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Structure of Chaos

Boundary

The nonperiodic or chaotic solutions are confined within a boundary. The approximate
boundary has been drawn by finding the approximate unstable manifold of the steady state

O. Two trajectories emanate from O, i.e., approach it as r——oo.

The boundary does not include the unstable steady states O, C and C'. Any solution that
enters the region within the boundary will be trapped there for all future times.

July 2, 2007 ICTP SMR 1849 Dynamical Systems Lecture3 V. Krishnamurthy 2



Fractal Structure

The chaotic solutions are shown by Lorenz as contours of X in the Y-Z plane. Thus X is
represented as one single-valued function of Y and Z over much of range of Y and Z, and
as two single-valued functions over the reminder. It seems as though the trajectories are
confined to a pair of surfaces which appear to merge in the lower part. The spiral about C
is in the upper surface while the spiral about C’is in the lower surface.
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F16. 3. Tsopleths of X as a function of ¥ and Z (thin solid curves), and isopleths of the lower of two
values of X, where two values occur {dashed curves), for approzimate surfaces formed by ail points on
Limiting trajectories. Heavy solid curve, and extensions as doited curves, indicate natural boundaries of
strfaces.

Lorenz, E. N., 1963: Determ.inistic nonperiodic flow. Strogatz, S. H., 1994: Nonlinear
J. Atmos. Sci., 20, 130-141 dynamics and chaos, Westview Press
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The two surfaces merely appear to merge. However, there are actually an infinite number
of surfaces. They are close to one or the other of two seemingly merging surfaces.

For example, the two X=0 cross-sections may appear to merge, but they are shown not to
merge when magnified.

Further magnification of the surfaces show that the cross-sections have thickness. i.e.,
there are many (infinite) points in the Y-Z plane where X=0 intersects.

There are also gaps in between the intersections. The cross-sections clearly reveal fractal
structure and self-similarity. B X=0 Cross—section X=0 Cross—section
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Chaos in Lorenz’s “Mini GCM” Lorenz Min GCM Ffl8 O

Y=0 cross—section

Lorenz, E. N., 1984: Irregularity: a
fundamental property of the atmosphere.
Tellus, 36A, 98-110. 7

Such fractal and self-similar structures of
chaotic attractors are clearly evident in

other models also. Another 3-Variable

model from Lorenz (1984) shows more

intricate structure of a chaotic attractor for a
particular choice of parameter values. z

0.7 :
1.9 2
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Volume contraction
Why are the solutions confined within a small boundary?

Consider a dynamical system % =f(x)
4

Choose an arbitrary closed surface S(¢) of volume V(7).
Let the initial points of the trajectories be on S. S0, V()
For an infinitesimal time dt, let S(¢) evolves into a
new surface S(¢+dt) with a volume V(#+dt).

S(t+dt), V(t+dr)

A small area dA sweeps out a volume (fendt)dA in time dk.

V(t+dt)=V(t)+ L (f « ndt)dA

av _ [f +naa
dt %
Using the divergence theorem, we obtain
d
av _ [V.tav
dt
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Volume contraction in Lorenz model

0 0 0
Vef=—(-0X+0Y)+— (- XZ+rX -Y)+—(XY -bZ
By ( ) aY( ) aZ( )
=—0—-1-b <0
v
Rate of change of volume s~ — - = ~(c+b+1)V
Volume evolves as V() =e Y (1Y

Thus the volume is shrinking at an exponential rate.

For the parameter values used by Lorenz, if #,= 7,+0.7, V(¢,)=0.00007V(z,) showing that
the volume has decreased by several orders of magnitude in a short period of time.

Two states separated from each other in a suitable direction come together very rapidly
and appear to merge. Thus two surfaces which appear to merge remain as distinct
surfaces.

The reason for the exponential shrinking of the volume is the dissipation in the system.
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Trapping of the solutions

For conservative systems for which some positive definite quantity Q (such as energy) is
constant with time, each trajectory is confined to a particular surface of constant Q.

In systems with forcing and dissipation, whenever Q equals or exceeds a certain value Q,,
if the dissipation acts to decrease Q more rapidly than the forcing can increase Q, then
(—dQl/dr) has a positive lower bound where Q >Q,. Each trajectory must ultimately become
trapped in the region where Q < Q,.

For Lorenz model, Q=%(X2+Y2+Zz)

Q is conserved in the absence of forcing and dissipation.

With forcing and dissipation,

2 2
4O _ x2_y?_pp +b(r+a)zz{ax2 +Y? +b(Z— "J;Gj }b(”gj

dt 2
RHS = 0 on the surface of an ellipsoid E.

