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Structure of Chaos

Boundary

The nonperiodic or chaotic solutions are confined within a boundary.  The approximate 

boundary has been drawn by finding the approximate unstable manifold of the steady state 

O.  Two trajectories emanate from O, i.e., approach it as t − .

The boundary does not include the unstable steady states O, C and C . Any solution that 

enters the region within the boundary will be trapped there for all future times.  
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Fractal Structure

The chaotic solutions are shown by Lorenz as contours of X in the Y-Z plane. Thus X is 

represented as one single-valued function of Y and Z over much of range of Y and Z, and 

as two single-valued functions over the reminder.  It seems as though the trajectories are 

confined to a pair of surfaces which appear to merge in the lower part.  The spiral about C

is in the upper surface while the spiral about C is in the lower surface.

Y

Z

X

Lorenz, E. N., 1963: Deterministic nonperiodic flow.                 Strogatz, S. H., 1994: Nonlinear 

J. Atmos. Sci., 20, 130-141 dynamics and chaos, Westview Press
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The two surfaces merely appear to merge.  However, there are actually an infinite number 

of surfaces.  They are close to one or the other of two seemingly merging surfaces.

For example, the two X=0 cross-sections may appear to merge, but they are shown not to 

merge when magnified.  

Further magnification of the surfaces show that the cross-sections have thickness.  i.e., 

there are many (infinite) points in the Y-Z plane where X=0 intersects.

There are also gaps in between the intersections.  The cross-sections clearly reveal fractal
structure and self-similarity.

Y

Z

X

Strogatz, S. H., 1994: 
Nonlinear dynamics and 
chaos, Westview Press 
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Chaos in Lorenz’s “Mini GCM”

Lorenz, E. N., 1984: Irregularity: a 

fundamental property of the atmosphere. 

Tellus, 36A, 98-110.

Such fractal and self-similar structures of 

chaotic attractors are clearly evident in 

other models also.  Another 3-Variable 

model from Lorenz (1984) shows more 

intricate structure of a chaotic attractor for a 
particular choice of parameter values.
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Volume contraction

Why are the solutions confined within a small boundary?

Consider a dynamical system 

Choose an arbitrary closed surface S(t) of volume V(t).

Let the initial points of the trajectories be on S.

For an infinitesimal time dt, let S(t) evolves into a 

new surface S(t+dt) with a volume V(t+dt).

A small area dA sweeps out a volume (f•ndt)dA in time dt.

Using the divergence theorem, we obtain 
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Volume contraction in Lorenz model

Rate of change of volume is

Volume evolves as

Thus the volume is shrinking at an exponential rate.

For the parameter values used by Lorenz, if t1= t0+0.7,  V(t1)=0.00007V(t0) showing that 

the volume has decreased by several orders of magnitude in a short period of time.

Two states separated from each other in a suitable direction come together very rapidly 

and appear to merge.  Thus two surfaces which appear to merge remain as distinct 

surfaces.

The reason for the exponential shrinking of the volume is the dissipation in the system.
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Trapping of the solutions

For conservative systems for which some positive definite quantity Q (such as energy) is 

constant with time, each trajectory is confined to a particular surface of constant Q.

In systems with forcing and dissipation, whenever Q equals or exceeds a certain value Q1, 

if the dissipation acts to decrease Q more rapidly than the forcing can increase Q, then 

(−dQ/dt) has a positive lower bound where Q ≥Q1.  Each trajectory must ultimately become 

trapped in the region where Q < Q1. 

For Lorenz model, 

Q is conserved in the absence of forcing and dissipation.

With forcing and dissipation,

RHS = 0 on the surface of an ellipsoid E.

RHS > 0 in the interior of E.

Every orbit ultimately enters the sphere and is trapped within the sphere.
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As t progresses,

S0 S1 S2 S

V0 V1 V2 V

The volume decays exponentially

Let the intersection be

V = V0 V1 V2

All the orbits are ultimately contained in V �

which has zero volume.  This does not 

imply that V � shrinks to a point; it may 

simply become flattened into a surface.
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Attractor

Attractor is a set of phase space points to which all neighboring trajectories converge 
asymptotically.

Attractor is a closed invariant set.  Any trajectory that starts in the attractor stays in the 

attractor.

The set of all initial conditions that reaches the attractor is the basin of attraction.

Attractor is minimal.  There is no subset that satisfies the above conditions.

Attractor is relevant only for dissipative systems.
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Types of attractors

Steady state attractor is the stable steady state solution of the system.  It is just a point in 
the phase space.  

It is also called fixed point or equilibrium point.

Periodic attractor is the stable periodic solution forming a closed loop or cycle in the 
phase space. 

It is also called limit cycle.

