

SMR/1848-T16

Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors

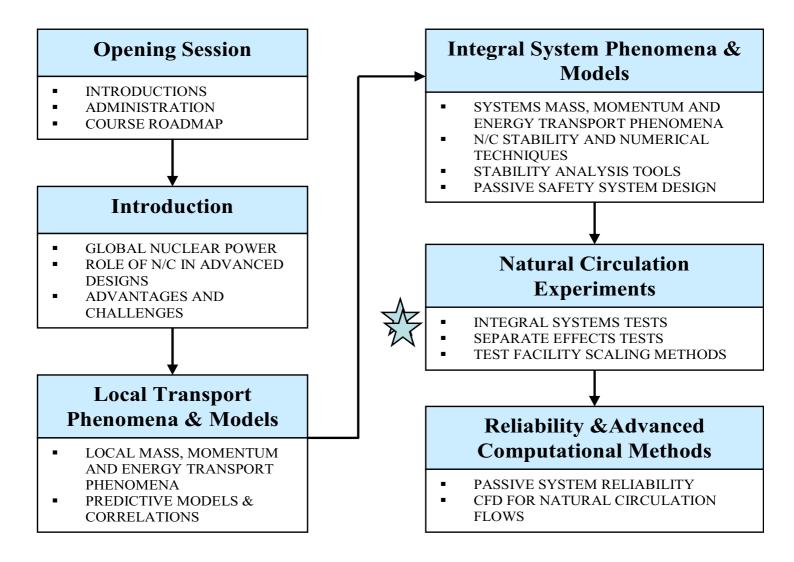
25 - 29 June 2007

T16 - The CSNI Separate Effects Test and Integral Test Facility Matrices for Validation of Best-Estimate Thermal Hydraulic Computer Codes

> N. Aksan Paul Scherrer Institut (PSI), Villingen, Switzerland

THE CSNI SEPARATE EFFECTS TEST (SET) AND INTEGRAL TEST FACILITY (ITF) MATRICES FOR VALIDATION OF BEST-ESTIMATE THERMAL-HYDRAULIC COMPUTER CODES

Presented by


Nusret Aksan

Paul Scherrer Institut (PSI), 5232 Villigen PSI, Switzerland Tel. +41-56-310-2710, Fax. +41-56-310-4481, E-mail: <u>nusret.aksan@psi.ch</u>

IAEA Course on Natural Circulation in Water-Cooled Nuclear Power Plants, International Centre for Theoretical Physics (ICTP), Trieste, Italy, 25th to 29th June 2007, Paper ID. T16

COURSE ROADMAP

ACKNOWLEDGEMENTS

The author is grateful to:

- F. D'Auria (University of Pisa, Italy),
- H. Glaeser (GRS Garching, Germany),
- C. Richards (AEA Technology, Winfrith, UK),
- J. Lillington (AEA Technology, UK),
- R. Pochard (IPSN: DPEI-CEA/FAR, Fontenay-Aux-Roses, France)
- A. Sjoberg (Studsvik Eco & Safety AB, Nykoping, Sweden)

who are also the contributors and authors of the OECD separate effects tests (SET) Validation Matrix

AND

- A. Annunziato (JRC, Ispra, Italy),
- J. N. Lillington (AEA Technology, Winfrith, UK),
- P. Marsili (ENEA, Rome, Italy),
- A. Renault (CEA, Cadarache, France),
- A. Sjöberg (Studsvik Eco & Safety AB, Nykoping, Sweden),
- H. Glaeser (GRS Garching, Germany)

who are also the contributors and authors of the OECD Integral tests facilities (ITF) Validation Matrix

OVERVIEW

- Introduction
- Background and Objectives
- Definitions
- Separate effects Tests (SET) Validation Matrix
 - Methodology Developed
 - Forming a SET Cross-Reference Matrix
 - Establishing the SET Matrix
- Integral Test Facility (ITF) Validation Matrix
 - Integral Test Cross-Reference Matrices
 - Selection of Individual Tests
- Cross-Reference Matrices for WWER
- Use of the SET and ITF Validation Matrices
 in BE Thermal- Hydraulic Codes
- Conclusions and recommendations
- Experience and lessons learned
- Some of the references

INTRODUCTION

- Thirty years of computer code development
 - Homogeneous equilibrium model
 - Simulation of phase separation by gravity
 - Thermal and mechanical non-equilibrium, effects of non-condensables
- Thirty years of experiments
 - Separate effects tests for individual phenomena
 - Integral tests for large break LOCA, small break LOCA, transients, beyond design basis accidents and accident management
 - PWRs, BWRs, WWERs
- Enormous wealth of experimental data base is available for code assessment

BACKGROUND (I)

• Last 25-30 years wealth of experimental data to support analytical work for simulating the behaviour of LWRs during thermal hydraulic transients and loss-of-coolant accidents

• In March 1987, OECD/NEA published "CSNI Code Validation Matrix of Thermohydraulic Codes for LWR LOCA and Transients" prepared by PWG2- Task Group on Thermal-hydraulic System Behaviour (TGTHSB)

• Decision was taken to bias the Validation Matrix towards integral tests. This was based on the assumption that sufficient comparison with SET data would be performed by code development that only very limited further assessment against SET data would be necessary

• This last expectation proved unrealistic. Continued comparison of calculations with separate effects test data is necessary to underwrite particular applications of codes, especially where a quantitative assessment of prediction accuracy is required, as well as for code model improvement

• Decision to develop a distinct SET Matrix rather than extend the original CSNI-Code Validation Matrix (CCVM)

 Consequently, establish a separate ITF Matrix from the CCVM and update the contents

• TGTHSB formed "Writing Groups" to carry out the work for the SET Matrix in 1988 and for ITF Matrix in 1994

BACKGROUND (II)

- Decision to develop a distinct SET Matrix rather than extend the original CSNI-Code Validation Matrix (CCVM)
- The CSNI-SET Matrix would complement the CCVM
- TGTHSB formed a "Writing Group" to carry out the work of producing the SET Matrix in 1988
- Present two volume report is the outcome of the work during the period 1988-1993
- The development of SET Matrix was found to require an extension of the methodology employed for the CCVM both in the scope and in the categorization and description of facilities
- Development of the methodology used for the SET Matrix were carried out during the period 1991 to mid-1993

DEFINITIONS

- Verification of a code or a model
 - To show that the code behaves as intended, i.e. it is a proper mathematical representation of the conceptual model, and the equations are correctly encoded and solved
- Validation
 - A process carried out by comparison of model prediction with experimental measurements that are independent of those used to develop the model
 - A model can not be considered validated until sufficient testing has been performed to ensure an acceptable level of predictive accuracy over the range of conditions for which the model may be applied
 - The acceptable level of accuracy is based on judgement and will vary depending on the specific problem or question to be addressed by the model

SEPARATE EFFECTS TEST VALIDATION (SET) MATRIX

OBJECTIVES (I)

• Development of individual code models often requires some iteration and a model, however well conceived, may need refinement as the range of applications widened.

• A key issue concerning the application of BE codes to LOCA and thermal-hydraulic transient calculations is quantitative code assessment. Quantitative code assessment is intended to allow predictions of nuclear power plant behaviour to be made with a well-defined uncertainty. Most schemes for achieving this quantification of uncertainty rely on assigning uncertainties to the modelling by the code of individual phenomena. This interest has placed a new emphasis on separate effects tests over and above that originally envisaged for model development. The more highly controlled environment of the SET is likely to lead to a more systematic evaluation of the accuracy of a model across wide range of conditions.

OBJECTIVES (II)

• A further incentive to conduct separate effects tests in addition to those carried out integral test facilities is the difficulty encountered in scaling predictions of phenomena from integral test facilities to plant applications. In general, it is desirable to have a considerable overlap of data from different facilities; successfully predicting data from different facilities provides some confirmation that a phenomenon is well understood

THE METHODOLOGY DEVELOPED

- **1.** Characterisation of phenomena
- 2. Identification of phenomena relevant to two-phase flow
- Short description of each phenomenon
- Relevance to nuclear reactor safety
- Measurement ability, instrumentation and data base
- Present state of knowledge-predictive capability
- 3. Catalogue of information on facilities and tests
- 4. Forming a SET cross-reference matrix

5. Identification of the relevant parameter ranges and selection of relevant facilities related to each phenomenon

6. Establishing the Separate Effects Tests (SET) matrix

ADVANTAGES OF THE METHODOLOGY DEVELOPED

 Helps to collect and present the data and information collected in a comprehensive and systematic manner

 It is general and, in principal, applicable to the other type of validation matrices (e.g., on severe accidents, containment, etc.)

IDENTIFICATION OF PHENOMENA

- A total of 67 phenomena are identified and resulting phenomena list is given in a table
- Earlier works, e.g. CSNI Code Validation Matrix (CCVM), CSNI-State-of-the art report (SOAR) on thermal-hydraulics of emergency core cooling in light water reactors have been used as basis of the list of phenomena
- A new group named "basic phenomena" has been added
- Several different types of phenomena, such as interphase friction which is very basic attribute of a twophase flow, to those such as loop seal clearing which is essentially a system phenomena,
- A short description of each phenomena is provided, as included in the next item