RHS > 0 in the interior of E.
Every orbit ultimately enters the sphere and is trapped within the sphere.
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As t progresses,

So—=8—>8§—>—>8§

o0

VooV, > V,—> >V

o0

The volume decays exponentially

av

=—(c+b+1)V
» ( )

Let the intersection be

V=V,NV,N V-

All the orbits are ultimately contained in V_
which has zero volume. This does not
imply that V_ shrinks to a point; it may
simply become flattened into a surface.
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Attractor

Attractor is a set of phase space points to which all neighboring trajectories converge
asymptotically.

Attractor is a closed invariant set. Any trajectory that starts in the attractor stays in the
attractor.

The set of all initial conditions that reaches the attractor is the basin of attraction.
Attractor is minimal. There is no subset that satisfies the above conditions.

Attractor is relevant only for dissipative systems.
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Types of attractors

Steady state attractor is the stable steady state solution of the system. It is just a point in
the phase space.

It is also called fixed point or equilibrium point.

Periodic attractor is the stable periodic solution forming a closed loop or cycle in the
phase space.
It is also called /limit cycle.

Quasi-periodic attractor is the trajectory on a torus that almost (but not quite) repeats the
same route periodically. Each trajectory winds around endlessly on the torus, never
intersecting itself and yet never quite closing.

Chaotic attractor is the set of all nonperiodic solutions confined to a bounded region of
phase space with volume zero. The cross-sections have fractal structure.
It is also called strange attractor.
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Steady state attractors in Lorenz model

r<l

X=0, Y=0, Z=0

State of no convection (O)
There is only one steady state attractor.

l<r <2474

X=Y=#[b(r-1]2, Z=r-1

Steady convection (C, C')

For all values of r in this range, there are two steady state attractors (C, C’). The basins of
attraction for these two attractors are different. It is difficult to predict which initial state will
reach which attractor (either C or C"). When there are two or more steady state attractors,
they are also referred to as multiple equilibria.

r >24.74

There are no steady state attractors.
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Periodic attractors in Lorenz model Lorenz Model: Periodic solutions

350 240

1 r=260 ] r=160
As ris varied, the behavior of the Lorenz ] 190-
model also varies from having chaotic Z 250 z
attractors to periodic attractors at irregular 200; 1401
intervals of r. Windows of periodic ; _
SO|U’[!OHS and windows of qonperlodlc 150_66';;&)'_"2' P S AN 90—56"—'36"—'16 P
solutions alternate as rvaries. X 190 X
1904 r=132.5 1r=126.5
160: 160:
r=260.0 xy Nonsymmetric * 130] 2 1307
r=160.0 x?y? Symmetric 100] 100]
r=132.5 x*’yxy*’xy  Symmetric ol T L N
o) . -40 -20 0 20 40 -40 -20 0 20 40
r=126.5 xyx-y Nonsymmetric 80 X 160 X
. 1r=114 1 r=100.5
r=114.0 x*yxy Nonsymmetric o -
r=100.5 xy? Nonsymmetric : 1201
Z 120 Z
i 80_
90+ 1
60 T — 404+———T T
-40 -20 2 20 40 -40 =20 2 20 40
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Chaotic attractors in Lorenz model

Lorenz Model: Nonperiodic solutions

1401

Chaotic attractors exist at different values
of r. 100

The attractors in different intervals of r ]
have different characteristics. 60

The chaotic attractors at =90 and r=180

are located in different parts of the phase —20 -0 0o 20

space.
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Stability

An orbit is called stable at a point X(z,) if any other orbit passing sufficiently close to X(z,) at
time 7, remains close to X(1) as t—o.

An orbit X(zr) is stable at t = 1, if for any ¢ > 0 there exists J > 0 such that if
1Y(z,) — X(t) I<dand t>1¢,, [Y() - X(Dl <e.

Ly

This is called Liapunov stable: “start near stay near”

Otherwise, X(7) is unstable.

If X(r) is stable at t =, it is stable for all > 7, (and also at t < {; if the system is defined by
differential equations).

If X(¢) is Liapunov stable and if 1Y(¢) — X(r)l — 0 as t—o (i.e., attracting), then X(z) is
asymptotically stable.
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Periodicity

Since each point lies on a unique orbit, any orbit passing through a point through which it
has previously passed must continue to repeat its past behavior and must be periodic.

An orbit X(¢) is quasi-periodic if for some arbitrary large time interval 1, X(z+ 1) ultimately
remains arbitrarily close to X().