Quasi-periodic attractor is the trajectory on a torus that almost (but not quite) repeats the 

same route periodically.  Each trajectory winds around endlessly on the torus, never 
intersecting itself and yet never quite closing.

Chaotic attractor is the set of all nonperiodic solutions confined to a bounded region of 
phase space with volume zero.  The cross-sections have fractal structure.  

It is also called strange attractor.



July 2, 2007 ICTP   SMR 1849    Dynamical Systems    Lecture 3    V. Krishnamurthy 12

Steady state attractors in Lorenz model

r < 1

X = 0,   Y = 0,   Z = 0

State of no convection (O)

There is only  one steady state attractor.

1 <  r < 24.74

X = Y = ±[b(r−1)]1/2,   Z = r−1

Steady convection (C, C )

For all values of r in this range, there are two steady state attractors (C, C ).  The basins of 

attraction for these two attractors are different.  It is difficult to predict which initial state will 

reach which attractor (either C or C ).  When there are two or more steady state attractors, 

they are also referred to as multiple equilibria.

r > 24.74

There are no steady state attractors.
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Periodic attractors in Lorenz model

As r is varied, the behavior of the Lorenz 

model also varies from having chaotic 

attractors to periodic attractors at irregular 

intervals of r.  Windows of periodic 

solutions and windows of nonperiodic
solutions alternate as r varies.

r = 260.0  xy Nonsymmetric

r = 160.0  x2y2 Symmetric

r = 132.5  x2y xy2 xy Symmetric

r = 126.5  xy x2y2 Nonsymmetric

r = 114.0  x2y xy Nonsymmetric

r = 100.5  xy2 Nonsymmetric



July 2, 2007 ICTP   SMR 1849    Dynamical Systems    Lecture 3    V. Krishnamurthy 14

Chaotic attractors in Lorenz model

Chaotic attractors exist at different values 

of r.

The attractors in different intervals of r 
have different characteristics.

The chaotic attractors at r=90 and r=180

are located in different parts of the phase 
space.
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Stability

An orbit is called stable at a point X(t
0
) if any other orbit passing sufficiently close to X(t

0
) at 

time t
0

remains close to X(t) as t .

An orbit X(t) is stable at t = t
0

if for any > 0 there exists > 0 such that if

|Y(t
0
) − X(t

0
) |< and t > t

0 
, |Y(t) − X(t)| < .

This is called Liapunov stable: “start near stay near”

Otherwise, X(t) is unstable.

If X(t) is stable at t = t
0
, it is stable for all t > t

0
(and also at t < t0 if the system is defined by 

differential equations).

If X(t) is Liapunov stable and if |Y(t) − X(t)| 0 as t (i.e., attracting), then X(t) is 

asymptotically stable.

t0

t
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Periodicity

Since each point lies on a unique orbit, any orbit passing through a point through which it 
has previously passed must continue to repeat its past behavior and must be periodic.

An orbit X(t) is quasi-periodic if for some arbitrary large time interval , X(t+ ) ultimately 

remains arbitrarily close to X(t).

X(t) is quasi-periodic at if, for any > 0 and 
0
, there exists a > 

0
such that

|X(t+ ) − X(t)| < if t > t
0
.

Periodic orbits are special cases of quasi-periodic orbits.

An orbit with a stable limiting orbit is quasi-periodic (includes periodic orbits).  These orbits 

are the periodic or quasi-periodic attractors.

t1 t0
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Nonperiodic orbits

An orbit that is not quasi-periodic is called nonperiodic.

If X(t) is nonperiodic, X(t
1
+ ) may be arbitrarily close to X(t

1
) for some time t

1
and some 

arbitrarily large time interval , but if this is so, X(t
1
+ ) cannot remain arbitrarily close to X(t)

as t .

A nonperiodic orbit is unstable.  It implies that two states differing by imperceptible amounts

may eventually evolve into two considerably different states.  

If there is any error in observing the present state, an acceptable prediction in the distant 
future may well be impossible.

Instability places a limit on the predictability of the system if the observations are less than 
perfect.  The deciding factor in predictability is stability versus instability.
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Attractors and Stability

Steady state attractors (fixed points) are stable.

Unstable steady states are not attractors.

Periodic attractors (limit cycles) are stable.

Unstable periodic solutions are not attractors.

Nonperiodic (chaotic) attractors consist of points that are only unstable.
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Stability of Steady States in Lorenz Model 

= 10 and b = 8/3
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Instability of steady state O

Initial states starting with small 

perturbations over the steady state O will 

reach either steady state C or C in the 

range 1 < r < 24.74.  The orbit spirals into 

either C or C depending on the initial 

state.
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Instability of C and C

An orbit starting from an initial 

state with a small perturbation 

over the steady state C or C
moves around in an unstable 

periodic orbit when r is just 

above rc.
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Bifurcation

Whenever the solution changes qualitatively at a fixed value, called the critical value, of a 
parameter, it is called a bifurcation.

