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Dynamical Systems

A system that evolves in time according to some governing laws is a dynamical system. 
Each successive state is a function of the preceding state.

Examples: oscillators, planets in gravitation, atmospheric system

Types of dynamical systems

Conservative: The system possesses a conserved quantity, such as energy, a constant of 

motion.

Dissipative: Energy is not conserved because of dissipation and forcing.

Linear: The system contains only first power in the dynamical equations.

Nonlinear: The system contains nonlinear terms in the dynamical equations.
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Representation of dynamical systems

Differential equations

Differential equations describe the evolution of the dynamical system in continuous time.

A coupled set of ordinary differential equations, such as Lorenz model, can be written as

e.g.,

where                        vanishes identically,              is positive definite and  

are constants.
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The set of differential equations ensures that the solutions exist and that they are unique 

and continuous.  Because of the existence and uniqueness, different trajectories never 
interesect.

Phase Space is an M- dimensional Euclidean space whose coordinates are X1,…X
M

.

Each point (X1,…X
M

) in the phase space represents an instantaneous state of the system.

A state varying according to the dynamical equations is represented by a trajectory or orbit 
in the phase space.

Uniqueness: Through each point, there is a unique orbit

Difference equations

Difference equations describe the evolution in discrete time

e.g., Quadratic map (logistic map)

MiXXGX nMnini LL ,1),,,( ,,11, ==+
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Chaos: Sensitive Dependence on Initial Conditions

Two solutions starting from nearly identical states (differing only in third decimal place) in 

Lorenz’s numerical integration soon begin to diverge.  The differences steadily double in 

size every four days or so until the two solutions lose resemblance to one another 

somewhere during the second month.

Such sensitive dependence on initial conditions is characteristic of chaos in all systems.  If 

the real atmosphere behaves like the simple Lorenz model, it would be impossible to make 

long-range weather forecasting.

From Gleick, J, 1987: Chaos, Penguin Books
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Simple Predictability 
Experiments

“Identical twin” experiment

Find the basic solutions with 

certain initial condition.

Introduce a small error in the 

initial condition and find the 

perturbed solutions. Compare 

the two solutions and study the 
evolution of the error.

Example 1

c = 0.5

Xn= basic (“true”) solution

X0

�

= “observed” value

Xn

�

= perturbed (“predicted”)

solution

X0 − X0 = “observed error”

Xn − Xn= error at time n

n                 Xn Xn

�

Xn − Xn

0     0.40000     0.40100     0.0010000
1    -0.34000    -0.33920     0.0008010
2    -0.38440    -0.38494    -0.0005440
3    -0.35224    -0.35182     0.0004186
4    -0.37593    -0.37622    -0.0002947
5    -0.35868    -0.35846     0.0002216
6    -0.37135    -0.37151    -0.0001590
7    -0.36210    -0.36198     0.0001181
8    -0.36888    -0.36897    -0.0000855
9    -0.36392    -0.36386     0.0000631

10    -0.36756    -0.36761    -0.0000459
11    -0.36490    -0.36487     0.0000338
12    -0.36685    -0.36687    -0.0000246
13    -0.36542    -0.36540     0.0000181
14    -0.36647    -0.36648    -0.0000132
15    -0.36570    -0.36569     0.0000097
16    -0.36626    -0.36627    -0.0000071
17    -0.36585    -0.36585 0.0000052
18    -0.36615    -0.36616    -0.0000038
19    -0.36593    -0.36593 0.0000028
20    -0.36609    -0.36610    -0.0000020
.
.

, 2
1 cXX nn −=+
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Simple Predictability 
Experiments

Example 1 (contd.)

c = 0.5

The error steadily decreases 

and decays to zero.  The 
steady state solution is stable.

Lorenz, E. N., 1985: The growth of 
errors in prediction. Turbulence and 
predictability in geophysical fluid 
dynamics and climate dynamics, M. 
Ghil and R. Benzi, Eds., LXXXVIII 
Corso Soc. Itiliana di Fisica, 
Bologna, Italy, 243-265.

n                 Xn Xn

�

Xn − Xn

.

