (V ∗
usVcs), (160)

we can write the relevant decay amplitudes as follows:

√
2AD0

1
K+ = |AD0K+|ei(δ+γ) + |A

D
0
K+| = AD0K+ + A

D
0
K+ ,
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√
2AD0

1
K− = |AD0K−|ei(δ−γ) + |A

D
0
K−| = A

D
0
K− + AD0K−. (161)

Measuring the rates for the six relevant decay modes (D0
1K

+, D0K+, D
0
K+ and the CP

conjugate modes), one can construct an amplitude triangle for each of the two relations in

Eq. (161). We can choose a phase convention where A
D

0
K+ = AD0K−. Then, the relative

angle between AD0K+ and A
D

0
K− is 2γ.

The method of [97] gives, at present, the most significant constraints. It allows one to

determine the amplitude ratios, r(DK) = 0.12+0.03
−0.04 and r(D∗K) = 0.09+0.03

−0.04, and the weak

phase γ [54]:

γ(DK) = (63+15
−13)

o. (162)

This range is to be compared with the range of γ derived from the CKM fit (not including

the direct γ measurements):

γ(CKM fit) = (57+7
−14)

o. (163)

We would like to emphasize the following points:

• The consistency of (162) with (163) means that the KM mechanism of CP viola-

tion has successfully passed a third precision test.

• The γ measurement via the b → cūs, uc̄s transitions provides yet another constraint

on the unitarity triangle. The constraint will become more significant when the ex-

perimental precision improves.

• The determination of γ here relies on tree decay amplitudes. Thus, the analysis of

B → DK decays constrains γ even in the presence of new physics in loop processes.

XII. CP VIOLATION AS A PROBE OF NEW PHYSICS

We have argued that the Standard Model picture of CP violation is unique and highly

predictive. We have also stated that reasonable extensions of the Standard Model have a very

different picture of CP violation. Experimental results are now starting to decide between

the various possibilities. Our discussion of CP violation in the presence of new physics

is aimed to demonstrate that, indeed, models of new physics can significantly modify the

Standard Model predictions and that present and near future measurements have therefore

a strong impact on the theoretical understanding of CP violation.
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To understand how the Standard Model predictions could be modified by New Physics,

we focus on CP violation in the interference between decays with and without mixing.

As explained above, this type of CP violation may give, due to its theoretical cleanliness,

unambiguous evidence for New Physics most easily. We now demonstrate what type of

questions can be (or have already been) answered when these observables are measured.

I. Consider SψKS
, the CP asymmetry in B → ψKS. This measurement cleanly determines

the relative phase between the B0 −B
0

mixing amplitude and the b→ cc̄s decay amplitude

(sin 2β in the SM). The b→ cc̄s decay has Standard Model tree contributions and therefore

is very unlikely to be significantly affected by new physics. On the other hand, the mixing

amplitude can be easily modified by new physics. We parametrize such a modification as

follows:

r2
d e

2iθd =
M12

MSM
12

. (164)

Then the following observables provide constraints on r2
d and 2θd:

SψKS
= sin(2β + 2θd),

∆mB = r2
d(∆mB)SM,

ASL = −Re
(

Γ12

M12

)SM sin 2θd
r2
d

+ Im
(

Γ12

M12

)SM cos 2θd
r2
d

. (165)

Examining whether SψKS
, ∆mB and ASL fit the SM prediction, that is, whether θd 6= 0

and/or r2
d 6= 1, we can answer the following question (see e.g. [98]):

(i) Is there new physics in B0 − B
0

mixing?

Thanks to the fact that quite a few observables that are related to SM tree level processes

have already been measured, we are able to refer to this question in a quantitative way. The

tree level processes are insensitive to new physics and can be used to constrain ρ and η even

in the presence of new physics contributions to loop processes, such as ∆mB . Among these

observables we have |Vcb| and |Vub| from semileptonic B decays, the phase γ from B → DK

decays, and the phase α from B → ρρ decays (in combination with SψK). One can fit these

observables, and the ones in Eq. (165) to the four parameters ρ, η, r2
d and 2θd. The resulting

constraints are shown in Fig. 5.

