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W Outline

e Weather and Climate for Poets
 Mechanisms of Variability of Weather and Climate

* Predictability and Prediction of Weather and Climate
— Weather
— Climate (Seasonal, ENSO, Decadal)
— Climate Change

 Factors Limiting Predictability: Future Challenges

— Observational and Theoretical (Physics & Dynamics of the
Coupled Climate System)

— Computational and Numerical

e Summary and Conclusions
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Physics of Weather and Climate
for Poets

Weather Is what you get,
climate Is what you expect.

(E. N. Lorenz)
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eather and Climate

(Weather: Wind, Pressure, Temperature, Humidity & Precipitation)

Expected Unexpected
= Weather + Weather

(X,V¥,z,1) (X,V¥,2z,1)

|

Climate

Weather
(X,V¥,2z,1)
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The Climate of a Planet Depends On ...

Atmospheric Composition H,0, CO,, O,, clouds

1. Energy from the Sun S
(energy from the interior)

2. Planetary Albedo o)
3. Speed of Planet’s Rotation Q
4. Mass of the Planet M
5. Radius of the Planet a
6.

7.

Ocean-Land, Topography h*

Center of Ocean-Land- %\ \Iﬁ r /
I@ES e, == &= CREW Mg
= Center for Research on
C OLA @ Environment and Water

IIIIIIIIII



CLIMATE DYNAMICS
OF THE PLANET EARTH \

O,
S, H,O, a, g, Q h*: mountains, oceans (SST)
Co, w*: forest, desert (soil wetness) C
— —— —|
T oU JT oU _| stationary waves (Q, h*), |_ :
’ ’ monsoons
y' &y & . — [w
hydrodynamicYnstabilities of shear ﬁows; stratification & EL A
rotation; moist thermodynamics A T
n[E
day-to-day weather fluctuations; |_) -
wavelike motions: wavelength, period, amplitude R -




etermines the Climate of a Planet

Mercury| Venus | Earth Mars | Jupiter | Saturn | Uranus [Neptune
Mean Radius (km) 2440 6052 6371 3390 | 69911 | 58232 | 25362 | 24624
Mass (%102 kg) 0.3302 | 4.869 | 5.973 | 6.419 | 1898.6 | 568.46 | 86.832 | 102.43
Rotation Period 58.6d | —243d | 23.93h | 24.62h | 9.93h | 10.66h | 17.24h | 16.11h
Teanrcn 87.97 | 2247 | 365.24 | 686.92 | 4330.6 | 10747 | 30589 | 59800
(Earth days)
Eq”at?r:l'as'_gra‘"ty 3701 | 8870 | 9.780 | 3.690 | 2312 | 896 | 8.69 | 11.00
Planetary Solar "8 99369 | 2613.9 | 1367.6 | 589.0 | 505 | 1504 | 371 | 1.47
constant (W m™)
Geometric Albedo 0.106 0.65 0.367 0.150 0.52 0.47 0.51 0.41
°b"qt('::;‘; o ~0.1 | 177.3 | 2345 | 2519 | 342 | 26.73 | 97.86 | 29.56
Atmos. Temp. 735K 270 K 210 K
Atmos. Pressure (Bar) 90 1.0 0.0056
Atmos. CO, 96.5% | .035% | 95.3%
Atmos. H,0 015% | <4% | .021%
I@S AGU Reference Shelf 1; Global Earth Physics, A Handbook of Physical Constants _ ~

(1995, T. J. Ahrens, Ed.)



Multiple Jets
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Rotation Period: 9.93 hrs
Radius: 70,000 Km
Gravity: 23.12 ms™
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Planets and atmospheres

Thin atmosphere
{Almost all COz in ground)
Average temperature : - 50°C

Earth
0,03% of CO2 in the atmosphere
Average temperature : + 15°C

Venus

Thick atmosphere

containing 96% of CO2
Average temperature : + 420°C
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TE DYNAMICS
THE PLANET EARTH \

0,

co,

S, H,O, a, g, Q

_|

h*: mountains, oceans (SST)

w*: forest, desert (soil wetness)
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stationary waves (Q, h*),

monsoons

|_

hydrodynamic Ynstabilities of shear ﬁows; stratification &
rotation; moist thermodynamics

day-to-day weather fluctuations;
wavelike motions: wavelength, period, amplitude
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ATE DYNAMICS
F THE PLANET EARTH

S
0,
S, H,0 , a, g, Q |4 h": mountains, cceans [SST)
Co, w*: forest, desert [soil wetness)
1 . 1 I
. R
ar & 8T aul | statianaryvfaves {Q, h*},
s E’; monsoons

rotation; moist thermodynamics

day-to-day weather fluctuations;

wavelike motions: wavelength, period,

The Climate of a Planet Depends On ...

MABRE—IQD

|zm::—c=-mi

amplitude

Temperature (°F)

Daily Average Temperature (°F)

1. Energy from the Sun S
{energy from the interior)
2. Planetary Albedo a
3. Speed of Planet's Rotation Q
4. Mass of the Planet M
9. Radius of the Planet a
6. Atmospheric Composition H,0, CO,, O,, clouds
7. Ocean-Land, Topography h*
T S & SREY MESH

at 49N 112W
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xamples of Weather and Climate Variability

 Annual Cycle

e Daily Weather

e Seasonal Climate

e Interannual (ENSO)
» Decadal

e Centennial (Climate Change)




§ Daily Average Temperature (°F) at 49N 112W
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@7 Sea Level Pressure (mb) and Precipitation Rate (mm/12Hr)
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Sea Level Pressure (mb) and Precipitation Rate (mm/12Hr)
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Sea Level Pressure

(mb) and Precipitation Rate (mm/12Hr)
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GOLD soil wetness (fraction) &
HADISST SST (°C) for November 1997
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WLCLIMATE DYNAMICS
(OF THE PLANET EARTH

B

The Climate of a Planet Depends On ...

