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Dynamical Systems

A system that evolves in time according to some governing laws is a dynamical system.
Each successive state is a function of the preceding state.

Examples: oscillators, planets in gravitation, atmospheric system

Types of dynamical systems

Conservative: The system possesses a conserved quantity, such as energy, a constant of
motion.

Dissipative: Energy is not conserved because of dissipation and forcing.
Linear. The system contains only first power in the dynamical equations.

Nonlinear. The system contains nonlinear terms in the dynamical equations.
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Representation of dynamical systems

Differential equations

Differential equations describe the evolution of the dynamical system in continuous time.
A coupled set of ordinary differential equations, such as Lorenz model, can be written as

dx,
dt

:F;'(Xl"”’XM)a l:1,,M

dx,
L=, X X - ) bX, +c

e.g.,

where Y a; X ; X, vanishes identically, )b, X is positive definite and

J-k J

C1,Cr, "5, Cyy are constants.

July 2, 2007 ICTP SMR 1849 Dynamical Systems Lecture2 V. Krishnamurthy



The set of differential equations ensures that the solutions exist and that they are unique
and continuous. Because of the existence and uniqueness, different trajectories never
interesect.

Phase Space is an M- dimensional Euclidean space whose coordinates are X,,...X,, .

Each point (X,,...X,,) in the phase space represents an instantaneous state of the system.

A state varying according to the dynamical equations is represented by a trajectory or orbit
in the phase space.

Uniqueness: Through each point, there is a unique orbit
Difference equations

Difference equations describe the evolution in discrete time
e.g., Quadratic map (logistic map)

Xi,n+1:Gi(Xl,n’.“’XM,n)’ lzl’M
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Chaos: Sensitive Dependence on Initial Conditions

Two solutions starting from nearly identical states (differing only in third decimal place) in
Lorenz’s numerical integration soon begin to diverge. The differences steadily double in
size every four days or so until the two solutions lose resemblance to one another
somewhere during the second month.

Such sensitive dependence on initial conditions is characteristic of chaos in all systems. |If

the real atmosphere behaves like the simple Lorenz model, it would be impossible to make
long-range weather forecasting.

The Butterfly Effect 17
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How TwO WEATHER PATTERNS DIVERGE. From nearly the same starting \.55 : \@ N hk_ ! \j
point, Edward Lorenz saw his computer weather produce patterns that
grew farther and farther apart until all resemblance disappeared. (From
Lorenz’s 1961 printouts.)
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Simple Predictability
Experiments

“Identical twin” experiment

Find the basic solutions with
certain initial condition.
Introduce a small error in the
initial condition and find the
perturbed solutions. Compare
the two solutions and study the
evolution of the error.

Example 1

Xn+1:X13_C’ c = 0.5

X, = basic (“true”) solution

X, = “observed” value

X' = perturbed (“predicted”)
solution

X,- X, = “observed error”

X,'— X = error attime n
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Simple Predictability
Experiments

Example 1 (contd.)

The error steadily decreases
and decays to zero. The
steady state solution is stable.

Lorenz, E. N., 1985: The growth of
errors in prediction. Turbulence and
predictability in geophysical fluid
dynamics and climate dynamics, M.
Ghil and R. Benzi, Eds., LXXXVIII
Corso Soc. ltiliana di Fisica,
Bologna, Italy, 243-265.
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Simple Predictability
Experiments

Example 2

X=X -c, c¢=1.2

X, = basic (“true”) solution

X, = “observed”

X, = perturbed (“predicted”)
solution

X,- X, = “observed error”

X,'— X = error attime n

The error amplifies during the

first few time steps and then
undergoes damped
oscillations.
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Simple Predictability

Experiments
Example 2 (contd.)
X ., =X -c, c¢=1.2

By about time step 90, the two
solutions are identical upto five
decimal places. The error has
decayed. The periodic solution
is stable.
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Simple Predictability
Experiments

Example 3

Xu=X-c, c¢=1.8

X, = basic (“true”) solution

X, = “observed”

X, = perturbed (“predicted”)
solution

X,- X, = “observed error”

X,'— X = error attime n

The error grows irregularly,

gaining an order of magnitude

in about five time steps and
becomes comparable to X,
itself.