A long list of models that require a significant modification of the B0 − B
0

mixing am-

plitude are excluded. We can further conclude from Fig. 5 that a new physics contribution

to the B0 − B
0

mixing amplitude at a level higher than about 30% is now disfavored. Yet,
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FIG. 5: Constraints in the (a) ρ− η plane (b) r2d − 2θd plane, assuming that NP contributions to

tree level processes are negligible [54].
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it is still possible that ρ and η are well outside their SM range and that NP gives 2θd very

different from zero and/or r2
d very different from one. In this case, the SM and the NP ‘con-

spire’ to mimic the SM values of the observables (165). This is what we meant concretely in

our statement that the KM dominance of the observed CP violation is now very likely but

not guaranteed.

II. Consider SφKS
, the CP asymmetry in B → φKS. This measurement is sensitive to

the relative phase between the B − B̄ mixing amplitude and the b → ss̄s decay amplitude

(sin 2β in the SM). The b→ ss̄s decay has only Standard Model penguin contributions and

therefore is sensitive to new physics. We parametrize the size and phase of a NP contribution

as follows (for simplicity, we neglect here the auf terms of Eq. (134)):

Af = Acf
(

1 + bf e
iφbs

)

. (166)

Here bf is complex only if it carries a strong phase. The effects of this new physics contri-

bution are simple to understand in two limits:

1. The new physics contribution is dominant, |bf | ≫ 1. The shift in all modes where this

condition is valid is universal and depends only on φbs:

− ηfSf ≃ sin(2β + 2θd) cos 2φbs + cos(2β + 2θd) sin 2φbs,
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Cf ≃ 0. (167)

2. The new physics contribution is small. Explicitly, |bf | ≪ 1. The shift is mode depen-

dent and depends on both bf and sin φbs:

− ηfSf ≃ sin(2β + 2θd) + 2 cos(2β + 2θd)Re(bf ) sinφbs,

Cf ≃ −2Im(bcf ) sinφbs. (168)

Note that the effect of the NP is similar to that of the SM auf terms (with bf ↔ auf and

φbs ↔ γ), so that the latter have to be known in order to probe the bf terms. Once that

is done, the value of SψK determines 2β + 2θd and one can examine whether φbs 6= 0 and

answer the following questions:

(ii) Is there new physics in b→ s transitions?

So far, the experimental data – see Table II – do not provide any evidence for φbs 6= 0.

Yet, the experimental accuracy is still not sufficient to make qualitative statements such as

we made for b → d transitions (B0 − B
0

mixing). To see this, we compare the constraints

in the ρ − η plane that arise from tree plus b → d loops (∆mB, SψKS
, Sρρ, etc.) to those

from tree plus b→ s loops (SφKS
, Sη′KS

, ∆ms). This is done in Fig. 6.

FIG. 6: Constraints in the ρ − η plane from tree processes and (a) b → d or (b) b → s loop

processes.
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III. Together with a future measurement of Bs − Bs mixing, we may also try to answer

the following question:

(iii) Is there new physics in ∆B = 1 processes? in ∆B = 2? in both?

IV. Consider aπνν̄ ≡ ΓKL→π0νν̄/ΓK+→π+νν̄ , see Eq. (111). This measurement will cleanly

determine the relative phase between the K0 − K
0

mixing amplitude and the s → dνν̄

decay amplitude (of order sin2 β in the SM). The experimentally measured small value of

εK requires that the phase of the K0 −K
0

mixing amplitude is not modified from the SM

prediction. (More precisely, it requires that the phase of the mixing amplitude is very close

to twice the phase of the s → dūu decay amplitude [99].) On the other hand, the decay,

which in the SM is a loop process with small mixing angles, can be easily modified by new

physics. Examining whether the SM correlation between aπνν̄ and SψKS
is fulfilled, we can

answer the following question:

(iv) Is there new physics related solely to the third generation? to all generations?

To understand the present situation, we present in Fig. 7 the constraints in the ρ−η plane

from tree plus loop processes that do not involve external third generation quarks, namely

s→ d transitions only (ǫ and B(K+ → π+νν̄)). This can be compared with the constraints

from tree plus loop processes that do involve the third generation, namely b→ d and b→ s

transitions. Again, one can see that there is a lot to be learnt from future measurements.

(For a recent, comprehensive analysis of this question, see ref. [100].)

V. Consider φD, defined in Eq. (117), which is the relative phase between the D0 −D
0

mixing amplitude and the c → ds̄u and c → sd̄u decay amplitudes. Within the Standard

Model, the two decay channels are tree level. It is unlikely that they are affected by new

physics. On the other hand, the mixing amplitude can be easily modified by new physics.