GOLD soil wetness (fraction) &
HADISST SST (°C) for November 1997

1. Energy from the Sun S
s fenergy from the interior)
2. Planetary Albedo a
3. Speed of Planet's Rotation Q
0, - 4. Mass of the Planet M
S, H,0 , a, g, Q |4 h": mountains, cceans [SST)
Co, w*: forest, desert {soil wetness] c 5. Radius of the Planet a
g T fU| | stationary waves [Q, h*), I Il' 6. Atmospheric Composition H,0, CO,, O,, clouds
’ monsoons
r 7. Ocean-Land, Topography h*
rotation; moist thermodynamics T
day-to-d ther fluctuati 3 E,L Corteruf Domn. Lani. T ~ =
w:!\’re‘I:ikear!;;?:ns?:v:vcell:a:;I;::,speriad, amplitude ﬁ?&ﬁ I @S AL CﬁA {% (RE\N MASON



90N

60Nq -

30N

EQ{ -

3s{

60S 1

90S

0 B0E 120E 180

120W B60W 0

Center of Ocean-Land- % \"(‘-
I@S Atmosphere studies ,"- ‘ =

CREW (ezonce
Center for Research on
UNIVERS

Environment and Water



S

—24
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
3‘: """""""""""""""""""""""""""""""""""""""""""""""""""""""""""
0 .
g R | ——
! L n“i wahe j“h | N | | |
07 | || N W5 - .
3 3 3 — L Hi ‘ HEHTHEE -
R S o TR || IR
-24 T : . . . . : . : :
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
[ s
Center of Ocean-Land- "> ~ \
I@S Atmosphere studies ﬁ ‘I‘ CR}: v"‘v
=] OL Ccmer l'or‘ Rc?carctn Of)
Environment and Water

uuuuuuuuuu



for Ninol+2 (90°W-80°W, 10°S-0°

Sea Surface Temperature and climatolo§y (°C)
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Sea Surface Temperature and climatology (°C)
for Northwestern Pacific (150°E—180°, 35°N—45°N)
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ino/Southern Oscillation

1998 JFM SST [°C]
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ino/Southern Oscillation

Warm minus Cold composite
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Amer 2003 European Heat Wave:
Result of Global Warming?

-

¢

« The immediate cause of
the heat-wave was a
persistent high pressure
center over Northwest
Europe.

e+ Thereis currently no
) evidence that human
influence on climate
makes such circulation
patterns more likely.

i

Summer 2003 temperaturesire|a';ti\)e. ' Land Surface Temperature difference [K]

to 2000-2004 |
-10 5
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All-India Summer Monsoon Rainfall, 1871-2003

(Based on HTM Homogeneous Indian Monthly Rainfall Data Set)
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This figure shows the time series evolution of AISMR anomalies,
expressed as percent departures from its long-term mean.
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North Atlantic

Oscillation:
the major mode of
variation in the extra-
tropical winter climate
(contracted in summer)
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Decadal Variability of North Atlantic Oscillation

The NAO index is defined as the anomalous difference between the
polar low and the subtropical high during the winter season
(December through March).
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LAST CENTURY OR SO ...

0.6
Degrees Celsius above or below
0.4 —— 30-year® average global temperature
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Outline

« Weather and Climate for Poets

 Mechanisms of Variability of Weather and Climate

* Predictability and Prediction of Weather and Climate
— Weather
— Climate (Seasonal, ENSO, Decadal)
— Climate Change

* Factors Limiting Predictability: Future Challenges

— Observational and Theoretical (Physics & Dynamics of the
Coupled Climate System)

— Computational and Numerical

e Summary and Conclusions
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The “Charney” Diagram

Observations
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aily, Intraseasonal, Seasonal,

Interannual, and Decadal Variations

u “Short range”
weather variation

U “Medium range”
weather variations

U Intraseaonal
variations

U Seasonal mean
variations

U Interannual
variations

u Decadal
variations

u Climate change

* Hours; thunderstorms, tornadoes, squall lines, fronts, ....
 Diurnal cycle; Organized convection
» “Cyclones”, Eeasterly waves, Depressions, ....

» Blocking; Growth, decay of tropical, tropospherical
disturbances

 Madden Julian “Oscillation” (MJO), Monsoon Intraseasonal
variations, Pacific North American (PNA) variations, Annular
modes

* Persistent droughts; Floods; Persistent “hot” and “cold” days;
“Anomalous” number and tracks of cyclones

« ENSO, QBO, TBO, NAO, NAM, SAM
 PDO, Thermohaline circulation, Sahel drought, Decadal ENSO

» Solar, Volcanoes, Greenhouse gases, Land use change

I@®ES
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Mechanisms of Variability

Internal

Weather: 1. Internal Dynamics of
Atmosphere

Climate: 2.Internal Dynamics of

(seasonal-

decadal) Atmospshere

Climate 3. Internal Dynamics of
Change: Sun-Earth System

Coupled Ocean-Land-

External

 Boundary Condition of
SST, Soil wetnhess, Snow,
Sea ice, etc.

» Solar, Volcanoes

e Human effects:

(Greenhouse gases, land
use changes)
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Outline

« Weather and Climate for Poets

 Mechanisms of Variability of Weather and Climate

* Predictability and Prediction of Weather and Climate
— Weather
— Climate (Seasonal, ENSO, Decadal)
— Climate Change

* Factors Limiting Predictability: Future Challenges

— Observational and Theoretical (Physics & Dynamics of the
Coupled Climate System)

— Computational and Numerical

e Summary and Conclusions
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Laplacian Determinism

We may regard the present state of the universe as
the effect of its past and the cause of its future. An
intellect which at a certain moment would know all
forces that set nature in motion, and all positions of
all items of which nature is composed, if this
intellect were also vast enough to submit these data
to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe
and those of the tiniest atom; for such an intellect
nothing would be uncertain and the future just like
the past would be present before its eyes.

Laplace

Essai philosophique sur les probabilités

I@ES MASSR
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Historical Views of Predictability (1)

1.The Austrian School ~ 1893

The meteorologist of Austrian School considered
forecasting to be unscientific.

Evoking the attitude of some members of this school:
forecasting is immoral, a danger to the character of a
meteorologist, and an affair for romantics.

(BAMS, 2006, Vol.87, pp1662-1667)

Center of Ocean-Land- o 2=
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Historical Views of Predictability (2)
2. The Norwegian School (V. Bjerknes) ~1904

 Presented a set of equations that should be solved to calculate
the future weather, as an application of Laplacian determinism.

 Considered weather to be predictable in principle.

3. The Chicago School ~ 1950s

« Optimistic followers of the Laplacian determinism (V. Bjerknes)

« Considered the limit of predictability of the weather restricted
only by the imperfections of observations of the initial
conditions and the imperfections in the models.