Table 1. List of Phenomena

-	list of Phenomena					
0	BASIC PHENOMENA	1 2 3 4 5 6 7 8 9	Evaporation due to Depressurisation Evaporation due to Heat Input Condensation due to Pressurisation Condensation due to Heat Removal Interfacial Friction in Vertical Flow Interfacial Friction in Horizontal Flow Wall to Fluid Friction Pressure Drops at Geometric Discontinuities Pressure Wave Propagation			
1	CRITICAL FLOW	9 1 2 3	Breaks Valves Pipes			
2	PHASE SEPARATION/VERTICAL FLOW WITH AND WITHOUT MIXTURE LEVEL	1 2 3	Pipes/Plena Core Downcomer			
3	STRATIFICATION IN HORIZONTAL FLOW	1	Pipes			
4	PHASE SEPARATION AT BRANCHES	1	Branches			
5	ENTRAINMENT/DEENTRAINMENT	1 2 3 4 5 6	Core Upper Plenum Downcomer Steam Generator Tube Steam Generator Mixing Chamber (PWR) Hot Leg with ECCI (PWR)			
6	LIQUID-VAPOUR MIXING WITH CONDENSATION	1 2 3 4 5 6	Core Downcomer Upper Plenum Lower Plenum Steam Generator Mixing Chamber (PWR) ECCI in Hot and Cold Leg (PWR)			
7	CONDENSATION IN STRATIFIED CONDITIONS	1 2 3 4	Steam Generator Primary Side (PWR) Steam Generator Secondary Side (PWR)			
8	SPRAY EFFECTS	1 2 3	Pressuriser (PWR)			
9	COUNTERCURRENT FLOW / COUNTERCURRENT FLOW LIMITATION	1 2 3 4 5 6	Upper Tie Plate Channel Inlet Orifices (BWR) Hot and Cold Leg Steam Generator Tube (PWR) Downcomer Surgeline (PWR)			
10	GLOBAL MULTIDIMENSIONAL FLUID TEMPERATURE, VOID AND FLOW DISTRIBUTION	1 2 3 4	Upper Plenum Core Downcomer Steam Generator Secondary Side			
11	HEAT TRANSFER: NATURAL OR FORCED CONVECTION SUBCOOLED/NUCLEATE BOILING DNB/DRYOUT POST CRITICAL HEAT FLUX RADIATION CONDENSATION		 Core, Steam Generator, Structures Core, Steam Generator, Structures Core, Steam Generator, Structures Core, Steam Generator, Structures Core Steam Generator, Structures 			
12	QUENCH FRONT PROPAGATION/REWET	1 2	Fuel Rods Channel Walls and Water Rods (BWR)			
13 14 15 16 17 18 19 20 21 22 23 24 25	LOWER PLENUM FLASHING GUIDE TUBE FLASHING (BWR) ONE AND TWO PHASE IMPELLER-PUMP BEHAVIOUR ONE AND TWO PHASE JET-PUMP BEHAVIOUR (BWR) SEPARATOR BEHAVIOUR STEAM DRYER BEHAVIOUR ACCUMULATOR BEHAVIOUR LOOP SEAL FILLING AND CLEARANCE (PWR) ECC BYPASS/DOWNCOMER PENETRATION PARALLEL CHANNEL INSTABILITIES (BWR) BORON MIXING AND TRANSPORT NONCONDENSABLE GAS EFFECT (PWR) LOWER PLENUM ENTRAINMENT					

CHARACTERIZATION OF PHENOMENA

Short summaries relevant to each phenomenon have been provided under the headings:

Description of the phenomenon:

A Brief description of each phenomenon used in the SET Matrix is given

Relevance to nuclear reactor safety:

A brief discussion of the impact of the phenomenon on nuclear reactor safety is presented

• Measurement ability, instrumentation and data base:

A summary of the data requirements and the degree to which they are satisfied by the available data base are presented

Present state of knowledge-predictive capability:

An assessment of the present state of knowledge and predictive capabilities are included

CATALOGUE OF INFORMATION SHEETS

- A catalogue of the SET facilities used within the OECD member Nations was compiled, as a preliminary to establishing a list of tests for code assessment and validation
- Various laboratories or organizations owing and/or operating test facilities or programs were invited to supply information. Additionally members of the Writing Group provided information on other facilities described in the open literature and known to them
- As a result, a list of 187 SET facilities has been compiled
- On 113 of those facilities, it was possible to produce information sheets
- The aim of the information sheets is to provide enough information to decide on the most appropriate test facility/programs to select for code validation/assessment with respect to particular phenomena
- This information collected primarily to enable the selection of appropriate sets of test data for inclusion in the SET Cross-Reference Matrix

INFORMATION SHEETS

For each facility, a standard brief information sheet has been prepared with following items:

- Objectives of the facility
- Geometry
- Experimental conditions and parameter ranges
- Measurements
- Information concerning documentation
- Use of data
- Special features of experiments
- Phenomena investigated

Contained with full documentation in Volume II of the SET Validation Matrix report

EXAMPLE FOR INFORMATION SHEETS

_		SET FAC	LITY		No. 9.1, 9.2				
	Subject		Desc	ription					
•	Test Facility	NEPTUN / PSI-Villigen-Switzerland							
	Operating Period	1981 - 1992 (presently different cor	nfiguration and test section)						
	- Availability	Available							
•	Objectives		emergency core cooling heat transfer tests in PWR core geometry boil-olf and reflooding during LOCA						
•	Test Period	1981 - 1986							
		 chopped cosine axial power octagonal inconel 600 bundle pressure vessel to house shr steam-water separator, with win 	dows for flow visualisation, an	ngth) % sure vessel annulus filled with insula					
•	Experimental Conditions and Parameter Range	 reflood tests al constant test see initially test section under steam supply boil-off experiments: NEPTUN I 	clion pressure, controlled by b atmosphere with pred/ined m	ack pressure regulator naximum heater rod surface tempera	ture achieved from power				
		 pressure: subcooling: bundle power; 	1,5 bar 0,12, 39 K 24.6, 42.1, 75.1 kW						
		 reflooding experiments; 	NEPTUN I + II						
		 pressure: flooding water; single rod power; 	1.0, 4.1 bar - velocity: - subcooling: 2.45, 4.19 kW	1.5, 2.5, 4.5, 10, 15 cm/s 11, 78° C	8				
		 initial cladding temperature 	757, 867 °C						

EXAMPLE (Cont.)

L		SET FAC		No. 9.1, 9.2 /2					
	Subject	Description							
•	Measurement Instrumentation	temperature:							
		- rod cladding:	18 rods = 8 levels 15 rods = 4 levels		Cs, stainless steel or Inconel				
		guide tubes: steam, fluid;	4 tubes = 8 levels 8 levels within bundle	sheath, MgO insulation morneters (PE-100	ator, some resistance ther-))				
		pressure, diff. pressure:	8 levels of bundle carry-over tank	Rosemount capaci sensing lines	ty type transducer, pressure				
		flow rate:	 turbine flow meter rolameter for back-up measurements 						
		measurement range: measurement uncertainty:	? ?						
٠	Data Acquisition	HP-2100 computer and associate 300 channels of analog input data	ed equipment. a.						
•	Data Documentation	 system description, experimente experimental data, assessmente data sets available on magnete 	ntal procedure: EIR-Report Nr. 386, 1980 nt results: EIR-Report Nr. 629 + 624, 1987 ic tape and as plots						
•	Data Availability	?	mones and the operation of a part of the state of the sta						
•	Use of Data	independent assessment: REI	AP5/MOD2, TRAC-BD1/MOD1 within ICAP/NF	RC					
•	Special Features	 entrainment / deentrainment in 	paration, vertical flow with/without mixture level a core bundle geometry F, quench front propagation, rewet						
•	Correctness of Phenomena	 phenomena have been checke test results suitable for code value 							
•	Comments	 relevant and reliable boil-off ar information to be completed, s 	nd reflood data for PWR core geometry ee "?"						

	No. 9.3/2	
Subject	Description	
 Data Documentation Data Availability 	 plant description and some results: PSI internal report under preparation (1989) ? 	
 Use of Data 	· data on quench front propagation, phase mixing, heat transfer in highly transient conditions;	
 Special Features Correctness of Phenomena 	see "Use of Data" phenomena have been checked lests suitable for code validation (?) (tube geometry) 	
Comments	 simple test section geometry, fundamental study information to be completed, see "?" 	

Table 2.