Examining whether φD 6= 0, we can answer the following question:

(v) Is there new physics in the down sector? in the up sector? in both?

VI. Consider dN , the electric dipole moment of the neutron. We did not discuss this

quantity so far because, unlike CP violation in meson decays, flavor changing couplings are

not necessary for dN . In other words, the CP violation that induces dN is flavor diagonal.

It does in general get contributions from flavor changing physics, but it could be induced by

sectors that are flavor blind. Within the SM (and ignoring θQCD), the contribution from δKM

arises at the three loop level and is at least six orders of magnitude below the experimental

bound (13). If the bound is further improved (or a signal observed), we can answer the
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FIG. 7: Constraints in the ρ− η plane from tree processes and (a) s → d or (b) b → d and b → s

loop processes.
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following question:

(vi) Are there new sources of CP violation that are flavor changing? flavor diagonal?

both?

It is no wonder then that with such rich information, flavor and CP violation provide

an excellent probe of new physics. We next demonstrate this situation more concretely by

discussing CP violation in supersymmetry.

XIII. SUPERSYMMETRIC CP VIOLATION

Supersymmetry solves the fine-tuning problem of the Standard Model and has many

other virtues. But at the same time, it leads to new problems: baryon number violation,

lepton number violation, large flavor changing neutral current processes and large CP vi-

olation. The first two problems can be solved by imposing R-parity on supersymmetric

models. There is no such simple, symmetry-related solution to the problems of flavor and

CP violation. Instead, suppression of the relevant couplings can be achieved by demanding

very constrained structures of the soft supersymmetry breaking terms. There are two im-

portant questions here: First, can theories of dynamical supersymmetry breaking naturally

induce such structures? Second, can measurements of flavor changing and/or CP violating
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processes shed light on the structure of the soft supersymmetry breaking terms? Since the

answer to both questions is in the affirmative, we conclude that flavor changing neutral cur-

rent processes and, in particular, CP violating observables will provide clues to the crucial

question of how supersymmetry breaks.

A. CP violating parameters

A generic supersymmetric extension of the Standard Model contains a host of new flavor

and CP violating parameters. (For a review of CP violation in supersymmetry see [101, 102].)

It is an amusing exercise to count the number of parameters [103]. The supersymmetric

part of the Lagrangian depends, in addition to the three gauge couplings of GSM, on the

parameters of the superpotential W :

W =
∑

i,j

(

Y u
ijHuQLiULj + Y d

ijHdQLiDLj + Y ℓ
ijHdLLiELj

)

+ µHuHd. (169)

In addition, we have to add soft supersymmetry breaking terms:

Lsoft = −
(

AuijHuQ̃LiŨLj + AdijHdQ̃LiD̃Lj + AℓijHdL̃LiẼLj +BHuHd + h.c.
)

−
∑

all scalars

(m2
S)ijAiĀj −

1

2

3
∑

(a)=1

(

m̃(a)(λλ)(a) + h.c.
)

. (170)

where S = QL, DL, UL, LL, EL. The three Yukawa matrices Y f depend on 27 real and 27

imaginary parameters. Similarly, the three Af -matrices depend on 27 real and 27 imaginary

parameters. The five m2
S hermitian 3 × 3 mass-squared matrices for sfermions have 30 real

parameters and 15 phases. The gauge and Higgs sectors depend on

θQCD, m̃(1), m̃(2), m̃(3), g1, g2, g3, µ, B,m
2
hu
, m2

hd
, (171)

that is 11 real and 5 imaginary parameters. Summing over all sectors, we get 95 real and

74 imaginary parameters. The various couplings (other than the gauge couplings) can be

thought of as spurions that break a global symmetry,

U(3)5 × U(1)PQ × U(1)R → U(1)B × U(1)L. (172)

The U(1)PQ × U(1)R charge assignments are:

Hu Hd QU QD LE

U(1)PQ 1 1 −1 −1 −1

U(1)R 1 1 1 1 1

. (173)
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Consequently, we can remove 15 real and 30 imaginary parameters, which leaves

124 =

{

80 real

44 imaginary
physical parameters. (174)

In particular, there are 43 new CP violating phases! In addition to the single Kobayashi-

Maskawa of the SM, we can put 3 phases in M1,M2, µ (we used the U(1)PQ and U(1)R

to remove the phases from µB∗ and M3, respectively) and the other 40 phases appear in

the mixing matrices of the fermion-sfermion-gaugino couplings. (Of the 80 real parameters,

there are 11 absolute values of the parameters in (171), 9 fermion masses, 21 sfermion

masses, 3 CKM angles and 36 SCKM angles.) Supersymmetry provides a nice example to

our statement that reasonable extensions of the Standard Model may have more than one

source of CP violation.