A point in the parameter space where such an event occurs is defined as the bifurcation 

point.

Several (two or more) solution branches, either stable or unstable, emerge from a 

bifurcation point.

The representation of any characteristic property of the solutions as a function of the 
bifurcation parameter constitutes a bifurcation diagram.
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Bifurcation of steady states (fixed points)

Pitchfork bifurcation
One stable solution becomes unstable while two new stable solutions come into existence.  
This bifurcation is common in systems with symmetry, e.g., Lorenz model at r = 1.

Saddle-node bifurcation
At the saddle-node bifurcation point, fixed points are created and destroyed. As the 
parameter varied, a stable fixed point and an unstable fixed meet and mutually annihilate.

Transcritical bifurcation
A stable fixed point and an unstable fixed point meet at the bifurcation point and exchange 

symmetry.  After the bifurcation, the stable fixed becomes unstable and the unstable fixed 

point becomes stable.

The above three bifurcations involve collision of two or more fixed points.

Hopf bifurcation
The steady state becomes unstable at the critical value and the resulting motion is a small-
amplitude limit cycle (periodic orbit).

At r = 24.74, the Lorenz model undergoes a Hopf bifurcation, but it is subcritical and results 

in the creation of an unstable periodic orbit.
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Bifurcations of periodic solutions

Saddle-node bifurcation

As the parameter value is changed, a stable periodic solution and an unstable periodic 

solution come together and annihilate.  After annihilation, type I intermittent chaos occurs.

Sparrow, C., 1983: The Lorenz equations: Birfucations, chaos and strange attractors, Springer.
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Intermittent chaos in Lorenz 
model

After a saddle node bifurcation, 

intermittent chaos occurs in the 

Lorenz model.  The periodic orbit at r 

= 166 is in the stable branch before 

the bifurcation.  

At r = 166.2, the intermittent chaos 

occurs with bursts of nonperiodic

variation at irregular intervals between 
nearly periodic behavior.  

The intermittent bursts of chaos 

increase in frequency and duration as 

r changes, such as in r = 166.3. 
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Symmetric saddle-node bifurcation

In a symmetric saddle-node bifurcation, one stable symmetric orbit becomes unstable while 

two stable nonsymmetric orbits come into existence after the bifurcation point.  This 

bifurcation is a result of some symmetry in the model and is similar to the pitchforck
bifurcation of the fixed point. 

Example in Lorenz model: symmetric xy orbit at r = 350 and nonsymmetric xy orbits at r = 

260.

Sparrow, C., 1983: The Lorenz equations: Birfucations, chaos and strange attractors, Springer.
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Period-doubling bifurcation

As the parameter value is changed, a periodic orbit of period T becomes unstable while a 

stable periodic orbit of period 2T comes into existence.  As the parameter is further 

changed, period 2T orbit becomes unstable and a stable 4T orbit is born.  The period 

doubling sequence continues until the transition to chaos occurs.

Sparrow, C., 1983: The Lorenz equations: Birfucations, chaos and strange attractors, Springer.
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Let rn be the value of the parameter at which 

a period-doubling bifurcation occurs.  Then 

r
n−1

and rn+1 are the values at which previous 

and subsequent period-doubling bifurcations 

take place.

The length (in parameter value) of each 

successive periodic window reduces 
according to Feigenbaum constant given by

The Feigenbaum constant is universal.

( )
( ) (9.1)      .....6692016.4lim
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Period doubling in Lorenz model

Sparrow, C., 1983: The Lorenz equations: 
Birfucations, chaos and strange attractors, 
Springer.
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Period doubling in Lorenz Model

At r = 350, the model has a symmetric 

xy orbit.  After undergoing a symmetric 

saddle node bifurcation, there is a 

nonsymmetric xy orbit at r = 260.  

When r is further decreased, the model 

undergoes period doubling bifurcation.  

There is a period-2 orbit (xy)2 at r = 

222, a period-4 orbit (xy)4 at r = 216.2, 

a period-8 orbit (xy)8 at r = 215.6.  

This sequence ends in chaos as shown 

for r = 203.
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Hopf bifurcation of the periodic solution

This is also known as the Ruelle-Takens transition to chaos

In this scenario, three successive Hopf bifurcations occur before the transition to chaos.

Steady state Limit cycle T2 Torus T3 Torus Chaos

The three independent frequencies are f1, f2 and f3.

Bergé, Pomeau and Vidal, 1984: Order within chaos, John Wiley & Sons
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Bifurcations in the Lorenz model

Sparrow, C., 1983: The Lorenz equations: Birfucations, chaos and strange attractors, Springer.