(BAMS, 2006, Vol.87, pp1662-1667)

——— y
Center of Ocean-Land- " 2 T /
Atmosphere studies o N/ , I GEORGE
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Historical Views of Predictability (3)

4. Lorenz (Deterministic Chaos, Predictability) ~ 1960s

« An irrefutable theory of the predictability of weather, nonlinear
dynamical systems.

 Showed that for some physical systems, while Laplacian

determinism holds, the prediction of future behavior will
necessarily be imperfect.

(BAMS, 2006, Vol.87, pp1662-1667)
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Historical Views of Predictability (4)

5. Predictability in the midst of Chaos ~ 1980s

« Atmosphere-ocean interactions and atmosphere-land
interactions enhance predictability of the coupled system far
beyond the limits of predictability of weather.

 Forced response of the tropical atmosphere is so strongly
determined by the underlying ocean, and the forced response
of the tropical ocean is so strongly determined by the overlying
atmosphere, that there is no sensitive dependence on the initial
conditions.

 Coupled ocean-land-atmosphere system is predictable.
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A simple model to predict weather and climate

4 N

n+1 f(Y )

. /

Three examples:
1. A discrete nonlinear system with one variable (one equation)
2. A continuous nonlinear system with three variables (the Lorenz model)

3. Weather and climate models with one million equations (GCM)

-_._._|—l—_-||
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A simple model of climate

(Lorenz, E. N., 1964: The problem of deducing the climate from the
governing equations. Tellus, 16, 1-11)

Quadratic Map: A discrete deterministic nonlinear system
(Also called Logistic map in other fields.)

Y.u= /()

Yoo =rY,(1-7,)
Using a linear transformation Y, =—Xn/r+1/2 and C=r2/4—r/2,

2
we obtain an alternate form of the quadraticmap: X , =X "~—c

For specified values of ¢ and X, we get a sequence

X, X X5 X5 X5 .....  attime steps n=0,1,2,.....

—_— P -
Center of Ocean-Land- " - /
Atmosphere studies ﬁ \I GEORGE
CO I A v Center for Research on N
Environment and Water
UNIVERSIT



0 0.5000 0.5010 0.5000 0.500
1 -1.5500 -1.5489 -1.5510 -1.550
2 0.6025 0.5990 0.6046 0.602
3 -1.4369 -1.4411 -1.4354 -1.437
4 0.2646 0.2767 0.2593 0.264
5 -1.7299 -1.7234 -1.7337 -1.730
6 1.1925 1.1701 1.2047 1.192
7 -0.3779 -0.4308 -0.3496 -0.379
8 -1.6571 -1.6144 -1.6787 -1.656
9 0.9459 0.8062 1.0170 0.942
10 -0.9052 -1.1500 -0.7667 -0.912
11 -0.9806 -0.4775 -1.2131 -0.968
12 -0.8384 -1.5719 -0.3293 -0.862
13 -1.0970 0.6708 -1.6925 -1.056
14 -0.5965 -1.3500 1.0635 -0.684
15 -1.4441 0.0225 -0.6699 -1.332
16 0.2854 -1.7994 -1.3522 -0.025
17 -1.7185 1.4378 0.0274 -1.799
18 1.1532 0.2672 -1.8002 1.436
e oclan: ——= 75

Center for Research on
Environment and Water



Ictability experiments with quadratic map

n c=1.8000 c=1.8000 c=1.8010 c=1.800
85 0.0373 0.2580 -1.7333 -1.302
86 -1.7986 -1.7334 1.2033 -0.104
87 1.4349 1.2046 -0.3530 -1.789
88 0.2589 -0.3489 -1.6763 1.400
89 -1.7329 -1.6782 1.0089 0.159
90 1.2029 1.0163 -0.7831 -1.774
91 -0.3530 -0.7671 -1.1877 1.347
92 -1.6753 -1.2115 -0.3903 0.014
93 1.0066 -0.3322 -1.6486 -1.799
94 -0.7867 -1.6896 0.9168 1.436
95 -1.1811 1.0547 -0.9604 0.262
96 -0.4050 -0.6876 -0.8786 -1.731
97 -1.6359 -1.3272 -1.0290 1.196
98 0.8761 -0.0385 -0.7421 -0.369
99 -1.0324 -1.7985 -1.2502 -1.663

100 -0.7341 1.4346 -0.2379 0.965
Center of Ocean-Land- ._/_‘_ W /G EORGE

Atmosphere studies ‘
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z's Empirical Formula for Error Growth

Introduce an ensemble of small initial errors and allow it evolve.

If £ is the mean error, the exponential growth is given by the equation

9 Ik
dt

Doubling time of the errors  ¢d = (In2)/A.
The errors do not grow forever. The nonlinearities limit the error growth.

Lorenz introduced a simple assumption that nonlinear error growth is
quadratic in E.

The modified error equation is

d—Ez/iE—SE2
dt

where 1 is the growth rate and s is so chosen that E=//s is the saturation
value of E.

/ is usually the largest Lyapunov exponent.

—_— y
Center of Ocean-Land- "~ .
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i
th of Random Errors in the simple model

of Tropics and midlatitude
Model 1: X, = an —a (Tropics) a=1.98

Model2: ¥, =0.1Y.° —10b (Mid-latitude) b =1.60

An ensemble of 10000 initial ;
Suodrotic Maops
random errors was allowed to
Ensemble of 10000 errars
evolve for each model. 7.0 _ : _ _
—— Engemble arror i : :
B0 4 : tMeodsl 2: Mid—latitude E,
Empirical fit for Error growth 5 T .
dE ) . i
—1:2’1E1_S1E1 ? 1 T T S T T T S T S R S SR I
dt i
dE " .0 - A e s e
2 C i
2:2/2E2—S2E2 L ?U 2
dt = Model 1: Trapics: E,
1.|:| i i Tely = H
A >4,
D.D ....................
A, =0.63 L . | | . ;
1. =037 o 10 o0 30 40 50 EQ
2 — . rl
o p—— e
; Centegfoll Qaealldnginds o=~ = y
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Lorenz Model

Lorenz model is a low-order convection model described by just

three ordinary differential equations. It is one of the simplest forced
dissipative nonlinear systems.

X I

= - _6X +0Y

d

Y _xzex —v
d

92 _ xy _ bz

\ dt /

X, Y, Z: Dynamical variables

r: Forcing

o, b: Dissipation

Parameter values: ¢=10, b=28/3, r=28

Initial condition: X=0.0, Y=1.0,Z=0.0

Time increment for integration: Ar=0.01
I@ES Comr ot

COTrA

e
\l‘ CRF \M ”GEORGE
&

Center for Research on N
Environment and Water
UNIVERSIT




ictability Experiment 1 in Lorenz Model

The Lorenz model is first integrated up to the time step n = 10000.