LIST OF FACILITIES

		sheet	Selected in the CCVM			Info sheet	Selected in the CCVM
	CANADA			5.14	FOB Blowdown, ANSALDO		
8	1222 - 151 187 DM			5.15	GEST-SEP, SIET	a	x
1	Elbow Flooding Rig	а		5.16	GET-GEN (20 M W SG), SIET		
2 3	CWIT (CANDU reactors)	a		5.17	PIPER (Blowdown), PISA	а	x
4	Pumps Header Test Facility (CANDU reactors)	a		5.18	JF Blowdown, ENEA		
	FINLAND			6	JAPAN		
	Thursday			6.1	TPTF, JAERI	а	x
1	REWET-I	a		6.2	Air/Water Horiz. Flow Loop JAERI	a	2.600
2	REWET-II	а	x	6.3	T-Break TF (Air/Water), JAERI	а	
3 4	MEED A	1		6.4	Air/Water Rod Bundle TF, JAERI		
5	VEERA	a		6.5 6.6	SG U-Tube TF, JAERI Single Pin Heat Transf. TF, Jaeri	120	
.6	IVO-CCFL (air.water)	a	x	6.7	SRTF (Reflood), Toshiba	a	
7	IVO-Thermal Mixing	a	x	6.8	ESTA (18 Degree Sector), Toshiba	100	
8	IVO-Loop Seal Facility (Air/Water)	a	x	6.9	ESTA-KP (KWU-PWR), Toshiba		
				6.10	RRTF (Refill/Reflood), Toshiba		
	FRANCE			6.11	SHTF (Spray Heat Transf.) Toshiba		
.1	MORY DICK			6.12	Guide Tube CFL TF, Toshiba		
2	MOBY-DICK SUPER MOBY-DICK	a	x	6.13 6.14	Swell Level Tests, Toshiba SCTF, JAERI		
3	CANON and SUPER CANON (Horiz)	a	x	6.15	CCTF, JAERI	a	x
4	VERTICAL CANON	a	1.00	6.16	HICOF (Hitachi Core and Fuel Tests		
.5				6.17			
.6	TAPIOCA (Vertical)	а	x	6.18	Hot Leg CCFL Rig, JAERI	а	
.7	Dadine (Vertical Tube, Inside)	а	x	1.1.1			
.8	PERICLES Rectangular	a	x	7	NETHERLANDS	10.0	
.10	PERICLES Cylindrical PATRICIA GV 1	a	x	7.1 7.2	Bcn Boiloff/Reflood Tests (36 rods)	а	
.11	PATRICIA gy 2	3	x	7.3	NEPTUNUS	a	x
.12	ERSEC Tube (Inside)	a	x				
.13	ERSEC Rod Bundle	a	x	8	SWEDEN		
.14	OMEGA Tube (Inside)	a	x	106			
.15	OMEGA Rod Bundle	a	x	8.1	GÖTA BWR ECC Tests	а	x
.16	ECTHOR Loop Seal (Air/Water) COSI	a	x	8.2 8.3	MARVIKEN FRIGG/FRÖJA	a	x
.18	SUPER MOBY-DICK TEE	a	x	8.4	120 bar Loop	a	x
.19	PIERO (Air/Water)	a	x	8.5	SIV		
.20	EPOPEE			8.6	SEPA		
.21	EVA	a	x				
3.22	SEROPS			9	SWITZERLAND		
.23	BETHSY Pressuriser		2.225		NUCLEUR AND A DESCRIPTION	2.25	5 325
3.24 3.25	SUPER MOBY-DICK Horizontal REBECA	a	x	9.1 9.2	NEPTUN-I (Boiloff)	a	x
.26	ECOTRA	а	x	9.2	NEPTUN-I and II (Reflood) PEANUT (Reflood Inside Tube)	a	x
	GERMANY			10	UNITED KINGDOM		
1	UPTF	a	x	10.1	ACHILLES Reflood Loop	a	x
.2	HDR Vessel	a	x	10.2	THETIS Bundle	a	x
.3	BATTELLE PWR RS 16	a	x	10.3	REFLEX Tube Reflood	1.550	100
.4	BATTELLE BWR 150396	a	x	10.4	Post Dryout Ins. Tube (HP, Winfrith)	а	x
.5	Blowdown Heat Transfer RS 37			10.5	TITAN/9 MW Rigs	а	
.6	Het Transfer Refill/Reflod RS 36 Steady state DNB Exp. RS 164			10.6	High Pressure Rig Post Dryout Ins. Tube (LP, Harwell)	a	
.8	Trans. Boil. Inst. Tube (Freon) RS 370	a		10.7	Air/Water Pipeline Fac. (Large Sc.)	a	x
.9	Rewet RS 62/184	a		10.0	Hot Leg (Air/Water, Offt., Large Sc.)	a	
.10	Thermodyn. Nonequilibrium RS 77	a	x	10.10			
.11	LOCA Pump Behaviour RS 92	a		10.11	Horiz. CCFL Rig (Air/Water, Small Sc.)	a	
.12	Thermalhyd. UP-BBR 373			10.12	Air/Water Rigs (Small Scale)		1.000
.13	Pressuriser-Valve RS 240, 347 636 Steam/Water Direch Flow RS 93, 397			10.13	LOTUS (Air/Water Ann. Flow in Tube) Single Tube Level Swell (Hernell)	а	x
.14	Steam/Water Disch. Flow RS 93, 397	a		10.14 10.15	Single Tube Level Swell (Harwell) Single Tube Reflood (Harwell)	a	x
.16	T-Junction Test Facility (KfK)	a	x	10.15	Crossflow Two-Phase Wind Tunnel	a	
1020				10.17	Loop Seal Air/Water Rig		
	ITALY			10.18 10.19	Hot Leg Co and CCF Rig Single tube Reflood (Leatherhead)		
1	Pressuriser (Vapore Plant) ENEA	a	x	10.19	Boiler Dynamics Rig	a	
.2	Pressuriser Spray, TURIN	a	x	10.21	Valve Blowdown Test Facility	a	x
.3	Pressuriser Flooding, CISE			10.22	Single Pin Reflood		
.4	JETI-4 Fuel Channel SIET	a	x	10.23	Multipin Cluster Rig		
.5	Safety VALVE SIET	а	х	10.24	Blowdown Rig		
.6	Gen 3x3 (Steam Generator), SIET	a	x	10.25	ECCS Condensation Rig	1000.011	
.8	8x8 Bundle, CISE FREGENE (Steam Generator) ENEA			10.26	1/6 th Sc. Broken Cold Leg Nozzle Rig 1/10 th Scale PWR Refill Strath Clyde	a	
.0	ARAMIS (Separator) ENEA			10.27	R113 Vertical Forced Circul, Loop		
.10	Jet Condensation, TURIN			10.28	R113 Horiz. Forced Circul. Loop		
.11	Jet Condensation, ENEA			10.30	Vertical Flow Rigs		
.12	CHF, ENEA			10.31	High Press. Steam/Water Forced Circ.		
.13	CCF, ENEA			10.32	Low Pressure Boiling Fac. (Harwell)	a	1

LIST OF FACILITIES (Cont.)

Table 2 (Continued). List of Facilities

			Info	Selected in	1
			sheet	the CCVM	
	11	USA			
	2222				
	11.1	LTSF 1/6 Scale Jet Pump	a	x	
	11.2	Univ. California SB. LP BWR	а	х	
	11.3 11.4	THEF Post CHF Ins. Tube	a	x	
	11.4	Battle Columbus Laboratory Wyle Lab. Marshall Steam Station TF			
	11.6	Micellaneous Sources			
	11.7	Univ. California SB. Vert. Tube			
	11.8	Univ. California B. Tube Reflood	a		
	11.9	Univ. California Berkeley	a	x	
	11.10	Columbia rod Bundle	a	x	
	11.11	State Univ. New York at Buffalo			
	11.12	State Univ. New York at Buffalo			
	11.13	1/30, 1/5 + 1/5 VESSEL CREARE	a	x	
	11.14	1/5 DC + CL CREARE	a		
	11.15	CDN DART Bubbly Flow Nozzles	a		
	11.16	VERT TUBE PL/DART Annular CCF	a	x	
	11.17	TUBE + CHANNEL DART Air/Water			
	11.18	SNTF DART BWR Spray Nozzle			
	11.19	CE + MIT			
	11.20	J-Loop Test Fac. Westinghouse			
	11.21	HCNTL Univ. of Cincinnati			
	11.22	Heat Transf. Loop Baboock and Wilcox			
	11.23 11.24	FLECHT SEASET Westinghouse	a	X	
	11.24	Univ. California Los Angeles SCTF Univ. California LA			
	11.25	Univ. California Santa Barbara	а	x	
	11.20	Univ. California Berkeley			
	11.28	HST, SSTF, VSF/GE Spray Tests	a	x	
	11.29	Four Loop Natural Circulation/SRI	a	^	
	11.30	U-Tube SG Two-Loop Test Fac/SRI	a		
	11.31	1/5 EPRI-CREARE Mixing Facility			
	11.32	EPRI-SAI Thermal Mixing Test Fac.	a		
	11.33	1/2 Scale Test Facility/CREARE	a	x	
	11.34	EPRI-Wyle Pipe Rupture Test Fac.			
	11.35	TPFL/INEL Tee Critical Flow	a	х	
	11.36	EPRI-SAI Carryover Large Dim.			
	11.37	PHSE/PURDUE ½ Scale Facility			
	11.38	Thermal Hydr. Test Fac/ORNL			
	11.39 11.40	INEL Pump Charcterisation Semiscale/INEL	a	X	
	11.40	BWR-FLECHT/GE		(22)	
	11.41	LEHIGH Post CHF Heat Tr. Bundle	a	x	
	11.42	MIT Pressuriser	a	x	
	11.44	LS/GE Level Swell in Blowdown	a	x	
	11.45	HOUSTON			
	11.46	Cocurrent Hor, Flow/Northwest	a	x	
	11.47	ANL Power-Void Transf. Funct. BWR	a	x	
	11.48	Natural Circulation Boiling/ANL	a		
	11.49	G2 Loop/Westinghouse			
	11.50	Air/Water TF/B. Willamette Pump			
	11.51	Univ. California Berkley			
	11.52	MB-2 SG Transient/Westinghouse	a	х	
	11.53	Strat. Condens. Flow/Northwest	a		
	11.54	Critical Flow Rig/GE	a	x	
	11.55	Reflux Rig/Univ. Cal. St. Barbara	a	X	
	11.56	LTSF Blowdown Quench/INEL	a	X	
	11.57	LEHIGH Post CHF Vertical Tube	a	x	
	12	NORWAY			
	12.1	Halden Reactor, Reflood Tests	a	x	
			1 4		
<i>a</i> :	info sheet	available in [1, volume 2]	x: selected in the SE	ETs matirix [1, vol	ume 1, chapter 6]

FORMING A SET CROSS-REFERENCE MATRIX (CRM)

• The main objective in producing the SET facility Cross-Reference Matrix is to identify the best available sets of data for the assessment, validation, and finally, the improvement of code predictions of the individual physical phenomena

• List of 67 thermohydraulic phenomena forms one axis of the SET facility CRM; the second axis of the matrix consists of the 187 facilities identified as potential sources of separate effects data, yielding the SET CRM. The test facilities are compiled according to the country in which they operate

• The correlation between phenomena and SET facility is assigned to one of three levels:

- Suitable for model validation (x)
- Limited suitability for model validation (o)
- Not suitable for model validation (-)

• CRM shows both the number of different phenomena covered by the experimental investigation with one test facility, and the number of different facilities in which an individual phenomenon has been investigated