The requirement of consistency with experimental data provides strong constraints on

many of these parameters. For this reason, the physics of flavor and CP violation has

had a profound impact on supersymmetric model building. A discussion of CP violation

in this context can hardly avoid addressing the flavor problem itself. Indeed, many of

the supersymmetric models that we analyze below were originally aimed at solving flavor

problems.

As concerns CP violation, one can distinguish two classes of experimental constraints.

First, bounds on nuclear and atomic electric dipole moments determine what is usually

called the supersymmetric CP problem. Second, the physics of neutral mesons and, most

importantly, the small experimental value of εK pose the supersymmetric εK problem. In

the next two subsections we describe the two problems.

B. The Supersymmetric CP problem

One aspect of supersymmetric CP violation involves effects that are flavor preserving.

Then, for simplicity, we describe this aspect in a supersymmetric model without additional

flavor mixings, i.e. the minimal supersymmetric standard model (MSSM) with universal

sfermion masses and with the trilinear SUSY-breaking scalar couplings proportional to the

corresponding Yukawa couplings. (The generalization to the case of non-universal soft terms

is straightforward.) In such a constrained framework, there are four new phases beyond the

two phases of the SM (δKM and θQCD). One arises in the bilinear µ-term of the superpotential
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(169), while the other three arise in the soft supersymmetry breaking parameters of (170):

m̃ (the gaugino mass), A (the trilinear scalar coupling) and B (the bilinear scalar coupling).

Only two combinations of the four phases are physical [104, 105]:

φA = arg(A∗m̃), φB = arg(m̃µB∗). (175)

In the more general case of non-universal soft terms there is one independent phase φAi

for each quark and lepton flavor. Moreover, complex off-diagonal entries in the sfermion

mass-squared matrices represent additional sources of CP violation.

The most significant effect of φA and φB is their contribution to electric dipole moments

(EDMs). For example, the contribution from one-loop gluino diagrams to the down quark

EDM is given by [106, 107]:

dd = md
eα3

18πm̃3
(|A| sinφA + tanβ|µ| sinφB) , (176)

where we have taken m2
Q ∼ m2

D ∼ m2
g̃ ∼ m̃2, for left- and right-handed squark and gluino

masses. We define, as usual, tan β = 〈Hu〉/〈Hd〉. Similar one-loop diagrams give rise to

chromoelectric dipole moments. The electric and chromoelectric dipole moments of the

light quarks (u, d, s) are the main source of dN (the EDM of the neutron), giving [108]

dN ∼ 2
(

100GeV

m̃

)2

sinφA,B × 10−23 e cm, (177)

where, as above, m̃ represents the overall SUSY scale. In a generic supersymmetric frame-

work, we expect m̃ = O(mZ) and sinφA,B = O(1). Then the constraint (13) is generically

violated by about two orders of magnitude. This is the Supersymmetric CP Problem.

Eq. (177) shows two possible ways to solve the supersymmetric CP problem:

(i) Heavy squarks: m̃ ∼> 1 TeV ;

(ii) Approximate CP: sinφA,B ≪ 1.

C. The Supersymmetric εK problem

The supersymmetric contribution to the εK parameter is dominated by diagrams involving

Q and d̄ squarks in the same loop. For m̃ = mg̃ ≃ mQ ≃ mD (our results depend only weakly

on this assumption) and focusing on the contribution from the first two squark families, one

gets (see, for example, [109]):

εK =
5 α2

3

162
√

2

f 2
KmK

m̃2∆mK

[

(

mK

ms +md

)2

+
3

25

]

Im((δd12)LL(δ
d
12)RR). (178)
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Here

(δd12)LL =





m2
Q̃2

−m2
Q̃1

m2
Q̃



 KdL
12 ,

(δd12)RR =

(

m2
D̃2

−m2
D̃1

m2
D̃

)