At n = 10001, this unpertubed integration is continued, and a new
integration is carried out with a small perturbation added to the state from
the unpertubed integration.

The same projections of unperturbed and perturbed trajectories are shown
in different colors for different segments of time, the divergence of
trajectories become clear.

Lorenz Madel {3—Vorighle Conwvectiond: r=28
n=12001-13500 n=13001=1&000 n=1&001—-13000

Unperiurbed FPerturbed ot n=5000

a0 50

FIvR N a0 -
L 1
I

201

10

_—
= Mo



y Experiment 2 in Lorenz Model

From Strogatz, S. H., 1994: Nonlinear
dynamics and chaos, Westview Press

An ensemble of 10000 nearby points
at an initial r = 0 around a basic state
is allowed to evolve in Lorenz model.

Blue points are from unperturbed
integration.

Red points show the evolution of the
perturbed initial states.

“As each point moves according to
Lorenz equations, the blob is
stretched into a thin filament...
Ultimately, the points spread over ...
showing that the final state could be
almost anywhere, even though the
initial conditions were almost
identical.”

Center of Ocean-Land- /._/_‘ = /
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Historical Evolution: 1904-1954

V. Bjerknes (1904) Equations of Motion

— Father of J. Bjerknes, son and research assistant of C. Bjerknes (Hertz, Helmholtz)

L. F. Richardson (1922) Manual Numerical Weather Prediction
— Military background, later a pacifist, estimated death toll in wars

C. G. Rossby (1939) Barotropic Vorticity Equation

— First “Synoptic and Dynamic” Meteorologist; Founder of Meteorology Programs at
MIT, Chicago, Stockholm

J. Charney (1949) Filtered Dynamical Equations for NWP
— First Ph.D. student at UCLA; Chicago, Oslo, Institute for Advanced Study, MIT

N. A. Phillips (1956) General Circulation Model
— Father of Climate Modeling; Chicago, Institute for Advanced Study, MIT

Center of Ocean-Land- ﬁ \lﬁ T /
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R.m.s. error (hPa) of extratropical PMSL forecasts for three and five days ahead

s EC MWF UK USA
JAPAN GERMANY FRANCE
8
7
5]
D+5
5
4
3 D+3

21989 1991 1993 1995 1997 1999 2001 2003 2005 2007

(Thanks to ECMWF!)
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140

R.m.s. errors and differences between successive forecasts
Northern hemisphere

R.m.s. errors

500hPa height

i o s i R.m.s. differences

Winter

Current Limits of Predictability A Hollingsworth,  Savannah  Feb 2003 L 50=
P
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volution of 1-Day Forecast Error,
Lorenz Error Growth, and Forecast

Skill for ECMWF Model
(500 hPa NH Winter)

1982 1987 1992 1997 2002
“Initial error”
20 15 14 14 8
(1-day forecast error) [m]
Doubling time [days] 1.9 1.6 1.5 1.5 1.2
Forecast skill [day 5 ACC ] 0.65 0.72 0.75 0.78 0.84




ERA FORECAST VERIFICATION

500h Pa GEO POTE NT'AL m m m m m sSCORE REACHES 95.00 MA

ANOMALY CORRELATION FORECAST e
N.HEM LAT 20.000 TO 90.000 LON -180.000 TO 180.000

Forecast Day : MA =365 Day Movmg Average

£ ~"rﬂ+#qﬂ-'w-w*ﬁn&.m-iﬁrﬁhr

JMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSNJMMJSN
1980 1981 - 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

Environment and Water

Center of Ocean-Land- % \Iﬁ 1—; /
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ECMWF FORECAST VERIFICATION 12UTC

500hPa GEOPOTENTIAL

ANOMALY CORRELATION FORECAST
HHEM LAT 20000 TO 50000 LON-180.000 TO 180.000

= e == 5 DO RE REACHES 6000

— 00 R E REAC HES G000 WA

Forecast Day MA =12 Month Mowing Average

189 =00 2001 2002 2003 2004

—_— f
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ECMWF FORECAST VERIFICATION 12UTC

500hPa  GEOPOTENTIAL

ANOMALY CORRELATION FORECAST
HHEM LAT 20000 TO 90000 LON-180.000 TO 180.000

Fomcast Day

10

of Tropics and midlatitude
Model1: X, =X, —a 2=1.098

n

{Tropics)

Model 2: ¥, = 0.11’;2 —105 ([Mid-latitude] & =1.60

of Random Errors in the simple model

An ensemble of 10000 initial D drate Hos
random errors was allowed to £
nsemble of 1000% errars
evolve for each model. 7.0 : - ]
—— Ensemble error ! e L
: Model 2 Mid—lotitude E,
Empirical fit for Error growth o T
daE, 5
d; :AIEI _‘5.11:","12 g .....
Lol
dEz 2 A S el el R B Bl
? = A4E, -5 E, U G g s §osmeed e ot
A>A | aulleacii @ SRR
A =0.63 o | | | | |
"o 10 70 30 10 50 B0
A, =0.37 n
e ——. -
I@ S i = 48\ CREW Foeonae
COTA \§p it

——r—— 500 FE REAC HES 6000

—CO R E REAC HES 8000 WA

MA =12 Month Maving Average

2000 2001
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Error Growth for the Tropics (Red) & Extratropics (Blue)

1800

1600

1400

Extratropics

1200

-
(=]
=1
=]

Pressure (Pa)

(=]
(=]
(=]

Time (Days)

Schematic diagram illustrating the error growth in the tropics (red) and
the extratropics (blue). The thick lines in both panels depict the rates at
which initially different states reach the boundary-forced state. The thin

lines show typical spread of forecasts initialized with slightly perturbed
initial conditions on day 0.
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R.m.s. errors and differences between successive forecasts
Northern hemisphere 500hPa height Winter

g R.m.s.errors ~ =——————— R.m.s. differences
16,:]. _ S o T ——— ————

140

120
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Outline

« Weather and Climate for Poets

 Mechanisms of Variability of Weather and Climate

* Predictability and Prediction of Weather and Climate
— Weather
— Climate (Seasonal, ENSO, Decadal)
— Climate Change