 Table 3.
 Separate Effects Test Facility Cross Reference Matrix

Phenomena		Separate Effects Test Facilities
LEGEND x suitable for model validation o limited suitability for model validation - not suitable for model validation	, F	MODY-DICK SUPER NDY-DICK SUPER CANON AND V-DICK CANON and SUPER CANON (Horks) VERTICAL CANON TAPICA (Vertical) DADINE (Vertical Tube, Intide) DADINE (Vertical Tube, Intide) P.RICLES Sylindrical PATRICIA GV 1 PATRICIA GV 1 PATR
	Facility No. Info Sheet available	
BASIC PHENOMENA	Evaporation due to Depressurisation Evaporation due to Heat Input Condensation due to Heat Input Condensation due to Pressurisation Condensation due to Heat Removal Interfac. Frict. Vertic. Flow Interfac. Frict. Vortic. Flow Wall to Fluid Friction Press. Drops at Geometr. Discontinuities Pressure Wave Propagation	x x x x x x
1 CRITICAL FLOW	1 Breaks 2 Valves	- x x x x
2 PHASE SEPARATION/VERTICAL FLOW WITH AND WITHOUT MIXTURE	3 Pipes 1 Pipes/Plena 2 Core	X X
1 STRATIFICATION IN HORIZ. FLOW	3 Downcomer 1 Pipes	· · · · · · · · · · · · · · · · · · ·
4 PHASE SEPARATION AT BRANCHES	1 Branches	· · · · · · · · · · · · · · · · · · ·
5 ENTRAINMENT/DEENTRAINMENT	1 Core 2 Upper Plenum 3 Downcomer 4 SG-Tube 5 SG-Mix. Chamber (PWR) 6 Hot Leg with ECCI (PWR)	
6 LIQUID-VAPOUR MIXING WITH CONDENSATION	1 Core 2 Downcomer 3 Upper Plenum 4 Lower Plenum 5 SG-Mix, Chamb. (PWR) 6 ECCI in Hot and Cold Leg (PWR)	
7 CONDENSATION IN STRATIFIED CONDITIONS	1 Pressuriser (PWR) 2 SG-Primsy Side (PWR) 3 SG-Secondary Side (PWR) 4 Horizontal Pipes	
SPRAY EFFECTS	1 Core (BWR) 2 Pressuriser (PWR) 3 OTSG Second. Side (PWR)	
9 CCF/CCFL	1 Upper Tie Piste 2 Channel Inlet Orifices (BWR) 3 Hot and Cold Leg 4 SG-Tube (PWR) 5 Downcomer 6 Surgeline (PWR)	· · · · · · · · · · · · · · · · · · ·
10 GLOBAL MULTIDIMENSIONAL FLUID TEMPERATURE, VOID AND FLOW DISTRIBUTION	1 Upper Plenum 2 Core 3 Downcomer 4 SG-Secondary Side	
II HEAT TRANSE: NAT. FORC. CONV. SUBC./NUCL. BOIL DNB/DRYOUT POST CHF RADIATION CONDENSATION	1 Core, SG, Strudures 2 Core, SG, Strudures 3 Core, SG, Strudures 4 Core, SG, Strudures 5 Core 6 SG, Strudures	
12 QUENCH FRONT PROPAG, REWET	1 Fuel Rods 2 Channel Walls and Water Rods (BWR)	· · · · · · · · · · · · · · · · · · ·
13 LOWER PLENUM FLASHING 14 GUIDE TUBE FLASHING (8WR) 15 ONE AND TWO PHASE IMPELLER-PUM 16 ONE AND TWO PHASE JET-PUMP BEID 17 SEPARATOR BEHAVIOUR 18 STEAM DRYER BEHAVIOUR 19 ACCUMULATOR BEHAVIOUR 20 LOOP SEAL FILLING AND CLEARANCI 21 ECC BYPASS/DC PENETRATION 22 PARALLEL CHANNEL INSTABILITIES (viour (BWR) E (PWR)	
23 BORON MIXING AND TRANSPORT 24 NONCONDENSABLE GAS EFFECT (PWF 25 LOWER PLENUM ENTRAINMENT		

SELECTION OF FACILITIES AND PARAMETER RANGES

• The identification of parameters relevant to each specific facility that characterize the phenomena

 67 tables, that give an idea of the quantity and the scope of experimental research carried out to investigate the phenomena with the aim of qualifying thermal-Hydraulic system computer codes, have been produced with reference to each phenomenon

• The tables should be seen primarily as aiming at the selection of the facilities where the considered phenomenon has been investigated, the resulting information is utilized for the selection of individual experiments

DATA BASE FOR SELECTED FACILITIES

67 tables corresponding to the 67 phenomena and including 137 identified facilities:

- Phenomenon
- Facility identification: No.; Status in the Matrix; Name
- Keywords
- Relevant parameter ranges
- Reasons for selection or specific notes:
 - **1. Well known to the Writing Group;**
 - 2. Well defined and clear boundary conditions;
 - 3. Good measurement and instrumentation (quality of data)
 - 4. Quality of documentation;
 - 5. Already used for code development;
 - 6. Suitable for independent assessment;
 - 7. To cover an important parameter range;
 - 8. To cover the effect of a specific parameter.

 Table 4.
 Phenomenon No. 11.4 – Heat Transfer Post-CHF in the Core, in the Steam-Generator and at Structures (Part A)

	FACILITY	IDENTIFICATION	KEYWORDS	RELEVAN	NT PARAMETER:	S RANGES	REASONS FOR SELECTION OR NOTES
No.	Status in the matrix	Name		Pressure (MPa)	Inlet mass flow (kg/m ² /s)	Heat flux (W/cm ²)	OKIOILS
3.7	a x	DADINE (VERTICAL TUBE INSIDE)	Vertical tube, Steady-state, Boil-off	0.1-0.6	20-150	1-3	
3.12	a x	ERSEC TUBE (INSIDE)	Tube, reflooding	0.1-0.6	10-120	1-7	156
3.14	a x	OMEGA TUBE (INSIDE)	Blowdown	16	=	60-125	567
3.15	a x	OMEGA ROD BUNDLE	Blowdown	13-15	-	44-60	567
4.5	a x	BLOWDOWN HEAT TRANSFER RS 37	Blowdown Rod bundle	15-1.3	3828-3300	163-74	567
4.9	a x	REWET (RS 62/184)	Reflooding, tube, single rod	0.1-0.45	2-10 cm/s	2-6	56
5.6	a x	GEN 3x3 (STEAM GENERATOR) ENEA	SG Secondary, Steady-state, transient	3.5-8	200-600	-	
5.7	a x	8x8 BUNDLE CISE	BWR-6 Bundle, Steady state	7.1	125-1600	=	67
5.12	Х	CHF ENEA					
6.1	a x	TPTF JAERI	Core heat transfer, Boil-off, Reflooding, BWR and PWR bundle	0.5-12	20-410	3-25	2356
6.16	Х	HICOF (HITACHI CORE AND FUEL TESTS)					
8.4	Х	120 BAR LOOP					
9.1	a x	NEPTUN-I (BOIL-OFF)	Bundle	0.15		25-75 kW	2356
10.3	Х	REFLEX TUBE REFLOOD					
10.4	a x	POST DRYOUT INST. TUBE (HP, WINFRITH)	Hot patch	0.2-7	50-2000	1-30	2356
10.7	a x	POST DRYOUT INST. TUBE (LP, HARWELL)		0.2-0.4	25-200		2356
10.20	a x	BOILER DYNAMICS RIG	SG, transient boundary conditions	28	12 kg/s	12 MW	67
10.23	X	MULTIPIN CLUSTER RIG					
11.3	a x	THEF POST CHF INS. TUBE	Steady state, quasi-steady state	0.2-7	12-70	0.8-22.5	23456
11.7	X	UNIV. CALIFORNIA B. TUBE REFLOOD					
11.8	a x	UNIV. CALIFORNIA B. TUBE REFLOOD	Reflooding	0.1-0.3	2.5-18 cm/s		156

Table 4 (Continued) Phenomenon No. 11.4 – Heat Transfer Post-CHF in the Core, in the Steam Generator and at Structures (Part B)

	FACILITY	IDENTIFICATION	KEYWORDS	RELEVAN	T PARAMETER	S RANGES	REASONS FOR SELECTION OR NOTES
No.	Status in the matrix	Name		Pressure (MPa)	Inlet mass flow (kg/m ² /s)	Heat flux (W/cm ²)	
11.9	х	UNIV. CALIFORNIA BERKELEY					
11.10	a x	COLUMBIA ROD BUNDLE BLOWDOWN HT	Post-CHF	13.8	3500	1.8	Similar to OMEGA (rod bundle) 3.15
11.11	х	STATE UNIV. NEW YORK AT BUFFALO					
11.21	х	HCNTL UNIV. OF CINCINNATI					
11.23	a x	FLECHT SEASET WESTINGHOUSE	Reflooding, Unblocked and blocked bundle	0.14-0.4	1.5-15 cm/s	0.9-3.3 kw/s	12356
11.25	х	SCTF UNIV. CALIFORNIA LA					
11.38	x	THERMAL HYDR. TEST FAC./ORNL					
11.40	x	SEMISCALE/INEL					
11.42	a x	LEHIGH POST CHF HEAT TR: BUNDLE	Bundle, hot patch, reflooding	0.1-1.	Up to 300	Up to 10	2356
11.49	х	G2 LOOP / WESTINGHOUSE					
11.52	a x	MB-2 SG TRANSIENT/ WESTINGHOUSE	SG, transient conditions	7		6.7 MWt	67
11.56	a x	LSTF BLOWDOWN QUENCH/INEL	Single rod, bundle	0.1-7	0.4-6 m/s		2567
11.57	a x	LEHIGH POST CHF VERTICAL TUBE	Hot patch	0.2-0.6	13-85	1.8-5.8	2356
12.1	a x	HALDEN REACTOR; REFLOOD TESTS	Reflooding, Fuel and heater rods	0.2-0.4	4-60 g/s	1.8-5.8	2356

ESTABLISHING THE SET MATRIX

- For each of the 67 phenomena, a table presents the tests which have been identified as suitable for code validation with respect to that phenomenon, from the test facilities selected
- Tests have been chosen on the basis of available information, applying the established criteria for selection
- It is not always possible to determine how satisfactory data is for code validation until the specific data is actually used
- The tests have been selected in order to cover the experimental data range as defined, knowing that the plant range is not always covered
- Particular attention has been given to the geometric scaling problem
- The main references are provided in the tables, for the chosen tests
- This matrix has been published as a first attempt. It may be updated by new and additional input from the owners and remarks from the users
- SET Matrix covers a large number of phenomena within a large range of selected parameters
- If a thermal-hydraulic code is to be used to cover certain number phenomena, then calculation of the relevant identified tests in the matrix is considered to be a basic step toward the achievement of code qualification

 Table 5:
 Evaporation due to Depressurization (Phenomenon No. 6.0.1)

FACILITIE	S IDENTIFIER	3.2	3.6	4.4	4.10	8.2
Main	parameters					
P (MPa)	D 10 ⁻³ m					
0.75					228	
2.59					239	
3		31B234C				
		33B234C 30B 9X				
5		48B234C			256	
5	509	40D234C			230	509 mm
6.37	160				88	
8.8				BWR		
0.0				steam		
				line break		
	76			76 mm		
9.17 11.58					208 168	
12		12R305			108	
		12R318				
		12R324 12ORSA				
		120EB324				
	10		break 10 mm			
15			top lateral			
			break	1 (re-		
	20		20 mm			
			lateral			
			SE	LECTED TESTS		
References:						
3.2- B. 14.	Spinler: Reconstit 3, N. Technique (tution d'essais SU CEA/DTE/SETh/	JPER MOBY DIC LEML nº 88-134	CK avec le code Tl	RAC PF1/MOD	, version
3.6 FR	AMATOME repo	ort TP/CT/DC 494	4 June 1980			
4.4 Sys	stem description, o	experimental proc	cedures: BF-R64.	167-01, 1982=(1)	data reports:	
	-R64. 167-30-1 to					F 1
В. 19		cilication of OEA	D Standard Prob	lem No. 6, GRS/B	sattene Frankfurt	, February,
	stem description, o AFT-Bonn	experimental proc	cedure: results (pl	ots): RS 77 Final I	Report, C.E.C. IS	SPRA 1976 to
			w Tests. Conclusio XC-402. Decembe	ns. Joint Reactor r 1979	Safety Experime	nts in the
Additional i	nformation					
3.2- Co	nvergent inlet dia	meter 87.5 mm, c	outlet diameter 20	mm		