July 2, 2007

P RrRRrRRRRRRRLRR
WoOoNouUud WNhDMNROoOWVONOAAULEDEWNREOS

[\
o

.50%00
.55000
.60250
.43699
.26495
.72980
.19221
.37863
.65664
.94445
.90802
.97550
.84839
.08023
.63310
.39919
.15773
.77512
.35105
.02534
.79936

.SOfOO
.54900
.59940
.44072
.27568
.72400
.17218
.42600
.61852
.81962
.12823
.52711
.52216
.51697
.53275
.54931
.49826
.44477
.60218
.76697
.21175

ICTP SMR 1849 Dynamical Systems Lecture2 V. Krishnamurthy

X,-X,

.0010000
.0010010
.0031021
.0037284
.0107293
.0058006
.0200341
.0473684
.0381141
.1248300
.2202084
.4483977
.6737677
.5971992
.8996509
.9485018
.6559891
.2198931
.9532298
.7416291
.5876038



Simple Predictability
Experiments

Example 3 (contd.)

The error varies irregularly, but
does not amplify forever

because both X, and X' are
bounded.

When the error becomes
comparable to X, itself, the
error has reached saturation.
At this point, the prediction X '
has become worthless.

The nonperiodic solution is
unstable.
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0.25407

-1.73545

1.21179

-0.33157
-1.69006

1.05630

-0.68423
-1.33182
-0.02624
-1.79931

1.43752
0.26647

-1.72900

1.18943

-0.38527
-1.65157

0.92769

-0.93940
-0.91753
-0.95814

09554

.59978
.44026
.27435
.72473
.17469
.42010
.62352
.83581
.10142
.58688
.45558
.31870
.69843
.08467
.62350
.41125
.19162
.76328
.30917

0.
.1356682
.6520482
.6059283
.0346710
.1183943
.2641366
.2916942
.8620564
.6978925
.0243978
.7220418
.0476958
.8878565
.4699306
.0280698
.3389325
.1310159
.8457533
.2673060
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Error Growth in Quadratic
Map

Absolute value of (X,'-X ) is
plotted as error.

Steady State:
The error decays to zero and
the system is stable.

Periodic:
The error decays to zero and
the system is stable.

Nonperiodic:

The error grows and becomes
as large as the difference
between two randomly
selected states of the system.
The system is unstable.

Error

Error
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Error Growth in Nonlinear Systems

Non-periodic or chaotic solutions of deterministic nonlinear systems exhibit an important
property:

Sensitive dependence on initial conditions

A small initial error will grow and ultimately become as large as the difference between two
randomly chosen solutions of the system.

Consequences

It is impossible to make perfect weather predictions, or even mediocre predictions
sufficiently far into the future.

The main reason for this unpredictability is the errors made in observations. A small error
in the initial observation will grow and make the forecast unreliable and ultimately
worthless, even if the forecasting model is perfect.

Nonperiodic solutions are unstable. Errors grow because of the instability of the system.

Periodic solutions are stable and predictable.
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Stability

The decay or growth of errors influences
the accuracy of predictions.

A solution is stable if any other sufficiently
close solution remains arbitrarily close (a).

Otherwise, the solution is unstable and the
nearby solution diverges (b).

If the solution is stable, it is periodic
because when an approximate repetition of
a previous state occurs, future states must
remain arbitrarily close to the previous
history (c).

If the solution is nonperiodic, it is
necessarily unstable (d).

The deciding factor in predictability is
stability versus instability.

)
ol

Fi1curRE 3. Schematic trajectories in phase space; (a) neighboring
stable trajectories; () neighboring unstable trajectories; (c) stability
implying periodicity (after the transieat flow has died out); (d) nonpe-
ricdicity implying instability.