* Factors Limiting Predictability: Future Challenges

— Observational and Theoretical (Physics & Dynamics of the
Coupled Climate System)

— Computational and Numerical

e Summary and Conclusions
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rom Numerical Weather Prediction (NWP)
To Dynamical Seasonal Prediction (DSP) (1975-2004)

Operational Short-Range NWP: was already in place

15-day & 30-day Mean Forecasts: demonstrated by Miyakoda (basis for creating
ECMWF-10 days)

Dynamical Predictability of Monthly Means: demonstrated by analysis of variance
Boundary Forcing: predictability of monthly & seasonal means (Charney & Shukla)

AGCM Experiments: prescribed SST, soil wetness, & snow to explain observed
atmospheric circulation anomalies

OGCM Experiments: prescribed observed surface wind to simulate tropical Pacific sea
level & SST (Busalacchi & O’Brien; Philander & Seigel)

Prediction of ENSO: simple coupled ocean-atmosphere model (Cane, Zebiak)

Coupled Ocean-Land-Atmosphere Models: predict short-term climate fluctuations

Center of Ocean-Land- % \(ﬁ iR /
Atmosphere studies ,"- . " CRJ_JW GEORGE
COLA v chmr for Research on
Envirom
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GOLD soil wetness (fraction) &
HADISST SST (°C) for November 1997
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R

NESDIS snow cover (fraction) anomaly (1966—90 mean) &
HADISST Sea Ice (%) anomaly (1966—-90 mean) for January 1983




Mean

TOMS Ozone for September 1997

Dobson Units

340
330
320

310
300
290
280

270
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N

GOLD soil wetness (fraction) anomaly (1979-99 mean) &
HADISST SST (°C) anomaly (1979-99 mean) for November 1997
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ulation of (Uncoupled) Boundary-Forced

Response: Ocean, Land and Atmosphere

INFLUENCE OF OCEAN

ON ATMOSPHERE

— Tropical Pacific SST
— Arabian Sea SST

— North Pacific SST

— Tropical Atlantic SST
— North Atlantic SST

— Sealce

— Global SST (MIPs)

INFLUENCE OF LAND

ON ATMOSPHERE

Mountain / No-Mountain

Forest / No-Forest (Deforestation)
Surface Albedo (Desertification)
Soil Wetness

Surface Roughness

Vegetation

Snow Cover

(Thanks to COLA!)
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EFFECTS OF SST ANOMALY

6T(X1Y)% 6Q(X,y,2) > oV
SST anomaly heating anomaly circulation anomaly
~ 5-7 days

e 0T (magnitude, structure)
T (magnitude, structure) ~ 10-30 days
« V(x,y,2): large scale flow
* d(conv., div.):

latitude regime (f)
» _instability

* 0Q (magnitude, structure)
¢ location of 5Q w.rt. V
+ tropics: Hadley, Walker, monsoon
« extratropics: quasi-stationary
waves, forcings and instability
* U(y,z): resonance, propagation
(0Q < dU)
0Q = d(Hadley) = dU = o (extratrop. stat. waves)
Forced Rossby waves
Normal modes

I o

[ -
Center of Ocean-Land- "> /7
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A
| Rainfall 1982-83

. Eiiyd i Lo -:_. . ; L:.-:;-":,, =#FHIF _.-.-'-FF.'_ L -f-:. _.-._u.._ R N
e e T — e ot T gl : R Y
A .l.r'-;.:'-.-.;I:--.‘!_E-F'"q\'_-.:'.__' S A TR

. ~1988-89

10 20 30 40 50 60 70 80 g0 100
Days

The atmosphere is so strongly
forced by the underlying ocean
that integrations with fairly
large differences in the
atmospheric initial conditions
converge, when forced by the
same SST (Shukla, 1982).

Zonal Wind (m/s)

30
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Zonal Wind
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Initial conditions
December 1988

Initial conditions
December 1882
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ome Examples of Seamless Processes

Tropical Convection
(SST)

Persistent Drought
(Land)

North America Forest Fires
(Land)

Eurasian Snow
(Cryosphere)

Pacific/lO SST
(Ocean)

Influence ENSO
(Ocean)

Upp. Stratosphere Circ.

Monson Droughts
(Atmosphere)

ISO/MJO

Asian Monsoon
(Land)

Global change

Extra Trop. Surface Winds

Global Warming

Rossby Waves
(Atmosphere)
Surface Wind
(Atmosphere) -
Wet/Dry soil, Ts
(Land) '
Walker cell
(Atmosphere) '
Propagation down ——
ENSO —
Regional SSTA —

Hurricanes
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Northward Propagating Rossby-Wave Train
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WHeat Wave of summer 2003

3k A

Tcmx JJA 2003

5 0N -
IEINE
40N - — (Xie Pingping data)
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1 O o 10E 20E S0E

Anomaly of maximum
surface temperature
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Evolution of
Climate Models
1980-2000

Model-simulated and observed
rainfall anomaly (mm day-)
1983 minus 1989
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fodel Simulation of ENSO Effects
500 hPa height (meters) anomalies

ACC = 0.98

Vintage 2000

-30 30

Observed

//GEO
NINO3 Warm(83,87,92) — Cold(85,89) D’fAS



ability Density Function of Extreme Winter
Storms in Southeastern US (DJF 1949-1998)

0.5 ;

Red - El Nino winters

041 Blue - La Nina winters

Dashed - observations

031 Solid - model (9 member ensemble)

0.14

1 2 3 4 5 6 7 3 9 10

Maximum value of the intensity of storms affecting the southeastern United States
(storms are identified from an EOF analysis of daily precipitation). Values are the
principal components scaled so that the model and observed EOFs have the same total
variance. Units are arbitrary. The PDFs are the fits to a Gumbel Distribution.
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Factors Limiting Predictability:
Future Challenges
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Percent Variance over PNA region explained by tropical SST

GCM1 (open square) 29%
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Probability Distribution
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Variance of Model-Simulated Seasonal (JFM) Rainfall (mm?)

Model 5
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Boreal Summer (JJA) Rainfall Variance in AGCMs

Forced Variance

Free Variance
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Observed and Simulated Surface Temperature (°C)

OBSERVED
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Outline

« Weather and Climate for Poets

 Mechanisms of Variability of Weather and Climate

* Predictability and Prediction of Weather and Climate
— Weather
— Climate (Seasonal, ENSO, Decadal)
— Climate Change

* Factors Limiting Predictability: Future Challenges

— Observational and Theoretical (Physics & Dynamics of the
Coupled Climate System)

— Computational and Numerical

e Summary and Conclusions
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Evolution of Climate Models:
1955-2004

Atmospheric General Circulation Models (1960-1965)

— Smagorinsky, Manabe, Arakawa and Mintz, Leith, ...