.
81    -0.36603    -0.36603 0.0000000
82    -0.36603    -0.36603 0.0000000
83    -0.36603    -0.36603 0.0000000
84    -0.36603    -0.36603 0.0000000
85    -0.36603    -0.36603 0.0000000
86    -0.36603    -0.36603     0.0000000
87    -0.36603    -0.36603 0.0000000
88    -0.36603    -0.36603 0.0000000
89    -0.36603    -0.36603 0.0000000
90    -0.36603    -0.36603 0.0000000
91    -0.36603    -0.36603 0.0000000
92    -0.36603    -0.36603 0.0000000
93    -0.36603    -0.36603 0.0000000
94    -0.36603    -0.36603 0.0000000
95    -0.36603    -0.36603 0.0000000
96    -0.36603    -0.36603 0.0000000
97    -0.36603    -0.36603 0.0000000
98    -0.36603    -0.36603 0.0000000
99    -0.36603    -0.36603 0.0000000

100    -0.36603    -0.36603 0.0000000

, 2
1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

0     0.50000     0.50100     0.0010000
1    -0.95000    -0.94900     0.0010010
2    -0.29750    -0.29940    -0.0019009
3    -1.11149    -1.11036     0.0011346
4     0.03542     0.03290    -0.0025210
5    -1.19875    -1.19892    -0.0001722
6     0.23699     0.23740     0.0004129
7    -1.14384    -1.14364     0.0001959
8     0.10836     0.10791    -0.0004481
9    -1.18826    -1.18836    -0.0000969

10     0.21196     0.21219     0.0002303
11    -1.15507    -1.15498     0.0000977
12     0.13420     0.13397    -0.0002257
13    -1.18199    -1.18205    -0.0000605
14     0.19710     0.19725     0.0001431
15    -1.16115    -1.16109     0.0000564
16     0.14827     0.14814    -0.0001310
17    -1.17802    -1.17806    -0.0000388
18     0.18772     0.18781     0.0000915
19    -1.16476    -1.16473     0.0000344
20     0.15667     0.15659    -0.0000800
.
.

Simple Predictability 
Experiments

Example 2

c = 1.2

Xn= basic (“true”) solution

X0

�

= “observed”

Xn

�

= perturbed (“predicted”)

solution

X0 − X0 = “observed error”

Xn − Xn= error at time n

The error amplifies during the 

first few time steps and then 

undergoes damped 
oscillations.

, 2
1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

.

.
81    -1.17083    -1.17083 0.0000000
82     0.17083     0.17083 0.0000001
83    -1.17082    -1.17082 0.0000000
84     0.17081     0.17081 -0.0000001
85    -1.17082    -1.17082 0.0000000
86     0.17083     0.17083 0.0000000
87    -1.17082    -1.17082 0.0000000
88     0.17081     0.17081 0.0000000
89    -1.17082    -1.17082 0.0000000
90     0.17083     0.17083 0.0000000
91    -1.17082    -1.17082 0.0000000
92     0.17082     0.17082 0.0000000
93    -1.17082    -1.17082 0.0000000
94     0.17082     0.17082 0.0000000
95    -1.17082    -1.17082 0.0000000
96     0.17082     0.17082 0.0000000
97    -1.17082    -1.17082 0.0000000
98     0.17082     0.17082 0.0000000
99    -1.17082    -1.17082 0.0000000

100     0.17082     0.17082 0.0000000

Simple Predictability 
Experiments

Example 2 (contd.)

c = 1.2

By about time step 90, the two 

solutions are identical upto five 

decimal places. The error has 

decayed.  The periodic solution 
is stable.

, 2
1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

0     0.50000     0.50100     0.0010000
1    -1.55000    -1.54900     0.0010010
2     0.60250     0.59940    -0.0031021
3    -1.43699    -1.44072    -0.0037284
4     0.26495     0.27568     0.0107293
5    -1.72980    -1.72400     0.0058006
6     1.19221     1.17218    -0.0200341
7    -0.37863    -0.42600    -0.0473684
8    -1.65664    -1.61852     0.0381141
9     0.94445     0.81962    -0.1248300

10    -0.90802    -1.12823    -0.2202084
11    -0.97550    -0.52711     0.4483977
12    -0.84839    -1.52216    -0.6737677
13    -1.08023     0.51697     1.5971992
14    -0.63310    -1.53275    -0.8996509
15    -1.39919     0.54931     1.9485018
16     0.15773    -1.49826    -1.6559891
17    -1.77512     0.44477     2.2198931
18     1.35105    -1.60218    -2.9532298
19     0.02534     0.76697     0.7416291
20    -1.79936    -1.21175     0.5876038
.
.