KdR
12 , (179)

where KdL
12 (KdR

12 ) are the mixing angles in the gluino couplings to left-handed (right-handed)

down quarks and their scalar partners. Note that CP would be violated even if there were

two families only [110]. Using the experimental value of εK , we get

(∆mKεK)SUSY

(∆mKεK)EXP
∼ 107

(

300 GeV

m̃

)2




m2
Q̃2

−m2
Q̃1

m2
Q̃





(

m2
D̃2

−m2
D̃1

m2
D̃

)

|KdL
12 K

dR
12 | sinφ, (180)

where φ is the CP violating phase. In a generic supersymmetric framework, we expect

m̃ = O(mZ), δm2
Q,D/m

2
Q,D = O(1), KQ,D

ij = O(1) and sin φ = O(1). Then the constraint

(180) is generically violated by about seven orders of magnitude.

The ∆mK constraint on Re((δd12)LL(δd12)RR) is about two orders of magnitude weaker.

One can distinguish then three interesting regions for 〈δd12〉 =
√

(δd12)LL(δ
d
12)RR :

〈δd12〉



















≫ 0.003 excluded;

∈ [0.0002, 0.003] viable with small phases;

≪ 0.0002 viable with O(1) phases.

(181)

The first bound comes from the ∆mK constraint (assuming that the relevant phase is not

particularly close to π/2). The bounds here apply to squark masses of order 500 GeV and

scale like m̃. There is also dependence on mg̃/m̃, which is here taken to be one.

Eq. (180) also shows what are the possible ways to solve the supersymmetric εK problem:

(i) Heavy squarks: m̃≫ 300 GeV ;

(ii) Universality: (∆m2
Q,D)21 ≪ m2

Q,D;

(iii) Alignment: |Kd
12| ≪ 1;

(iv) Approximate CP: sinφ≪ 1.

D. More on supersymmetric flavor and CP violation

The flavor and CP constraints on supersymmetric models apply to almost all flavor

changing couplings. The size of supersymmetric flavor violation depends on the overall
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TABLE V: Theoretical predictions for supersymmetric flavor changing couplings in viable models

of alignment, and the experimental constraints.

(δqMN )ij Prediction Upper bound (δdMN )ij Prediction Upper bound

(δdLL)12 λ5 − λ3 λ3 (δdLR)12 λ7(mb/m̃) λ7(Im)

(δdRR)12 λ7 − λ3 λ10/(δdLL)12 (δdRL)12 λ9(mb/m̃) λ7(Im)

(δdLL)13 λ3 λ (δdLR)13 λ3(mb/m̃) λ2

(δdRR)13 λ7 − λ3 λ4/(δdLL)13 (δdRL)13 λ7(mb/m̃) λ2

(δdLL)23 λ2 λ2(Re) − λ(Im) (δdLR)23 λ2(mb/m̃) λ4(Re) − λ3(Im)

(δdRR)23 λ4 − λ2 1 (δdRL)23 λ4(mb/m̃) λ3

(δuLL)12 λ λ

(δuRR)12 λ4 − λ2 λ4/(δuLL)12

scale of the soft supersymmetry breaking terms, on mass degeneracies between sfermion

generations, and on the mixing angles in gaugino couplings. One can choose a representative

scale (say, m̃ ∼ 300 GeV) and then conveniently present the constraints in terns of the

(δqij)MN parameters [see Eq. (179)]. In a given supersymmetric flavor model, one can find

predictions for the (δqij)MN and test the model.

A summary of upper bounds on the supersymmetric flavor changing couplings is given

in Table V. The bounds on the Im(δd12)LR,RL parameters are taken from [111], on δd13 from

[112] and on δd23 from [113, 114]. The bounds are expressed in powers of the Wolfenstein

parameter λ, which makes it easy to compare with model predictions. As an example, we

give the range of these parameters that is expected in a large class of viable models of

alignment [115, 116, 117].

Until some time ago, the δd23 parameters have been only weakly constrained (the improv-

ing accuracy of the measurements of B(B → Xℓ+ℓ−) have strengthened the constraints

considerably). Furthermore, measurements of various CP asymmetries in penguin domi-

nated modes (particularly SφK and Sη′K) gave central values that were far off the expected

value ∼ SψK (at present the strongest discrepancy is down to the 2σ level). One may

still ask whether effects of order 0.1, which is the order of the expected experimental ac-

curacy and probably above the theoretical error on SφK and Sη′K , are still possible within
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supersymmetric flavor models and, in particular, alignment models.