Oceanic General Circulation Models (1963-1967)

— Bryan, Sarkisyan, Bryan and Cox, Takano and Mintz, Semtner, ...

Land Surface Processes Models
— Manabe (1965); Dickinson (1984), Sellers et al. (1986), ...

Coupled Climate Models

— Manabe and Bryan (1969); Gates, Hansen, Hasselmann, Meier-Reimer,
Mitchell, Washington, ...

(Thanks to GFDL!)
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Skill in SST Anomaly Prediction for Nino3.4
DJF 1981/82 to AMJ 2004

15-member CFS reforecasts
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25

Ninc34 1-Month Lead Prediction

Verification Time

IRl Nino34 Forecast Archive

February 2002-September 2006

Running Seasonal Means

-
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Dynamic CGCMs Only

Nino34 6—Month Lead Prediction

25

*C

-15

JFMDE  AMIOE  JASDE JFWO7  AMIO?

JFMO4 AMJDY JASO4  JFMOS AMJDS  JASDS

OLCA

=340 T T T
JASOZ  JFMOZ AMJOZ  JASO3

~
N/

Verification Time

s CREW

Center for Research on
Environment and Water




~ Understanding Variations
in Forecast Skill

« What is the Overall Limit of Predictability?
« What Limits Predictability?

— Uncertainty in Initial Conditions: Chaos within
Non-Linear Dynamics of the Coupled System

— Uncertainty as the System Evolves: External
Stochastic Effects

e Model Dependence?
— Model Error

———— P
Center of Ocean-Land- f y
. f \
( Atmosphere studies — ll £ GEoRGE
= | CO I q % Center for Research on
Environment and Water
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R.m.s. errors and differences between successive forecasts
Northern hemisphere H00hPa height Winter

—_———— R.m.s.errors = ——————= R.m.s. differences
160" — — — -
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ity Limited Due to Initial Condition Uncertainty:
Two Time Scales in the Error Growth?

RMSE (DEGREES)

FITTED MODEL

AMSE (DEGREES)

4 = 0.145 (month)™?, Ey = 0.9°C

| L 1 1

COUPLED MODEL ERRORS |

Ot = 0.045 (month)™", Ep = 0.65°C
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ples: 4 ENSO cases of NINO3 index in CFS
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ecast Error and Lorenz Curve
CFS daily forecast start from 9Apr to 3May (15 members)
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Outline

« Weather and Climate for Poets

 Mechanisms of Variability of Weather and Climate

* Predictability and Prediction of Weather and Climate
— Weather
— Climate (Seasonal, ENSO, Decadal)
— Climate Change

* Factors Limiting Predictability: Future Challenges

— Observational and Theoretical (Physics & Dynamics of the
Coupled Climate System)

— Computational and Numerical

e Summary and Conclusions
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Incoming Radiated

solar radiation out to space
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Hence the term, “Greenhouse Effect”

ICOMIng HRadiated
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solar radiation UL L0 5 PG
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Planets and atmospheres

Thin atmosphere
{Almost all COz2 in ground)
Average temperature : - 50°C

Earth
0,03% of CQ2 in the atmosphere
Average temperature : + 15°C

Venus

Thick atmosphere

containing 96% of COg
Average temperature : + 420°C
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e

Produced by Produced by
deforestation burning

fossil fuels

Abzorbed by Absorbed Absorbed

atmosphere by oceans on land
hE
— 33+02 - 20+08 = Approximately
billion billion 2 billion
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Net CO, Flux from Takahashi et al., 2002
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Radiative Forcing Components

RF Terms RF values (W m?) Spatial scale| LOSU
' 1 % 1
' I
: [ 1.66[1.49101.83] | Global High
Long-lived | :
greenhouse gases I | 0.48 [0.43 to 0.53]
: ons 0.16 [0.14 to 0.18] Global High
|
! I
' | [ -0.05[-0.15 0 0.05 i
Ozone Stratospheric Tropospheric | [ ] C?m':"zr:jal Med
o | h | 0.35 [0.25 to 0.65] Do)
c | |
@ | Stratospheric water ! |
o I
§ vapour from CH, : | : 0.07[0.02t00.12] |  Global Low
= | !
£ Land use ! I -0.2 [-0.4 to 0.0] Local to Med
= Surfece albedo Black carbon | : &
< : R SR B | 0.1[0.0to 0.2] continental ow
| | |
; T 5 3 Continental | Med | ©
Direct effect : : : 05[-0.910-0.9] to global -low | T
Total I I I 8
Aerosol | Cloud albedo | | | Continental
effect ; | } -0.7 [-1.8 10 -0.3] o global Low 8
| | | g
| | | =
Linear contrails | | | 0.01[0.003 t0 0.03]| Continental | Low | <
| | | @
® i i T T
E Solar irradiance ! ! ! 0.12[0.06100.30] | Gloval | Low |3
1] | | | g
= ;
Totalnet : ' 1.6 [0.6 to 2.4]
anthropogenic | i
. 1 . . I . 1

-2 -1 0 1 2
Radiative Forcing (W m2)

FIGURE SPM-2. Global-average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide
(CO,), methane (CH.), nitrous oxide (N;0) and other important agents and mechanisms, together with the typical
geographical extent (spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). The net
anthropogenic radiative forcing and its range are also shown. These require summing asymmetric uncertainty estimates
from the component terms, and cannot be obtained by simple addition. Additional forcing factors not included here are
considered to have a very low LOSU. Volcanic acrosols contribute an additional natural forcing but are not included in
this figure due to their episodic nature. Range for linear contrails does not include other possible effects of aviation on
cloudiness. {2.9, Figure 2.20}
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2000 Year Northern Hemisphere Reconstruction of Surface Air Temperatures

1
L]

Calibrated reconstruction

o

Temperature
anomaly (°C)
® » O >
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Source: Moberg et al Nature 2005 r
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LAST CENTURY OR SO ...

Degrees Celsius above or below
0.4 —— 30-year* average global temperature
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at’s Happening in the Upper Atmosphere?