FACILITIES	IDENTIFIER	3.2	3.25	8.2	11.54	
Main parameters						
P (MPa)	Temp (K)					
0.3			3 B X 06 3 B X 20 3 B X 100			
0.5			5 B X 29 5 B X 100			
0.8			8 B X 40			
2.0 2.0 2.0	465 477 484	20 B 192 20 B 204 20 B 211				
4.0	501	40 B 227				
4.0	514	40 B 240				
4.00	522	40 B 249				
P, T_{sub} =5.0,30 P, T_{sub} =5.0,30 P, T_{sub} =5.0,30 P, T_{sub} =5.0,30 P, T_{sub} =5.0,30	D, L/D=0.2,3.0 D, L/D=0.2,3.0 D, L/D=0.2,3.0 D, L/D=0.2,3.0 D, L/D=0.2,3.0 D, L/D=0.2,3.0 D, L/D=0.2,3.0			13 6 12 18 24 21 22		
6.89	x ₀ = 0.003		0		Nozzle 3	
6.62	x ₀ = -0.002			1 E	Nozzle 3	
8.0	567	80 B 293				
			SE	LECTED TES	TS	
References:	707					
Note (t CEA/DRE/STT I CEA/CDR/STT No CEA/CDR/STT No	o. TT/SETRE/8	2-32, January 198			
3.25- Note (CEA/DRE/SETRE	/LTA 784/612,	July 1984.			
8.2- The M	larviken Full Scale	Critical Flow	Fest. MXC-301. S	Summary Repo	rt, December 1979	
11.54 Sozzi	G. L., Sutherland	W. A : Critical	Flow of Saturate	d and Subcool	ed Water at High Press	sure.

FACILITIES IDENTIFIER	3.8	6.14	6.15	10.1	10.2	11.23
Main parameters						
P (MPa)		-				
< 1.0 MPa	31B	S2-16/621 Cold leg ECC inj.	C2-12/71 Cold leg ECC inj.	Level swell, 0.2 Mpa: A1L069 A1L070 A1L071		Boil off: 35.557 35.658 35.759
	32A 35	S3-11/715 combined ECC inj.	C2-20/80 combined ECC inj.	Voidage Distribution: A3L040 A3L046 A3L049 BE reflood: A1B091 A1B099 A1B101 A1B112		steam cooling: 32.753 36.160 36.261 36.262 36.463 36.564 36.564 36.766 36.867
0.5-4.0 MPa					7 tests, selected in Ref.3.8/10.2	
			S	ELECTED TEST	S	

 Table 7:
 Global Multidimensional Fluid Temperature, Void and Flow Distribution in the Core (Phenomenon No. 6.10.2)

- R. Deruaz, P. Clement, J. M. Veteau: "Final Report Study of Two Dimensional Effects in the Core of
 Light Water Reactor During the Reflooding Phase of a LOCA" contract N. 002 SRF
- 3.8/10.2- A. Forge, et.al.: "Comparative Calculations on Selected Two-Phase Flow Phenomena Using Major PWR System Codes" CEC, EUR 12901 EN, 1990.
- 6.14- Data Reports on Large Scale Reflood Tests for each SCTF-Test.
- 6.15- Data Reports on Large Scale Reflood Tests for each CCTF-Test.
- 10.1- Technical Reports to ACHILLES Steering Group: UK Nucl. Industry and CEGB Chairman for Experimental Program.
- 10.2- C. A. Cooper, K. G. Pearson, D. Jowitt: Contract SR-030-UK

G. L. Shires, et. al.: "The Thermal Performance of a Partially Water Filled Fuel Cluster, Part1: An Exploratory Experimental Study of Level Swell at Pressures from 2 to 40 bars" AEEW-R-1369, June 1980.

11.23 S. Wong, L. E. Hochreiter: Analysis of the FLECHT-SEASET Unblocked Bundle Steam Cooling and Boil-off Tests; NUREG/CR-1533, May 1981.

4

FACILIT	TES IDENTIFIER	11.8	11.23					
Mai	n parameters							
P (MPa)	Inlet velocity (cm/s)							
0.1 0.3 0.3 0.2 0.3	7.5 7.5 12.5 2.5 7.5 Mass Flux kg/m ² s	3076 3070 3060 3051 3059						
$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.4 \\ 0.4 \end{array}$	74 74 74 74 74 74 74							
0.4	26 Road peak power (KW/m)							
0.28	1.6 0.16 0.79 0.039 0.02		33056 36160 36262 36564 36867	steam cooling				
		SELECTED TESTS						
Reference 11.8 F	e <u>s:</u> R. Seban: "Reflooding	g of a Vertical T	ube at 1.2 and 3	Atmospheres" EPR	RI-NP-3191, Ju	ly 1981		
	R. Seban: "Heat Trans S. Wong, L. E. Hochr					· · · · · · · · · · · · · · · · · · ·		
	Boil-off Tests" NURE					and and		
	N. Lee, et. al.: "PWR Evaluation and Analys				Gravity Refloo	d Task: Data		

FACILITIES IDENTIFIER		11.23	11.42	11.49				
		(cont.)						
Main parameters								
P (MPa)	Road peak power							
0.28 0.28 0.41 0.14 0.28 0.28 0.28 0.27 0.28	2.4 2.5 2.64 2.7 7.6 2.1 3.8 1.5 15 Mass Flux (kg/m ² s) 13.46 7.23 18.48	31504 32114 32013 31922 31302 31805 31203 31701 34006	3 9 12					
	18.69 25.13 25.58		14 20 22					
0.56 0.56				716 718				
0.1				736				
			SE	LECTED TESTS				
] PS	Tuzla, et. al.: "The NUREG/CR-5095, M. Sencar and N. 4	June 1988, Vols Aksan: "Independ flooding Tests" C	. 1-3. ent Assessment		x Boiling in a Rod Bundle' h Lehigh University and gram Meeting, PSI,			
	Bundle: Vol. 1- W	estinghouse Elect	ric Corp.	der Core Uncovery Co				
-			Westinghouse El	ectric corp., Pittsburgh				
	PRI-NP-1692, Vols. 1 and 2							
Н.	C. Yeh et. al., Westinghouse Electric Corp, USA at Transfer Above the Two-Phase Mixture Level Under Core Uncovery Conditions in a 336-Rod							

FACILITIES	S IDENTIFIER	11.56	11.57	12.1		
Main p	parameters					
P (MPa)	Inlet fluid velocity (m/s)					
6.86 6.92 0.378 0.255 0.409 0.396 0.39 0.272 0.302 0.302 0.395	3.7 0.4 Mass Flux (kg/m ² s) 14.8 14.9 20.7 42.7 29.5 42.9 60 29.9 Reflood rate (cm/s) 9.6 5.6 7.4 9.6 5.6 7.4 2.1	12 7	100 105 112 124 130 158 174 191	IFA-511-2 5236 5239 5247 IFA-511-3 5258 5261 5265		
			S	ELECTED TESTS	5 	
References:						
11.56 N. A Aug	Aksan: "Evaluatic gust 1982.	on of Analytical C	apability to prec	lict cladding Quen	ch" EGG-LOFT 5	5555,
11.57 D.C in a	G. Evans, et al. "N Vertical Tube" N	leasurement of Ax NUREG/CR-3363,	tially Varying N Vols. 1 and 2, .	onequilibrium in I June 1983.	Post-Critical Heat	-Flux Boiling
		owdown/reflood te R-248, May 1980.	ests with Nuclea	r Heated Rods (IF.	A-511.2)" OECD	Halden
T. J Hale	ohnsen, C. Vitan den Reactor Proje	za: "Blowdown/Ro ect HWR-17, May	eflood Tests wit 1981.	h Semiscale Heate	ers (IFA-511.3)" (DECD

 Table 8 (Cont.):
 Heat Transfer: Post-CHF in the Core, in the Steam Generator and at Structures (Phenomenon No. 6.11.4) (7/7)

INTEGRAL FACILITY TEST VALIDATION (ITF) MATRIX

TEST TYPES FOR PWRs

- Large break
- Small and intermediate breaks
- Transients
- Transients at shutdown conditions
- Accident management for non-degraded core

TEST TYPES FOR BWRs

- Loss-of coolant accidents
- Transients

BASIS FOR SELECTION OF EXPERIMENTS AND INDIVIDUAL TESTS

- Typicality of facility and experiment to expected reactor conditions,
- Quality and completeness of experimental data (measurement and documentation),
- Relevance to safety issues,
- Test selected must clearly exhibit phenomena,
- Each phenomenon should be addressed by tests of different scaling (at least one test if possible)
- High priority to International Standard Problems (ISP), counterpart and similar tests
- Challenge to system codes.