Simple Predictability 
Experiments

Example 3

c = 1.8

Xn= basic (“true”) solution

X0

�

= “observed”

Xn

�

= perturbed (“predicted”)

solution

X0 − X0 = “observed error”

Xn − Xn= error at time n

The error grows irregularly, 

gaining an order of magnitude 

in about five time steps and 

becomes comparable to Xn

itself.

, 2
1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

.

.
81     0.25407     1.09554     0.8414776
82    -1.73545    -0.59978     1.1356682
83     1.21179    -1.44026    -2.6520482
84    -0.33157     0.27435     0.6059283
85    -1.69006    -1.72473    -0.0346710
86     1.05630     1.17469     0.1183943
87    -0.68423    -0.42010     0.2641366
88    -1.33182    -1.62352    -0.2916942
89    -0.02624     0.83581     0.8620564
90    -1.79931    -1.10142     0.6978925
91     1.43752    -0.58688    -2.0243978
92     0.26647    -1.45558    -1.7220418
93    -1.72900     0.31870     2.0476958
94     1.18943    -1.69843    -2.8878565
95    -0.38527     1.08467     1.4699306
96    -1.65157    -0.62350     1.0280698
97     0.92769    -1.41125    -2.3389325
98    -0.93940     0.19162     1.1310159
99    -0.91753    -1.76328    -0.8457533

100    -0.95814     1.30917     2.2673060

Simple Predictability 
Experiments

Example 3 (contd.)

c = 1.8

The error varies irregularly, but 

does not amplify forever 

because both Xn and Xn

�

are 

bounded.

When the error becomes 

comparable to Xn itself, the 

error has reached saturation.

At this point, the prediction Xn

�

has become worthless.

The nonperiodic solution is 

unstable.

, 2
1 cXX nn −=+
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Error Growth in Quadratic 
Map

Absolute value of  (Xn − Xn) is 

plotted as error.

Steady State:

The error decays to zero and 

the system is stable.

Periodic:

The error decays to zero and 

the system is stable.

Nonperiodic:

The error grows and becomes 

as large as the difference 

between two randomly 

selected states of the system.  

The system is unstable.
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Error Growth in Nonlinear Systems

Non-periodic or chaotic solutions of deterministic nonlinear systems exhibit an important 

property:

Sensitive dependence on initial conditions

A small initial error will grow and ultimately become as large as the difference between two 

randomly chosen solutions of the system.

Consequences

It is impossible to make perfect weather predictions, or even mediocre predictions 

sufficiently far into the future.

The main reason for this unpredictability is the errors made in observations.  A small error 

in the initial observation will grow and make the forecast unreliable and ultimately 

worthless, even if the forecasting model is perfect.

Nonperiodic solutions are unstable.  Errors grow because of the instability of the system.

Periodic solutions are stable and predictable.
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Stability

The decay or growth of errors influences 

the accuracy of predictions. 

A solution is stable if any other sufficiently 

close solution remains arbitrarily close (a).

Otherwise, the solution is unstable and the 

nearby solution diverges (b).

If the solution is stable, it is periodic

because when an approximate repetition of 

a previous state occurs, future states must 

remain arbitrarily close to the previous 
history (c).

If the solution is nonperiodic, it is 

necessarily unstable (d).

The deciding factor in predictability is 

stability versus instability.
Lorenz, E. N., 1963: The predictability of 
hydrodynamic flows. Trans. New York 
Acad. Sci., Ser II, 25, 409-423.
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The Butterfly Effect

Lorenz (1963): “… one flap of a sea gull’s wings would be enough to alter the course of the 

weather forever.”

Lorenz (1972): “Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado 

in Texas?” (Amer. Assoc. Adv. Sci., 139th meeting)

If the flap of a butterfly’s wings can be instrumental in generating a tornado, it can equally 

well be instrumental in preventing a tornado.

Over the years miniscule disturbances neither increase nor decrease the frequency of 

occurrence of various weather events such as tornados; the most that they may do is to 

modify the sequence in which these events occur.

Can two particular weather situations differing by as little as the 

immediate influence of a single butterfly will generally after sufficient 

time evolve into two situations differing by as much as the 

presence of a tornado?

Is the behavior of the atmosphere unstable with respect to 

perturbations of small amplitude? 
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Lorenz Model
(3-variable convection model)

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.

The behavior of a simple continuous nonlinear system is discussed.  

The system is the famous Lorenz model which is a very low-order model of Rayleigh-

Bénard convection.