Glebal Srrardipheric Tessperature Anemaliet
Jam., B8TF « Daer. 2001

|:|.5 n

1.5

of - .
THED A1 A2 B3 B8 BD BG BT BE A5 90 94 52 AT 34 55 56 57 ¥ 59 00 04
Calendar Year

Center of Ocean-Land- f /
Atmosphere studie % CR W GEORGE
I@ES 'GOLA @

IIIIIIIIII



hat’s Happening in the Ocean?
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Sea level rise over the last century

Centimeters

E -
—— Annual sea level change

—— 5-year running mean

1880 1300 1820 1940 1860 1980

Saures: Cmata change 1895, The scires of dimale changs, coribution of warking group 1 o thy
unhereity press, 1996; Sea level isa over the last cenlury, adapted from Gomitz and Lebedeff, 15
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Global atmospheric concentration of CO:z

Parts per million {ppm)
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~Atmospheric Carbon Dioxide
Measured at Mauna Loa, Hawaii
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ATE DYNAMICS

O,
S, H,O, a, g, Q h*: mountains, oceans (SST)
Co, w*: forest, desert (soil wetness)
v
T ou JT oU _| stationary waves (Q, h*),
A0 4 "4 ° A | | monsoons
' & & ,

|_

hydrodynamicYnstabilities of shear ﬁows; stratification &
rotation; moist thermodynamics

day-to-day weather fluctuations;
wavelike motions: wavelength, period, amplitude

!
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¥
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Mean of 15 Models Sfc Air Temp Difference
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AOGCM Projections of Surface Temperatures
B1: 2020-2029

B1: 2090-2099

dv

Relative Probability
&

-;'-'—"L—"_ e
—__A1B:2020-2029

i

020-2029 A2: 2090-2099

Relative Probability
i

Relative Probability
(¥,
P LI 2002 DOdIE
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10 1 2 3 4 s & 7 8
Global Average Surface Temperature Change (°C)

FIGURE SPM-6. Projected surface temperature changes for the early and late 21st century relative to the period 1980~
1999. The central and right panels show the Atmosphere-Ocean General Circulation multi-Model average projections for
the Bl (top), A1B (middle) and A2 (bottom) SRES scenarios averaged over decades 2020-2029 (center) and 2090-2099
(right). The left panel shows corresponding uncertainties as the relative probabilities of estimated global average warming
from several different AOGCM and EMICs studies for the same periods. Some studies present results only for a subset of
the SRES scenarios, or for various model versions. Therefore the difference in the number of curves, shown in the left-
hand panels, is due only to differences in the availability of results. {Figures 10.8 and 10.28}
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@ Observations

@ Predicted sum of natural and anthropogenic changes @ Predicted natural changes

Incrrease in temperature (°C)

1.0°C

Courtesy UCAR

SOLRCE: UCAR
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Multi-model Averages and Assessed Ranges for Surface Warming

L 1 1 1 I L 1 1 1
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FIGURE SPM-5. Solid lines are multi-model global averages of surface warming (relative to 1980-99) for the scenarios
A2, A1B and B1, shown as continuations of the 20 century simulations. Shading denotes the plus/minus one standard
deviation range of individual model annual averages. The orange line is for the experiment where concentrations were
held constant at year 2000 values. The gray bars at right indicate the best estimate (solid line within each bar) and the
likely range assessed for the six SRES marker scenarios. The assessment of the best estimate and /ikely ranges in the gray
bars includes the AOGCMSs in the left part of the figure, as well as results from a hierarchy of independent medels and
observational constraints. {Figures 10.4 and 10.29}
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Global and Continental Temperature Change

Temperature anomaly (‘C}
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FIGURE SPM-4. Comparison of observed continental- and global-scale changes in surface temperature with results
simulated by climate models using natural and anthropogenic forcings. Decadal averages of observations are shown for
the period 1906-2005 (black line) plotted against the centre of the decade and relative to the corresponding average for
1901-1950. Lines are dashed where spatial coverage is less than 50%. Blue shaded bands show the 5-95% range for 19
simulations from 3 climate models using only the natural forcings due to solar activity and volcanoes. Red shaded bands

show the 5-95% range for 58 simulations from 14 climate models using both natural and anthropogenic forcings. {FAQ
9.2, Figure 1}




e Model Fidelity and Projections of Climate Change

. Shukla, T. DelSole, M. Fennessy, J. Kinter and D. Paolino
Geophys. Research Letters, 33, doi10.1029/2005GL025579, 2006
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Relative Entropy (Model Error in Simulating Current Climate)

Model sensitivity versus model relative entropy for 13 IPCC AR4 models. Sensitivity is defined as the surface air temperature change
over land at the time of doubling of CO,. Relative entropy is proportional to the model error in simulating current climate. Estimates of
the uncertainty in the sensitivity (based on the average standard deviation among ensemble members for those models for which
multiple realizations are available) are shown as vertical error bars. The line is a least-squares fit to the values.



g
Summary

* If we conjecture that models that better simulate
the present climate should be considered more
credible in projecting the future climate change,
then this study suggests that the actual changes in
global warming will be closer to the highest
projected estimates (4-5 °C) among the current
generation of models used in IPCC Assessment

Report 4.
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Challenges

Conceptual/Theoretical
Modeling
Observational
Computational
Institutional

Applications for Benefit to Society
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WChallenges

Conceptual/Theoretical
ENSO: unstable oscillator?
ENSO: stochastically forced, damped linear system?

(The past 50 years of observations support both theories)
— Role of weather noise?

Modeling
« Systematic errors of coupled models - too large

 Uncoupled models not appropriate to simulate Nature in some
regions/seasons: CLIMATE IS A COUPLED PROCESS

« Atmospheric response to warm and cold ENSO events is
nonlinear (SST, rainfall and circulation)

 Distinction between ENSO-forced and internal dynamics

variability
CZ'?:;:;,? tI‘; nd- ff J‘ ZGEORGE
I@ES COLA WP == GREW  MaseR
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Challenges

Observational
 Observations of ocean variability
 Initialization of coupled models

Computational

* Very high resolution models of climate system need million fold
increases in computing

« Storage, retrieval and analysis of huge model outputs
« Power (cooling) and space requirements-too large
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Climate Modeling and Computing
Models Today Models in 2015

e Weather e Weather
— T254: 5 d/hr on 144 CPUs — T3800 (5 km): 4 d/hr (2,160 CPUs)
- Or -
— T511: 2.5 d/hr on 288 CPUs — T825 (25 km): 4 d/hr (468 CPUs)
e Climate e Climate
— T85/ 1°: 2.0 yrs/d on 96 CPUs — T420/ 0.5°: 2.4 yrsid (2,500 CPUs)
=-0Or-
— 2°X2.5°/1°: 5.25 yrs/d on 180 — T420/0.5°: 2 mo/d (2,500 CPUs)
CPUs

[ 43%I/yr (Moore’s Law ) -OR- 10%l/yr ]
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Some parts of China are
experiencing the worst
drought in 50 years. Some 9
million people are facing a
shortage of drinking water
while farmers across the
country are looking out over
parched land. Even though
irrigation systems are in place
there is little water to supply it.