Lorenz, E. N., 1963: The predictability of
hydrodynamic flows. Trans. New York
Acad. Sci., Ser Il, 25, 409-423.
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The Butterfly Effect

Lorenz (1963): “.. one flap of a sea gull’s wings would be enough to alter the course of the
weather forever.”

Lorenz (1972): “Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado
in Texas?” (Amer. Assoc. Adv. Sci., 139" meeting)

If the flap of a butterfly’s wings can be instrumental in generating a tornado, it can equally
well be instrumental in preventing a tornado.

Over the years miniscule disturbances neither increase nor decrease the frequency of
occurrence of various weather events such as tornados; the most that they may do is to
modify the sequence in which these events occur.

The Essence of

CHAOS

Can two particular weather situations differing by as little as the
immediate influence of a single butterfly will generally after sufficient
time evolve into two situations differing by as much as the

presence of a tornado?

|s the behavior of the atmosphere unstable with respect to
perturbations of small amplitude?
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Lorenz Model
(3-variable convection model)

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
The behavior of a simple continuous nonlinear system is discussed.

The system is the famous Lorenz model which is a very low-order model of Rayleigh-
Bénard convection.

When the motion of the fluid is caused by a difference in density created by a temperature
difference, it is called convection. The fluid absorbs heat at one place, moves to another
place and dissipates heat by mixing with the colder fluid. Atmospheric motions are mostly
convective in nature because of the thermal inequalities set up by solar heating.

In a well-known laboratory experiment of convection, called Rayleigh-Bénard convection, a

fluid is subjected to controlled temperature difference. The motion of the fluid is studied by
varying the temperature difference.
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Experiment
(Bergé, Pomeau and Vidal, 1984: Order within chaos, John Wiley & Sons, Section V.3)

A layer of fluid of uniform thickness H is confined between two horizontal plates. The
upper plate is at a temperature 7|, and the lower plate at temperature 7, +AT.

With such a temperature difference, the fluid in the upper part of the layer is cold and
dense whereas the fluid in the lower part is warmer and less dense. The warm fluid tends
to rise while the colder fluid tends to fall.

When AT'is small, there is no convective motion because of the stabilizing effect of friction.
The heat transfer is through conduction. In this steady state of the fluid in which there is no
motion, the temperature varies linearly with height.

Cold T() 4 TO
gl Fluid | H
— TO+AT T,+AT
Temperature
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Convection

When AT is increased above a certain critical value, the steady state of no motion becomes
unstable, and sustained convection begins. Above the convection threshold, a regular
structure of rolls with parallel horizontal axes is formed.

—~ 7V ¢
The structure consists of alternating rising and descending currents.
The currents are equidistant from one another.

Two adjacent rolls rotate in opposite directions.
The convection is stationary (steady state).

Convective instabilities were first observed experimentally by Bénard in 1900. The
theoretical explanation was first given by Rayleigh in 1916. Hence this phenomenon is
called Rayleigh-Bénard convection.

When AT is increased, the convection pattern first becomes more complicated but retains
certain regularity.

When AT'is further increased, the pattern is completely destroyed and replaced by a
disordered configuration in perpetual motion. The fluid motion is turbulent.
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Governing Equations

(Saltzman, B., 1962: Finite amplitude free convection as an initial value problem. J. Atmos.

Sci., 19, 329-341)

There is no variation along the y-axis.
All motions are parallel to the x-z plane.

In Boussinesq approximation, the equations governing convection are

+u +W—:_8—+V ‘w+ goT

Ju Jdu
—+—=0

ox 0z

(u,w) = velocity along (x,z)
P = pressure

T = temperature departure

(convection — no convection)

o. = coefficient of thermal expansion
K = thermal conductivity

v = Kinematic viscosity

g = acceleration due to gravity
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Stream function and temperature departure:

v v
0z 0x

T(x,z,t)= (T(O, 1) — iI—T zj +6(x,2,1)

u =

T is expressed as a sum of linear variation between upper and lower boundary and a
departure 4 from the linear variation.