When the motion of the fluid is caused by a difference in density created by a temperature 

difference, it is called convection.   The fluid absorbs heat at one place, moves to another 

place and dissipates heat by mixing with the colder fluid. Atmospheric motions are mostly 

convective in nature because of the thermal inequalities set up by solar heating.

In a well-known laboratory experiment of convection, called Rayleigh-Bénard convection, a 

fluid is subjected to controlled temperature difference.  The motion of the fluid is studied by 

varying the temperature difference.
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Experiment
(Bergé, Pomeau and Vidal, 1984: Order within chaos, John Wiley & Sons, Section V.3)

A layer of fluid of uniform thickness H is confined between two horizontal plates.  The 

upper plate is at a temperature T0 and the lower plate at temperature T0+∆T.

With such a temperature difference, the fluid in the upper part of the layer is cold and 

dense whereas the fluid in the lower part is warmer and less dense.  The warm fluid tends 

to rise while the colder fluid tends to fall.

When ∆T is small, there is no convective motion because of the stabilizing effect of friction.  

The heat transfer is through conduction.  In this steady state of the fluid in which there is no 

motion, the temperature varies linearly with height.

Fluid H
g

Warm T0+ T

Cold T0

Temperature

z T0

T0+ T
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Convection

When ∆T is increased above a certain critical value, the steady state of no motion becomes 

unstable, and sustained convection begins.  Above the convection threshold, a regular 

structure of rolls with parallel horizontal axes is formed.

The structure consists of alternating rising and descending currents.

The currents are equidistant from one another.

Two adjacent rolls rotate in opposite directions.

The convection is stationary (steady state).

Convective instabilities were first observed experimentally by Bénard in 1900. The 

theoretical explanation was first given by Rayleigh in 1916.  Hence this phenomenon is 

called Rayleigh-Bénard convection.

When ∆T is increased, the convection pattern first becomes more complicated but retains 

certain regularity.

When ∆T is further increased, the pattern is completely destroyed and replaced by a 

disordered configuration in perpetual motion.  The fluid motion is turbulent.
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Governing Equations
(Saltzman, B., 1962: Finite amplitude free convection as an initial value problem. J. Atmos. 

Sci., 19, 329-341)

There is no variation along the y-axis.

All motions are parallel to the x-z plane.

In Boussinesq approximation, the equations governing convection are

(u,w) = velocity along (x,z) = coefficient of thermal expansion

P = pressure = thermal conductivity

T = temperature departure = kinematic viscosity

(convection – no convection) g = acceleration due to gravity
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Stream function and temperature departure:

T is expressed as a sum of linear variation between upper and lower boundary and a 

departure from the linear variation.

Vorticity and temperature equations:

Boundary conditions assuming free (no-stress) boundaries:
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Rayleigh’s finding

If Rayleigh number exceeds a critical value       ,

motion of the following form develops.

Here a is the aspect ratio of vertical to horizontal length scales.  The minimum value of Rc =
27 4 /4 occurs when a2 = ½.

Spectral expansion

Introduce the following highly truncated spectral expansions in vorticity and temperature 

equations (4.3)

Simplify to obtain a set of three ordinary differential equations.
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Lorenz Model (3-variable)

The simplification leads to

X: Intensity of convective motion

Y: Temperature difference between ascending and descending currents

Z: Distortion of vertical temperature profile from linearity

= / Prandtl number  (determines hydrodynamic versus thermal instability)

b = 4/(1+a2)
r = Ra/Rc (Forcing proportional to Rayleigh number)

Lorenz model is a low-order convection model described by just three ordinary differential 

equations.  It is the simplest forced dissipative nonlinear system.

bZXY
dt

dZ

YrXXZ
dt

dY

YX
dt

dX

−=

−+−=

+−= σσ
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Solutions of Lorenz Model

Symmetry of the model

The equations are invariant under the transformation

(X, Y, Z) → (−X, −Y, Z) for all values of r.

i.e., if (X, Y, Z) is a solution, then (−X, −Y, Z) is also a solution.

Solutions

To determine the solutions of the model, it is necessary to numerically integrate the model 

for a given set of parameters.