To answer this question, we use the results of ref. [113]. From their Fig. 3, we make the

following estimates:

∆SφK
∆Im(δdLL)23

∼ ∆SφK
∆Im(δdRR)23

∼ 0.3,

∆SφK
∆Im(δdLR)23

∼ ∆SφK
∆Im(δdRL)23

∼ 100. (182)

Thus, for SφK to be shifted by O(0.1), we need at least one of the following four options:

Im(δdLL)23 ∼ λ, Im(δdRR)23 ∼ λ,

Im(δdLR)23 ∼ λ4, Im(δdRL)23 ∼ λ4. (183)

Examining Table V, we learn that in alignment models Im(δdLR)23 ∼ 7× 10−4(350 GeV/m̃)

is the closest to satisfying the condition in Eq. (183), though the unknown numbers of order

one should be on the large side to give an observable effect.

E. Discussion

We define two scales that play an important role in supersymmetry: ΛS, where the

soft supersymmetry breaking terms are generated, and ΛF , where flavor dynamics takes

place. When ΛF ≫ ΛS, it is possible that there are no genuinely new sources of flavor

and CP violation. This class of models, where the Yukawa couplings (or, in the mass

basis, the CKM matrix) are the only source of flavor and CP breaking, are often called

‘minimal flavor violation.’ The most important features of the supersymmetry breaking

terms are universality of the scalar masses-squared and proportionality of the A-terms.

When ΛF ∼< ΛS, we do not expect, in general, that flavor and CP violation are limited to the

Yukawa matrices. One way to suppress CP violation would be to assume that, similarly to

the Standard Model, CP violating phases are large, but their effects are screened, possibly by

the same physics that explains the various flavor puzzles, such as models with Abelian or non-

Abelian horizontal symmetries. It is also possible that CP violating effects are suppressed

because squarks are heavy. Another option, which is now excluded, was to assume that CP

is an approximate symmetry of the full theory (namely, CP violating phases are all small).

We would like to emphasize the following points:
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(i) For supersymmetry to be established, a direct observation of supersymmetric particles

is necessary. Once it is discovered, then measurements of CP violating observables will be a

very sensitive probe of its flavor structure and, consequently, of the mechanism of dynamical

supersymmetry breaking.

(ii) It seems possible to distinguish between models of exact universality and models with

genuine supersymmetric flavor and CP violation. The former tend to give dN ∼< 10−31 e cm

while the latter usually predict dN ∼> 10−28 e cm.

(iii) The proximity of SψKS
to the SM predictions is obviously consistent with models of

exact universality. It disfavors models of heavy squarks such as that of ref. [118]. Models of

flavor symmetries allow deviations of order 20% (or smaller) from the SM predictions. To

be convincingly signalled, an improvement in the theoretical calculations that lead to the

SM predictions for SψKS
will be required [119].

(iv) Alternatively, the fact thatK → πνν̄ decays are not affected by most supersymmetric

flavor models [120, 121, 122] is an advantage here. The Standard Model correlation between

aπνν̄ and SψKS
is a much cleaner test than a comparison of SψKS

to the CKM constraints.

(v) The neutral D system provides a stringent test of alignment. Observation of CP

violation in the D → Kπ decays will make a convincing case for new physics.

(vi) CP violation in b → s transition remains an interesting probe of supersymmetry.

Deviations of order 0.1 from the SM predictions are possible if at least one of the conditions

in Eq. (183) is satisfied.

XIV. LESSONS FROM THE B FACTORIES

Let us summarize the main lessons that have been learned from the measurements of CP

violation in B decays:

• The KM phase is different from zero, that is, the SM violates CP.

• The KM mechanism is the dominant source of CP violation in meson decays.

• The size and the phase of new physics contributions to b → d transitions (B0 − B
0

mixing) is severely constrained (≤ O(0.2)).

• Complete alternatives to the KM mechanism (the superweak mechanism and approx-

imate CP) are excluded.
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• Corrections to the KM mechanism are possible, particularly for b→ s transitions, but

there is no evidence at present for such corrections.

• There is still a lot to be learned from future measurements.
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