CF	Matrix I ROSS REFERENCE MATRIX FOR LARGE BREAKS IN PWRs	1	Test Typ	e		Test]	Facilit	y and	Volur	netric			
+ oc o pa - no - test f + su o lim - no - test + pe o pe	mena versus test type curring rtially occurring t occurring facility versus phenomenon itable for code assessment nited suitability t suitable type versus test facility rformed rformed but of limited use t performed or planned	Blowdown	Refill	Reflood	CCTF 1:25	LOFT 1:50	BETHSY 1:100	PKL 1:145	LOBI 1:712	SEMISCALE 1: 1600	UPTF 1 : 1 (a)		
	Break flow	+	+	+	0	0	0	o	0	0	0		
	Phase separation (condition or transition)	0	+	+	+	+	+	+	+	+	+		
	Mixing and condensation during injection	0	+	+	0	o	0	o	0	0	+		
	Core wide void + flow distribution	0	+	+	0	0	0	o	0	-	0		
	ECC bypass and penetration	0	+	0	+	+	-	o	0	-	+		
na	CCFL (UCSP)	0	+	+	0	o	0	o	0	-	+		
me	Steam binding (liquid carry over, ect.)	-	0	+	0	o	-	o	o	0	0		
Phenomena	Pool formation in UP	-	+	+	0	0	o	0	0	0	+		
Ā	Core heat transfer incl. DNB, dryout, RNB	+	+	+	0	+	+	+	0	0	-		
	Quench front propagation	0	0	+	+	+	+	+	-	+	-		
	Entrainment (Core, UP)	0	0	+	0	o	+	o	0	0	+		
	Deentrainment (Core, UP)	0	o	+	0	o	o	o	0	0	+		
	1 - and 2-phase pump behaviour	+	o	0	-	o	-	o	+	+	-		
	Noncondensable gas effects	-	0	0	-	-	o	-	-	-	0		
	CCTF	-	0	+			t test			-			
	LOFT	+	+	+			ocation off/pu			e			
Test Facility	BETHSY	-	-	+	- co	ld leg	; injec			ined			
Fac	PKL	0	+	+	in	jectio	n						
ſest	LOBI	+	+	-	(a) 1	UPTF	integ	gral te	ests				
	SEMISCALE	+	+	+									
	UPTF	0	+	+									

Phesomenols versus test type - occurring opartially occurring - net facility versus test facility - net initiability - net initiability - net scalary - net initiability - net scalary - net initiability - net initiability		Matrix II ROSS REFERENCE MATRIX FOR SMALL AND INTERMEDIATE BREAKS			Tes	st Ty	pe			Test Facility and Volumetric Scaling									
primary side primary side<	+ o o p - Te + o o l - Te + p - Te + p o j	+ occurring o partially occurring - not occurring - Test facility versus phenomenon + suitable for code assessment o limited suitability - not suitable - Test type versus test facility + performed o performed but of limited use		Stationary test addressing cnorgy transport on socondary side	Small leak overfeed by HFIS, secondary side necessary	Staff leak without HPIS		Pressurizer leak	U-tube rupture	PWR 1:1	06T 1:50	CLL 1:20	BETHSY 1:100	541:1 II-TM	SPES 1:430	LOBI4II 1:712	SEMISCALE 1:1600	UPTF, TRAM 1:1 (2)	
primary side primary side<			+	+	+	٥	-	+	+	+	+	+	+	+	+	+	+	-	
Raflux condensar mode and CCFL + - - + + - - 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 1 0 1 + 1 0 1 + 1 + <t t=""></t> Mistrin l		Natural circulation in 2-phase flow, primary side	+	-	0	+	+	0	-	-	+	+	+	+	+	+	+	٥	
Break flow - - + <t t=""></t> + <td< td=""><td></td><td>Reflux condenser mode and CCFL</td><td>+</td><td>-</td><td>-</td><td>+</td><td>+</td><td>-</td><td>-</td><td>-</td><td>0</td><td>+</td><td>+</td><td>0</td><td>0</td><td>۰</td><td>۰</td><td>+</td></td<>		Reflux condenser mode and CCFL	+	-	-	+	+	-	-	-	0	+	+	0	0	۰	۰	+	
Phase segaration without mixture level + - 0 +		Asymmetric loop behaviour	-	-	+	+	-	0	+	-	-	0	+	+	+	0	٥	+	
formation - - - - - - - - - +		Break flow	-	-	+	+	+	+	+	-	+	+	+	+	+	+	+	0	
iscond ids iscond ids iscond ids iscond ids Mixture level and entrainsent in the core + - + + + - 0 + + + 0			+	-	0	+	+	+	٥	-	٥	+	+	+	+	+	0	+	
Stratification in horizontal pipes + - - + + - - + + 0 0 + 0			-	+	+	+	+	+	+	-	-	+	+	+	0	0	-	-	
Phase separation in T-junct. and effect - - + + - - 0 <td></td> <td>Mixture level and entraiment in the core</td> <td>+</td> <td>-</td> <td>-</td> <td>+</td> <td>+</td> <td>+</td> <td>-</td> <td>-</td> <td>0</td> <td>+</td> <td>+</td> <td>+</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		Mixture level and entraiment in the core	+	-	-	+	+	+	-	-	0	+	+	+	0	0	0	0	
on breakflow - - 0 + <t< td=""><td>•</td><td>Stratification in horizontal pipes</td><td>+</td><td>-</td><td>-</td><td>+</td><td>+</td><td>-</td><td>-</td><td>-</td><td>+</td><td>+</td><td>0</td><td>0</td><td>+</td><td>0</td><td>0</td><td>+</td></t<>	•	Stratification in horizontal pipes	+	-	-	+	+	-	-	-	+	+	0	0	+	0	0	+	
Core wide void and flow distribution + - - 0 + + - - 0 0 0 0 - - - - 0 +	le ma	on breakflow	-			+		-	-	-	0	0	0	0	0	0	-	+	
Core wide wold and flow distribution + - - 0 + + - 0 0 0 0 - - - - 0 +	10	-	-		0	+	+	+	+	-	0	0	0	0	0	0	0	+	
Core wide void and flow distribution + - - 0 + + - - 0 0 0 0 - - - - 0 +	ž		-		-	+	+	0	-	•	+	+	+	+	+	+	+	+	
Heat transfer in covared core + <t< td=""><td>4</td><td></td><td>+</td><td>-</td><td>-</td><td>0</td><td>+</td><td>+</td><td>-</td><td>-</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>+</td></t<>	4		+	-	-	0	+	+	-	-	0	0	0	0	0	-	0	+	
Heat transfer in partly uncovared core + - - 0 + - - +						-							-	-				۰	
Heat transfer in SG primary side + o o +																		-	
Heat transfer in SG recondary side 0 +																		-	
Pressurizer thermodydraulics o - o o +			-	_		-	-	-	-		_					-	_	-	
Surgeline hydraulics o - o + + o - o			-								-						-	+	
1- and 2-phase pump behaviour - - - 0 + - 0 <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td>-</td><td>-</td><td></td><td>+</td></t<>			_			-							-	_	-	-		+	
Structural heat and heat losses (1) + - o + + o o - o											-	-						-	
Noncondensable gas effects + - - - - - - 0 0 0 - 0 0 - 0 0 - - 0 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 0 - - 0 0 0 0 - - 0 </td <td></td> <td></td> <td>+</td> <td>-</td> <td>•</td> <td>-</td> <td>+</td> <td>0</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>0</td> <td></td> <td>•</td>			+	-	•	-	+	0		-	-		-	-	-	0		•	
PWR - - o - +			+	-	-	-	-	-		-				0				+	
LOFT - + + + + - (2) UPTF integral tests LSTF + + + + + + + BETHSY + + + + + + PKL-III + + + + + + SPES + + + + + +			+	-	+	+	+	+	+						-		-	0	
LSTF +		PWR.	-	-	0	-	-	+	+						cilities				
LSTF +		LOFT	-	-	+	+	+	+	-						hance	10111			
	ji,	LSTF	+	+	+	+	+	+	+										
	cil	BETHSY	+	+	+	+	+	+	+	п	atrix :	may be	also:	import	tant				
	E	PKL-III	+	+	+	+	+	+	+	1 .									
LOBI-II + + + + + + +	ह	SPES	+	+	+	+	-	-	-										
	F		+	+	+	+	+	+	+										
SEMISCALE 0 0 + + + + +		SEMISCALE	0	•	+	+	+	+	+										

	Matrix IV OSS REFERENCE MATRIX FOR TRANSIENTS IN PWRs				Test	Туре				Test Facility and Volumetric Scaling								
Phenomenon versus test type + occurring o partially occurring - test facility versus Phenomenon + suitable for code assessment o limited suitability - not suitable - test type versus test facility + performed o performed but of limited use - not performed or planned				Loss of heat sink, non ATWS (c)	Station blackout	Steam Line break	Feed line break	Reactivity disturbence	Dvercooling	PWR 1 : 1	LOFT 1 : 50	LSTF1:50	BETHSY 1:100	PKL-UI 1:134	SPES 1:430	LOBI-II 1:712	SEMISCALE 1:1000	
	Natural circulation in 1-phase flow	+	+	+	+	+	+	٥	0	+	0	+	+	+	+	+	+	
	Natural circulation in 2-phase flow	+	+	+	+	-	-	٥	-	-	۰	+	+	+	+	+	+	
	Core thermohydraulics	+	+	+	+	0	0	+	0	0	+	+	+	+	+	+	+	
	Thermohydraulics on primary side of SG	+	۰	0	+	0	0	۰	+	0	۰	+	+	+	+	+	۰	
	Thermohydraulics on secondary side of SG	+	+	+	+	+	+	۰	+	0	۰	+	+	+	۰	+	۰	
- US	Pressurizer thermohydraulics	+	+	+	+	۰	0	0	+	۰	0	۰	0	0	0	0	۰	
Phenomena	Surgeline hydraulics (CCFL, choking)	+	+	+	+	۰	0	0	0	0	0	0	0	0	0	0	۰	
he	Valve leak flow (a)	+	+	+	+	+	+	+	+	-	0	0	0	0	0	0	۰	
-	1- and 2-phase pump behaviour	+	+	+	+	0	0	0	+	0	0	+	0	0	0	+	+	
	Thermohydraulic-nuclear feedback	+	-	-	-	-	-	+	-	+	+	-	-	-	-	-	-	
	Structural heat and heat losses (b)	0	0	0	0	0	0	0	0	-	0	۰	0	0	0	0	۰	
	Boron mixing and transport	-	-	-	-	0	-	•	0	-	-	-	-	-	-	-	-	
	Separator behaviour	0	-	-	-	+	-	•	-	-	-	-	-	-	0	0	-	
	PWR.	1	-	-	•	-	-	1	0	(a) v dori	alve i mede	flow l	behav.	iour v	vill be	stron	igly	
	LOFT	+	+	+	0	•	-	+	+	data	shoul	ld be	used i	if pos	sible	rimen	ai	
lity	LSTF	•	+	-	+	+	+	•	+	(b) F	coble	an for	: scale	d test d test	facili	ties	_ I	
Fest Facility	BETHSY	-	+	+	-	+	+	-	-	(9)			aces.					
st F	PKL-III	-	+	+	+	+	+		+								_ I	
Te	SPES	•	+	-	+	-	-	•	-									
1	LOBI-II	+	+	+	+	+	+	-	-								_ I	
	SEMISCALE	-	+	+	+	+	+	-	+									