Vorticity and temperature equations:

2 2
Ny __ W Vy) + Wiy + gaa—e
ot d(x,2) 0x

00 __dW.0) ATy ooy

ot d(x,z) H ox

Boundary conditions assuming free (no-stress) boundaries:

w=0, Vwy=0
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Rayleigh’s finding

’ 4 253
= BOH'AT o ceeds a critical value R = 7 (1*‘2 a ,)

KV a
motion of the following form develops.

If Rayleigh number R

W=y, sin(ﬂ'aH _lx)sin(ﬂ'H _IZ)
0=6, cos(ﬂ'aH_lx)sin(ﬂH_lz)

Here a is the aspect ratio of vertical to horizontal length scales. The minimum value of R =
277* /4 occurs when a? = V4.

Spectral expansion

Introduce the following highly truncated spectral expansions in vorticity and temperature
equations (4.3)

W=ﬁK(:l+a2)

X sin(mH _lx)sin(ﬂH _lz)

_\2RAT

a

0 Y cos(ﬂ'aH _lx)sin(ﬂ'H _lz)— 4 sin(27zH _IZ)

Simplify to obtain a set of three ordinary differential equations.
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Lorenz Model (3-variable)

The simplification leads to

di=—O'X + oY

dt

di:—XZ +rX —-Y
dt

di: XY - bZ

dt

X: Intensity of convective motion

Y: Temperature difference between ascending and descending currents
Z: Distortion of vertical temperature profile from linearity

o = v/k Prandtl number (determines hydrodynamic versus thermal instability)
b =4/(1+a2)
r=R /R, (Forcing proportional to Rayleigh number)

Lorenz model is a low-order convection model described by just three ordinary differential
equations. It is the simplest forced dissipative nonlinear system.
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Solutions of Lorenz Model

Symmetry of the model
The equations are invariant under the transformation
X,Y,72) — (=X, =Y, Z) for all values of r.

Ie., if (X,Y,Z)is a solution, then (=X, -Y, Z) is also a solution.

Solutions

To determine the solutions of the model, it is necessary to numerically integrate the model
for a given set of parameters.

However, since the model is simple, the steady state solutions can be determined

analytically. When the steady states are stable, such solutions can also be found by
numerical integration starting with some arbitrary initial conditions.
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Steady States

Steady states are easily found by solving

X _ A _o
dt dt dt
Solve
—o0X +0oY =0
~XZ+rX-Y =0 —>
XY -bZ=0

Steady state solutions:
(HhX=Y=Z=0 Steady State O
Q) X=Y=[b(r-1D]2, Z=r-1 Steady State C

3) X=Y=-[b(r-1)]2, Z=r-1 Steady State C'

July 2, 2007 ICTP SMR 1849 Dynamical Systems Lecture2 V. Krishnamurthy

X=Y
Z=Y*/b
Y’ —b(r-1)Y =0
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When r<1, thereisonly one steady state:

X=0, Y=0, Z=0 State of no convection (O)

When r>1, there are three steady states:

X=0, Y=0, Z=0 No convection (O)

X=Y=+b(r-D]1/2, Z=r-1 Steady convection (C, C")

Numerical integrations

Integrate the model for the following parameter values

0=10, a*=1/2, b=8/3
r=0.5,10.0

The numerical integration is carried out with a time increment of

A7=0.01

July 2, 2007 ICTP SMR 1849 Dynamical Systems Lecture2 V. Krishnamurthy
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Steady State Solutions

r=0.5
Rest, No Convection
O:X=0, Y=0, Z=0

0.01

-0.54

0 200 400 600 800 1000 1200 1400

1.5

1.0
0.5

Y 0.0
-0.51
-1.0-

-1.5 T T T T T T
0 200 400 600 800 1000 1200 1400

0.3

0.2 1

Z 9.0

-0.1 1
-0.2 1
-0.3

0 200 400 600 800 1000 1200 1400
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C:X=26, Y=2V6, Z=9
C:X=-2V6, Y=-206, Z=9
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200 400 600 800
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Time-dependent Solutions

As r is increased, the steady convection becomes unstable at a critical value of r. The
critical Rayleigh number for instability of steady convection (C, C') occurs when r = 24.74.