For Japanese people, this year
may be remembered as "the
year of disasters" because of
the unprecedented number of
typhoon strikes against Japan
and subsequent disasters.
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4 km Topography {(m)
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20km Topography {
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200 km Topography (m)
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Resources Tradeoffs

QuickTime™ and a Chrvea paibehon Gckion NN O
“F (Uncompressed) decompressol Ren
are needed to see this picture. l R ok

Computing
Resources

Resolution

| 36.84

|
I 5666

13.6 - | 56.48
5 year average
13.5 i p— —, v — 5630

1860 1880 1900 1920 1940 1960 1980 2000




Resolution

1.0 T T
I — Instrumental data (AD 1902 to 1999)
| —— Reconstruction (AD 1000 to 1980)
—— Reconstruction (40 year smoothed) 1998 inst
F- == Lineartrend (AD 1000 to 1800) -7 ns
0.5
0.0 | al II |
1 I
I T
TR E A i, AL )
i | Pl T i
i gt
-0.5 |
1.0 1 1 1
1000 1200 1400 1600

COWCEFTUAL FSODEL af Esrth Sy

Computing
Resources




Mhnology Trends

Current:

Peak speed: ~2-3 Gflops per chip
System integration: ~10,000 processors
Sustained performance: ~ 5-15% of peak (fluid codes)
Model examples:
« ECMWF T511L60 1X/day
« NCEP T382L64 4X/day
« NCAR CCSM T85L26 AGCM with 1° global OGCM

By 2010:

Peak speed: ~30-50 Gflops per chip (T 8X - Moore’s Law)
System integration: ~30,000 or more chips

Fluid codes are expected to continue to achieve sustained
performance of up to 15% of peak

Expected sustained capability: 150 TFLOPs (15% of 1 petaflops)
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M for Accelerating Progress

in Modeling and Prediction of the
Physical Climate System

 National Efforts

e Multi-National Efforts

 National: (5-10 efforts worldwide)

— Reanalyze and reforecast (1-2 seasons) for the past 50 years
each year (one year per week)

Center of Ocean-Land-
Atmosphere studies ﬁ ‘I‘ CR W /G EORGE
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‘Weather Prediction Model of ~2020

Coupled Ocean-Land-Atmosphere Model

~1 km x ~1 km
50 levels
Unstructured, adaptive grids

Assumption: Computing power enhancement by a factor of 103-104




Towards a Hypothetical “Perfect” Model

 Replicate the statistical properties of the past observed climate
— Means, variances, covariances, and patterns of covariability

« Utilize this model to estimate the limits of predicting the
sequential evolution of climate variability

 Better model — Better prediction (??)
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nternational Research and Computational
Facility to Revolutionize Climate Prediction

Examples of International Collaboration

« CERN: European Organization for Nuclear Research
(Geneva, Switzerland)

 ITER: International Thermonuclear Experimental Reactor
(Gadarache, France)

 ISS: International Space Station
(somewhere in sky..)
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| ﬁterhational Research and Computational
Facility to Revolutionize Climate Prediction

1. Computational Requirement:
- Sustained Capability of 2 Petaflops by 2011
- Sustained Capability of 10 Petaflops by 2015

Earth Simulator (sustained 7.5 Teraflops) takes 6 hours for 1 day forecast
using 3.5 km global atmosphere model; ECMWF (sustained 2 Teraflops)
takes 20 minutes for 10 day forecast using 24 km global model

2. Scientific Staff Requirement:
- Team of about 200 scientists co-located with central facility
- Distributed team of 200 scientists among interconnected centers

A computing capability of sustained 2 Petaflops will enable 100 years of
integration of coupled ocean-atmosphere model of 5 km resolution in 1

month of real time
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m Cyclone Resolving Global Models
to
Cloud System Resolving Global Models

1. Planetary Scale Resolving Models (1970~): Ax~500Km
2. Cyclone Resolving Models (1980~): Ax~100-300Km
3. Mesoscale Resolving Models (1990~): Ax~10-30Km
4. Cloud System Resolving Models (2000 ~):  Ax~3-5Km
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Conclusions, Conjectures
and Suggestions
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onclusions, Conjectures and Suggestions

25 years ago, a dynamical seasonal climate prediction was not
conceivable.

In the past 20 years, dynamical seasonal climate prediction has
achieved a level of skill that is considered useful for some societal
applications. However, such successes are limited to periods of large,
persistent anomalies at the Earth’s surface. Dynamical seasonal
predictions for one month lead are not yet superior to statistical
forecasts.

There is significant unrealized seasonal predictability. Progress in
dynamical seasonal prediction in the future depends critically on
improvement of coupled ocean-atmosphere-land models, improved
observations, and the ability to assimilate those observations.
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onclusions, Conjectures and Suggestions

Improvements in dynamical weather prediction over the past 30
years did not occur because of any major scientific
breakthroughs in our understanding of the physics or dynamics of
the atmosphere

Dynamical weather prediction is challenging: progress takes
place slowly and through a great deal of hard work that is not
necessarily scientifically stimulating, performed in an environment
that is characterized by frequent setbacks and constant criticism by
a wide range of consumers and clients

Nevertheless, scientists worldwide have made tremendous progress
In improving the skill of weather forecasts by advances in data
assimilation, improved parameterizations, improvements in
numerical techniques and increases in model resolution and
computing power
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onclusions, Conjectures and Suggestions

Improve understanding of physics and dynamics of (small
scale) cloud-system, and technique to assimilate and
initialize them is necessary to advance skill of weather and
climate prediction.

Coordinate world effort is needed to transition from cyclone
resolving models to cloud-system resolving global models.

Global teleconnections put a limit on the utility of regional
models.

Predictability of regional decadal variations remains a
challenging research problem.
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THANK YOU!

ANY QUESTIONS?
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