CR	Matrix V OSS REFERENCE MATRIX FOR TRANSIENTS AT SHUT-DOWN CONDITIONS IN PWRS		Test	Туре		V.	Test Facility and Volumetric Scaling				
Phenom	enon versus test type										
	urring										
	tially occurring										
- Test fa	icility versus phenomenon	.2		닅	-						
	table for code assessment	oss of RHR with no opening	oss of RHR with openings	with dam in HL	dilution at shut-down						
	ited suitability	8	54	1	3						
	suitable	÷.	ě.	4	-						
	type versus test facility formed	8	8	8							
	formed but of	RH	E	RH	ă.		×				
lim	ited use	° of	s of	oss of RHR	Boron	₽	BETHSY	IKL III			
- not	performed or planned	Los	Los	Los	Å	LSTF	BE.	1X			
	Pressurization due to boiling	+	+	+	-	+	+	+			
	Reflux condenser mode and CCFL	+	+	0	-	+	+	٥			
	Asymmetric loop behaviour	-	0	+	-	+	+	+			
	Flow through openings (manways, vents)	-	+	+	-	+	+	-			
	Mixture level formation in upper plenum and hot legs	+	+	+	-	+	+	+			
	Mixture level and entrainment in the core	+	+	+	-	+	+	+			
	SG syphon draining	-	-	+	-	+	-	-			
	Asymmetry due to the presence of a dam	-	-	+	-	+	-	-			
	Stratification in horizontal pipes	+	+	+	-	+	0	+			
	Phase separation in T-junctions and effect on flow	- 1	+	+	- 1	•	0	•			
<u>a</u>	ECC mixing and condensation	+	+	+	- 1	•	0	•			
ner	Loop seal clearing and filling	+	+	+	-	+	+	-			
Phenomena	Pool formation in UP/CCFL (UCSP)	-	-	-	-	-	-	-			
-Pe	Core 3D thermalhydraulics	+	+	+	+	•	0	•			
-	Heat transfer in covered core	+	+	+	-	+	+	+			
	Heat transfer in partially uncovered core	+	+	+	-	•	•	-			
	Heat transfer in SG primary side	+	+	+	-	+	+	+			
	Heat transfer in SG secondary side	+	+	+	- 1	+	+	+			
	Pressurizer thermalhydraulics a)	-	x	x	-	•	•	•			
	Surge line thermalhydraulics a)	-	x	x	-			0			
	Structural heat and heat losses	-	-	-	-	-	-	0			
	Non-condensible gas effects	+	+	+	-	+	+	+			
	Boron mixing and transport	-	-	-	+	-	-	-			
	Thermalhydraulics-muclear feedback	-	-	-	+	-	-	-			
	LSTF	+	+	+	-						
E a	BETHSY	<u> </u>	+			4					
Test Facility	PKLIII	-+		-	-	{					
E	PKL III	Ŧ	-	-	-						

a) x is dependent on opening location

pressuriser manway open
 pressuriser manway shut

	Matrix VI CROSS REFERENCE MATRIX FOR ACCIDENT MANAGEMENT FOR A NON DEGRADED CORE IN PWR3			Test Type			Test Facility and Volumetric Scaling								
- Phee	somenon versus test type														
+ 04	curring														
	rtially occurring	8	8			냋									
	t occurring	and blood	and bleed		à.	2							~		
	facility versus phenomenon itable for code assessment	72	2		is,	6 2							2		
	nizole for code assessment	8	8		a a	영관			8	145					
	t suitable	2 4	é é	53	.e	e fa	~		:10		•	712	N		
- Test	type versus test facility	figh perssure ein ary side feed	ow prosure, rim ary side feed	Secondary side, feed and bleed	RCP-Restort in a highly rolded PCS	rimaty to secondary break with multiple failures	OFT1:50	STF1:50	3ETHSY 1:100	KL-III : 1 : 145	SPES 1:430	OBI-II 1 : 712	UPTE, TRAM I : 1 (2)		
	arformed	2.5	ŝÈ	취임	84	A D	=	5	12	Ę		5	1		
	aformed but of limited use	Hgh I	a a	8.5	6.8	Prime	5	ST	ETI	E L	쬝	8	L		
- 20	t performed or planned Natural circulation in 1-phase flow, primary side	Ξž	78	୍ୟୁକ୍	83	<u> </u>	크	끝	田	E +	IS +	- P	5		
		+	+	+	-	+	+	+	+	+	+	+			
1	Natural circulation in 2-phase flow, primary side												•		
	Reflux condenser mode and CCFL	-	-	+	-	+	0	+	•	•	•	•	+		
	Asymmetric loop behaviour	+	+	+	+	+	-	0	+	+	+	٥	+		
	Break flow	+	+	0	+	+	+	+	+	+	0	+	0		
	Phase separation without mixture level formation	+	+	+	+	+	0	+	+	+	+	+	+		
	Mixture level and entraiment in SG secondary side	-	-	+	-	+	-	+	+	+	0	0	-		
	Mixture level and entraiment in the core	+	+	+	0	+	0	+	+	+	0	0	0		
	Stratification in horizontal pipes	+	+	+	0	+	+	+	0	0	0	0	+		
	Phase separation in T-junct. and effect on. breakflow	+	+	•	-	+	0	۰	0	0	٥	۰	+		
	ECC-mixing and condensation	+	+	+	-	+	0	0	0	0	0	0	+		
8	Loop seal clearing (3)	0	0	+	0	+	+	+	0	0	+	+	+		
Phenomena	Pool formation in UP/CCFL (UCSP)	+	+	+	-	+	0	•	0	0	0	-	+		
5	Core wide void and flow distribution	+	+	+	+	+	0	•	0	0	-	-	0		
Der 1	Heat transfer in covered core	0	0	+	-	+	+	+	+	+	+	+	-		
Ы	Heat transfer in partly uncovered core	+	+	+	+	+	+	+	+	+	0	0	-		
	Heat transfer in SG primary side	-	-	+	0	+	0	+	+	+	+	+	-		
	Heat transfer in SG secondary side	-	-	+	•	+	0	+	+	+		+	-		
	Pressurizer thermohydraulics	+	+			+									
		- -	+	0	0		0	۰	0	0	0	٥	+		
	Surgeline hydraulics	Ŧ	÷	0	•	+	0	۰	0	0	0	۰	+		
	1- and 2-phase pump behaviour	0	0	+	+	+	0	۰	0	0	0	+	-		
	Structural heat and heat losses (1)	+	+	+	+	+	0	•	•	•	0	•	0		
1	Noncondensable gas effects	0	+	+	+	+	•	0	0	+	•	-	+		
	Accumulator behaviour	-	+	+	-	0	0	+	+	+	+	+	+		
1	Boron mixing and transport	+	+	+	+	+	-	-	-	-	-	-	0		
	Thermohydraulic-nuclear feed back	-	-	-	+	-	-	-	-	-	-	-	-		
	Separator behaviour	-	-	-	-	-	-	-	-	-	-	-	-		
	LOFT	-	-	+	-	-	(1) p	roblem	for sc	aled to	st facil	ities	-		
	LSTF	+	+	+	-	0	 problem for scaled test facilities UPTF integral tests 								
β,	BETHSY	+	+	+	-	+	(3) long term cooling not included								
aci	PKL-III	•	+	+	+	-									
Test Facility	SPES	• +	+	+	-	+									
Te.	LOBI-II					+									
1		+	+	+	-	+									
	UPTF, TRAM	0	+	-	-	-									

CR	Matrix VII OSS REFERENCE MATRIX FOR LOCA IN BWRs			Тен	Туре							ty and Scalir					
+ + + + + + + + + + + + + + + + + + +	Phenomena versus test type + occurring o partially occurring - not occurring			Beak without Depress. before ADS	Dess.				ow, Full	łs	Pull Power	Full Pow, Full	Rull Row, Full	Pull Height			
+ ; o 1	facility versus phenomenon suitable for code assessment insited suitability ot suitable	te Breek with	bw WaterLe	hout Depress	with Slov	*			Chan, Full P	1:424 4 Channels	1:624, 1 Chan, Ful	1:624, 1 Chen, Full	1 Chan,	200, 1 Chan,			
+	t type versus test facility performed performed but of limited use not performed or planned	Lage Steam Line Decannisation	Large Break Below Water Level with Fast Decase	Small	Internediate Break with Slow Departs.	Spray Lin e Bank	Refill - Reflood	BWR 1:1 (a)	TBL, 1:382, 2 Chan, Full Pow, Heisbe	ROSAIII,	TLTA,	FIST, Heidu	HX 2, 1 : 777, Heinhe	FIPER 1, 1 : 2200, 1 Chan, Full Height			
	Break flow	+	+	+	+	+	0	-	0	0	0	0	0	+			
	Channel and Bypass Axial Flow and Void Distribution	+	+	+	+	+	+	0	+	٥	+	+	+	+			
	Corewide Radial Void Distribution	0	0	+	+	+	+	0	0	+	0	0	0	-			
	Parallel Channel Effects-Instabilities	-	-	+	+	+	+	-	۰	+	-	-	-	•			
	EOC Bypass	-	-	0	0	0	+	-	0	0	0	0	-	+			
	CCFL at UCSP and Channel Inlet Onfice	0	+	-	+	+	+	-	0	0	-	0	0	0			
	Core Heat Transf. incl. DNB, Dryout, RNB. Surf. to Surf Radiation	+	+	۰	+	٥	+	-	+	+	+	+	+	+			
	Quench Front Propagation for both Fuel Rods and Channel Walls Entrainment and Deentainment in Core and	-	-	-	-	-	+	-	+	+	+	+	-	+			
	Entranment and Deentanment in Core and Upper Plenum Separator Behavior incl. Flooding, Steam	+	+	•	•	•	+	-	-+	•	۰	° +	-	°			
Phenomena	Penetration and Carryover Spray Cooling	Ŧ	*	•	0	0	-+	•	+ 0	0 0	0 0	÷	۰	° +			
8	Spray Distribution	-	-	0	0	0	+	-	-	0	•	-	-	-			
ĕ	Steam Dryer - Hydraulic Behavior	+	-	0	0	0	-	0	0	0	0	0	-				
4	One and Two Phase Pump Recirc. Behavior			+	0 +	+		<u> </u>				÷		-			
–	ind. Jet Pumps Phase Separation and Mixture Level Behavior	° +	• +	+	+	+	° +	•	0	• +	0	° +	° +				
	Guide Tube and Lower Plenum Flashing	+	+	-		0	-	-	+	+	+	+	+	+			
	Natural Circulation- Core and Downcomer	Ŧ	-	+	0	0	+	+	+	т 0	÷	+	+	+			
	Natural Circulation Core Bypass, Hot and Cold Bundles	-	-	+	0	0	+	-	0	0	0	0	0	0			
	Mixture Level in Core	-	-	+	0	0	+	-	+	+	+	+	+	0			
	Mixture Level in Downcomer	+	+	+	+	+	+	-	+	0	0	+	+	0			
	ECC Mixing and Condensation	-	-	+	0	+	+	-	0	0	0	0	-	0			
	Pool Formation in Upper Plenum	•	0	-	0	0	+	-	0	0	0	0	•	0			
	Structural Heat and Heat Losses	0	0	0	+	+	+	-	+	0	0	0	0	0			
	Phase Separ. in T - Junction and Effect on Break Flow	-	-	+	۰	+	-	-	-	-	-	-	-	+			
	BWR	-	-	-	-	-	-	(a) These are non-LOCA data but may be used for assessment									
Ъ.	TBL	+	+	+	+	-	+										
C:	ROSAIII	+	+	+	+	-	+										
Fa	TLTA	+	+	-	+	-	+										
Test Facility	FIST	+	+	+	+	-	+										
Ĥ	FIX 2	-	+	-	+	-	-										
	PIPER 1	-	+	+	+	-	+										