The solutions of Lorenz model at a slightly . r=28.0
supercritical value r = 28 is studied. 2.
104
The model is numerically integrated starting with a ' N WWMWW\MI
small perturbation over the state of no convection. ~20-
303 500 1000 1500 2000 2500 3000
The state of rest is clearly unstable with all three 30 i
variables growing rapidly. In less than 50 steps, 207
the strength of convection exceeds that of steady Y 12:
convection and the system reaches a state close ~10-
to the steady convection. The motion then ig | | | | |
undergoes systematic amplified oscillation until 0 50 1000 1800 2000 2500 3000
about step 1650. The subsequent behavior of the %0
system is irregular or nonperiodic. :Z
‘ 201
104
0

0 500 1000 1500 2000 2500 3000
n
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Time-dependent Solutions

r=28

The irregular motion of the system reached at
about step 1650 continues for subsequent time
steps. The variables X and Y change sign at
irregular intervals, reaching sometimes one or
more extremes of one sign before changing sign
again.

When X and Y have same sign, warm fluid is
ascending and cold fluid is descending. When X

and Y are of opposite signs, the warm fluid is
descending and cold fluid is ascending.

The time variation of (X,Y,Z) is nonperiodic.
The fluid motion is turbulent or chaotic.

July 2, 2007 ICTP SMR 1849 Dynamical Systems

30

r=28.0

204
101

—-101
-201

-30
5000

30

5500

6000

6500
n

7000 7500 8000

204
101

~101
—201
-30

5000

50

5500

6000

6500
n

7000 7500 8000

401
301
201
10

5000

5500

6000

6500
n

7000 7500 8000

Lecture 2 V. Krishnamurthy 28



Projection on two-dimension

The trajectory of the solutions are projected on Y-Z, X-Z and X-Y planes. The trajectory
moves around the steady state C, crosses a plane and moves around C' and returns to the
neighborhood of C. This process continues at irregular intervals. The trajectory never
passes through C, C' or O as all three steady states are unstable.
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Three-dimensional
structure

When the trajectory of the
solutions is shown in 3-
dimension, it is possible to
imagine how a trajectory does
not intersect itself. This is
necessary for nonperiodic
solutions. A trajectory may come
arbitrarily close to a point that it
has visited in the past but will
soon diverge.

From Strogatz, S. H., 1994:
Nonlinear dynamics and chaos,
Westview Press.
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Instability of solutions: “ldentical twin” experiment

A new integration with a small perturbation added to the original solution at time 5000 is
carried out. The two solutions stay close for a while and then diverge. The difference
between the two solutions become as large as the variables themselves by step 6000. The

nonperiodic solution at r = 28 is unstable.

Unperturbed Perturbed Perturbed—Uniperturbed
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Projection of “identical twin” trajectories

The evolutions of the unperturbed and perturbed trajectories are shown as projections on
two-dimensional space.

The projections of unperturbed and perturbed trajectories are shown in different colors for
different segments of time and the divergence of trajectories is clearly evident.

Lorenz Model (3—Variable Convection): r=28
n=10001-13000 n=13001-16000 n=16001-19000

Perturbed at n=5000

Unperturbed

50

50
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Predictability experiment —

An ensemble of 10000 nearby points
at an initial r = 0 around a basic state
is allowed to evolve.

Blue points are from unperturbed
integration.

Red points show the evolution of the
perturbed initial states.

“As each point moves according to
Lorenz equations, the blob is
stretched into a thin filament...
Ultimately, the points spread over ...
showing that the final state could be
almost anywhere, even though the
initial conditions were almost
identical.”

From Strogatz, S. H., 1994: Nonlinear
dynamics and chaos, Westview Press
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