However, since the model is simple, the steady state solutions can be determined 

analytically.  When the steady states are stable, such solutions can also be found by 

numerical integration starting with some arbitrary initial conditions.
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Steady States

Steady states are easily found by solving

Solve

Steady state solutions:

(1) X = Y = Z = 0 Steady State O

(2) X = Y = [b(r−1)]1/2,   Z = r−1 Steady State C

(3) X = Y = −[b(r−1)]1/2,   Z = r−1 Steady State C

0,0,0 ===
dt

dZ

dt

dY

dt

dX

        

      

0

0

0

=−
=−+−
=+−

bZXY

YrXXZ

YX σσ

0)1(

/
3

2

=−−

=

=

YrbY

bYZ

YX
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When r < 1, there is only  one steady state:

X = 0,   Y = 0,   Z = 0            State of no convection (O)

When   r > 1, there are three steady states:

X = 0,   Y = 0,   Z = 0                    No convection (O)

X = Y = ±[b(r−1)]1/2,   Z = r−1       Steady convection (C, C )

Numerical integrations

Integrate the model for the following parameter values

The numerical integration is carried out with a time increment of

01.0=∆τ

0.10,5.0

3/8,2/1,10 2

=
===

r

ba     σ
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Steady State Solutions

r = 0.5                                                      r = 10.0 
Rest, No Convection                                            Steady Convection

O: X = 0,   Y = 0,   Z = 0               C: X = 2√6,   Y = 2√6,   Z = 9
C′: X = −2√6,   Y = −2√6,   Z = 9
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Time-dependent Solutions

As r is increased, the steady convection becomes unstable at a critical value of r.  The 

critical Rayleigh number for instability of steady convection (C, C ) occurs when r = 24.74.

The solutions of Lorenz model at a slightly 

supercritical value r = 28 is studied.

The model is numerically integrated starting with a 

small perturbation over the state of no convection.

The state of rest is clearly unstable with all three 

variables growing rapidly.  In less than 50 steps, 

the strength of convection exceeds that of steady 

convection and the system reaches a state close 

to the steady convection.  The motion then 

undergoes systematic amplified oscillation until 

about step 1650.  The subsequent behavior of the 

system is irregular or nonperiodic.
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Time-dependent Solutions

r = 28

The irregular motion of the system reached at 

about step 1650 continues for subsequent time 

steps.  The variables X and Y change sign at 

irregular intervals, reaching sometimes one or 

more extremes of one sign before changing sign 

again.

When X and Y have same sign, warm fluid is 

ascending and cold fluid is descending.  When X

and Y are of opposite signs, the warm fluid is 

descending and cold fluid is ascending.

The time variation of (X,Y,Z) is nonperiodic.

The fluid motion is turbulent or chaotic.
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Projection on two-dimension

The trajectory of the solutions are projected on Y-Z, X-Z and X-Y planes.  The trajectory 

moves around the steady state C, crosses a plane and moves around C and returns to the 

neighborhood of C.  This process continues at irregular intervals.  The trajectory never 

passes through C, C or O as all three steady states are unstable.

C′

O

C
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Y

X

Z

Three-dimensional 
structure

When the trajectory of the 

solutions is shown in 3-

dimension, it is possible to 

imagine how a trajectory does 

not intersect itself.  This is 

necessary for nonperiodic

solutions.  A trajectory may come 

arbitrarily close to a point that it 

has visited in the past but will 

soon diverge.

From Strogatz, S. H., 1994: 

Nonlinear dynamics and chaos, 

Westview Press.
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Instability of solutions: “Identical twin” experiment

A new integration with a small perturbation added to the original solution at time 5000 is 

carried out.  The two solutions stay close for a while and then diverge.  The difference 

between the two solutions become as large as the variables themselves by step 6000.  The 

nonperiodic solution at r = 28 is unstable.
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Projection of “identical twin” trajectories

The evolutions of the unperturbed and perturbed trajectories are shown as projections on 

two-dimensional space.

The projections of unperturbed and perturbed trajectories are shown in different colors for 

different segments of time and the divergence of trajectories is clearly evident.
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Predictability experiment

An ensemble of 10000 nearby points 

at an initial t = 0 around a basic state 

is allowed to evolve.

Blue points are from unperturbed 
integration.

Red points show the evolution of the 
perturbed initial states.

“As each point moves according to 

Lorenz equations, the blob is 

stretched into a thin filament…

Ultimately, the points spread over …

showing that the final state could be 

almost anywhere, even though the 

initial conditions were almost 

identical.”

From Strogatz, S. H., 1994: Nonlinear 
dynamics and chaos, Westview Press

t=3

t=9

t=6

t=15