Matrix VIII CROSS REFERENCE MATRIX FOR TRANSIENTS IN BWRs					Те	st Ty	pe				Test Facility and Volumetric Scaling				
Phenomenon versus test type + occurring o partially occurring - not occurring Test facility versus phenomenon + suitable for code assessment o limited suitability - not suitability - not suitable Test type versus test facility + performed o performed but of limited use - not performed or planned		Sationery Test Measuring Power Flow Map	Recirculation Pump Trip	Core Stab lity	Loss of Main Heat Sink	MiOT	Револге Револге	inadvertant Increase in Steam Flow	ATWS	Sation Hackout (Loss of -Offsite Power)	BWR 1:1	ROSAIII, 1: 424, 4 Channels	FIST, 1: 642, 1 Channel, Full Power, Full Height	HX 2,1:777, 1 Channel, Full Power, Full Height	
	Natural Circulation in One- and Two-Phase Flow	+	+	+	+	-	-	-	+	+	+	0	+	0	
I 1	Collapsed Level Behaviour in Downcomer	-	+	0	+	+	+	+	+	+	+	0	+	+	
I 1	Core Thermal Hydraulics	0	+	+	+	¢	¢	0	+	+	¢	+	+	+	
I 1	Valve Leak Flow	-	1	-	+	١	-	-	+	+	¢	0	0	-	
I 1	Single Phase Pump Behaviour (a)	0	+	0	+	¢	0	+	+	+	0	0	0	0	
I 1	Parallel Channel Effects and Instabilities	-	+	+	0	١	-	-	+	+	¢	+	-	-	
Phenomena	Nuclear Thermalhydraulic Feedback Including Spatial Effects	0	0	+	-	¢	٥	0	+	-	+	-	-	-	
8	Nuclear Thermalhydraulic Instabilities	-	٥	+	-	•	-	0	+	-	+	-	-	-	
ş.	Downcomer Mixing	-	-	-	-	+	+	-	+	+	•	0	-	-	
•	Boron Mixing and Distribution	-	1	-	-	1	-	-	+	-	•	-	-	-	
I 1	Steam Line Dynamics	-	1	-	+	1	-	+	+	+	o	-	0	-	
	Void Collapse and Temp. Distribution During Pressurization	-	-	-	+	-	-	-	+	+	۰	+	+	+	
1	Critical Power Ratio	-	+	+	+	+	+	+	+	+	0	+	+	+	
	Rewet after DNB at High Press. and High Power Incl. High Core Flow	-	+	-	+	-	-	0	+	۰	-	0	+	+	
	Structural Heat and Heat Losses	-	۰	-	0	-	0	0	0	0	-	0	0	0	
浙	BWR	+	+	+	+	+	+	+	-	0				-1	
ja j	ROSA III	-	+	+	+	-	+	-	-	+				_ I	
Teet Pacility	FIST	-	¢	-	+	•	+	+	0	+				_ I	
T	FIX 2	-	+	-	+	-	-	-	-	-					

(a) Two-phase pump behaviour is of interest for certain special ATWS and inadvertent increase of steam flow transients

CROSS REFERENCE MATRICES FOR WWER ANALYSIS (INTEGRAL AND SEPARATE EFFECTS TESTS)

- OECD Support Group on WWER Validation Matrix 1995-2000
- Develop a supplement to the existing OECD SET and ITF Validation Matrices
- Consideration of specific features of WWER-440 and WWER-1000 systems and their behavior in normal and abnormal situations
- WWER Validation Matrix contains
 - Large break LOCAs
 - Small and intermediate brak LOCAs
 - Transients
- Phenomena identified relevant for WWERs
- Phenomena od WWER compared to Western PWR and similarities clarified

 Facilities and experiments (both ITFs and SETs) identified that supplement the CSNI Validation Matrices and are suitable for WWER specific code assessment

USE OF THE VALIDATION MATRICES IN BEST-ESTIMATE THERMAL-HYDRAULIC CODES

• OECD/NEA-CSNI SET and ITF validation matrices have been used heavily in establishing the validation matrices for the major BE thermal-hydraulic system codes, e.g. RELAP5, CATHARE, TRAC, TRACE and ATHLET

• Depending on the application needs of the specific computer code, additional separate effects tests are included into the code's validation matrix, e.g. ATHLET considers specific aspects of the German combined ECC injection system, RELAP5 and TRACE consider specific aspects of AP1000 and ESBWR advanced reactor designs by including additional separate effects tests (SET) and ITF tests into the specific validation matrix

CONCLUSIONS AND RECOMMENDATIONS (I)

 Information collected, recorded and classified in three main areas:

- On test facilities and test parameters,

- State of the art knowledge with regard to a full range of thermal-hydraulic phenomena

- Source of data for validation of codes with respect to individual phenomenon

• SETs and ITF validation matrices are established for PWRs and BWRs. WWER validation matrix has been also completed

• The SETs validation matrix, two-volumes report, contains the most comprehensive compendium of tests and facilities brought together in one document, nevertheless, it is recognized that the work did not succeed in reaching all world data

 A methodology has been developed for establishing SET Validation Matrix. This methodology can be used for establishing other validation matrices, e.g. on severe accidents, containment thermohydraulics, 3D thermal-hydraulic code assessment, etc.

• Sufficiently complete list of relevant phenomena for thermalhydraulic transient applications of PWRs and BWRs have been identified. The majority of these phenomena are also relevant to advanced water-cooled reactors

CONCLUSIONS AND RECOMMENDATIONS (II)

• About 2094 tests are included in the SET Matrix. This SET Matrix has to be considered as a living, evolving document

• The SET Matrix also provides a basis for evaluating the existing data base and defining the main axes for further research in LWR safety thermal-hydraulics in relation to separate effects testing

 Based on the SET validation matrix evaluation, need of additional experimental data are identified (CSNI report, OECD/GD (97) 9, Nov. 1996), such as:

- Basic phenomena: pressure drops at geometric discontinuities
- Critical flow in valves
- Phase separation at branches
- Quench front propagation/rewet, fuel rods
- Parallel channel instabilities (BWR)
- Boron mixing and transport
- Non-condensable gas effect (PWR)

• Systematic approach is very beneficial- provides basis for assessment and quantification of code uncertainties for plant calculations, which is the major task for the future

• Work to ensure all data sets qualified an excellent way to protect investment in R&D data

SOME OF THE REFERENCES (I)

[1] Aksan N., D'Auria F., Glaeser H., Pochard R., Richards C., Sjoberg A., "Separate effects test matrix for thermal-hydraulic code validation"

(a) Vol. I: Phenomena characterisation and selection of facilities and tests

(b) Vol. II: Facility and experiment characteristics

CSNI reports OECD/GD(94)82 and OECD/GD(94)83, respectively, September 1994.

- [2] Lewis M.J., et.al. "State of the art report (SOAR) on Thermalhydraulics of Emergency Core Cooling in Light Water .Reactors", OECD-NEA-CSNI report no. 161, October 1989.
- [3] "CSNI Code Validation Matrix of Thermalhydraulic codes for LWR LOCA and transients", OECD-NEA-CSNI report no.132, March 1987.
- [4] Aksan N., D'Auria F. Glaeser H., Lillington J., Pochard R., Sjoberg A., "Evaluation of the CSNI separate effects tests (SET) validation matrix", CSNI report OECD/GD(97)9, November 1996.

SOME OF THE REFERENCES (II)

[5] Aksan N., D'Auria F., Glaeser H., Lillington J., Pochard R., Sjoberg A., "Systematic evaluation of the CSNI separate effects tests validation matrix data base and resulting needs", Proceedings of the 5th International Conference on Nuclear Engineering (ICONE5), Nice, France, May 26-30, 1997, (paper no. ICONE5-2147).

[6] A. Annunziato, H. Glaeser, J. Lillington, P. Marsili, C. Renault, A. Sjöberg, "CSNI Integral Test Facility Validation Matrix for the Assessment of Thermal-Hydraulic Codes for LWR LOCA and Transients", NEA/CSNI/R(96)17, July 1996

[7] N. Aksan and H. Glaeser, "Overview on the CSNI Separate Effects Test and Integral Test Facility Matrices for Validation of Best-Estimate Thermal-Hydraulic Computer", Proceedings of OECD/CSNI Seminar on "Best Estimate Methods in Thermal-Hydraulic Safety Analysis", Ankara, Turkey, 29 June- 1 July 1998, NEA/CSNI/R(99)10, February 2000.

[8] "Validation Matrix for the Assessment of Thermal-Hydraulic Codes for VVER LOCA and Transients", by a Group of Experts of the NEA Committee on the Safety of Nuclear Installations, NEA/CSNI/R(2001)4, June 2001