X(r) is quasi-periodic at if, for any ¢ > 0 and ¢, there exists a t > 1, such that
IX(t+ 1) = X(Dl < eif t > 1,

Periodic orbits are special cases of quasi-periodic orbits.

An orbit with a stable limiting orbit is quasi-periodic (includes periodic orbits). These orbits
are the periodic or quasi-periodic attractors.
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Nonperiodic orbits

An orbit that is not quasi-periodic is called nonperiodic.

If X(¢) is nonperiodic, X(z,+ t) may be arbitrarily close to X(¢,) for some time ¢, and some
arbitrarily large time interval z, but if this is so, X(¢,+ 1) cannot remain arbitrarily close to X(z)
as 1—oo.

A nonperiodic orbit is unstable. It implies that two states differing by imperceptible amounts
may eventually evolve into two considerably different states.

If there is any error in observing the present state, an acceptable prediction in the distant
future may well be impossible.

Instability places a limit on the predictability of the system if the observations are less than
perfect. The deciding factor in predictability is stability versus instability.
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Attractors and Stability

Steady state attractors (fixed points) are stable.
Unstable steady states are not attractors.

Periodic attractors (limit cycles) are stable.
Unstable periodic solutions are not attractors.

Nonperiodic (chaotic) attractors consist of points that are only unstable.
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Stability of Steady States in Lorenz Model

oc=10and b =8/3

Lorenz Model: Steady State Solutions
10

{1 Stable
1 Unstable ; ;”//
- 4.74
5_
11.0
X 0.0

_5_
T 24.74
] T

—10 ' ' ' ' | ' ' ' ' | ' ' ' ' | ' ' ' ' I T T T T I T T T T
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InStabiIity Of Steady state O Lorenz Model (3—Variable Convection): r=10
Initial Conditions: Perturbations of Steady State O

20
Initial states starting with small | |
perturbations over the steady state O will T
reach either steady state C or C'in the ol N
range 1 < r<24.74. The orbit spirals into z Sy | (T
either C or C' depending on the initial s{ e |\
state. '_

o e

-5 ; ;

-10 -5 0 5 10

X
20
154

-10 -5 0 5 10
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Instability of C and C’

An orbit starting from an initial
state with a small perturbation
over the steady state C or C'

moves around in an unstable

periodic orbit when r is just

above r..
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Bifurcation

Whenever the solution changes qualitatively at a fixed value, called the critical value, of a
parameter, it is called a bifurcation.

A point in the parameter space where such an event occurs is defined as the bifurcation
point.

Several (two or more) solution branches, either stable or unstable, emerge from a
bifurcation point.

The representation of any characteristic property of the solutions as a function of the
bifurcation parameter constitutes a bifurcation diagram.
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Bifurcation of steady states (fixed points)

Pitchfork bifurcation
One stable solution becomes unstable while two new stable solutions come into existence.
This bifurcation is common in systems with symmetry, e.g., Lorenz model at r= 1.

Saddle-node bifurcation
At the saddle-node bifurcation point, fixed points are created and destroyed. As the
parameter varied, a stable fixed point and an unstable fixed meet and mutually annihilate.

Transcritical bifurcation

A stable fixed point and an unstable fixed point meet at the bifurcation point and exchange
symmetry. After the bifurcation, the stable fixed becomes unstable and the unstable fixed
point becomes stable.

The above three bifurcations involve collision of two or more fixed points.

Hopf bifurcation

The steady state becomes unstable at the critical value and the resulting motion is a small-
amplitude limit cycle (periodic orbit).

At r = 24."74, the Lorenz model undergoes a Hopf bifurcation, but it is subcritical and results
in the creation of an unstable periodic orbit.
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Bifurcations of periodic solutions

Saddle-node bifurcation

As the parameter value is changed, a stable periodic solution and an unstable periodic
solution come together and annihilate. After annihilation, type | intermittent chaos occurs.

stable orbit
\-._;... \_
. - 1
Orbits /"{gr /

— — — — non-stable orbit

Parameter — — ;7 \
stable
orbit non-stable

orbit

No periodic orbits; all
trajectories proceed to
the right.

Sparrow, C., 1983: The Lorenz equations: Birfucations, chaos and strange attractors, Springer.
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Intermittent chaos in Lorenz
model

After a saddle node bifurcation,
intermittent chaos occurs in the

Lorenz model. The periodic orbit at r
= 166 is in the stable branch before
the bifurcation.

At r = 166.2, the intermittent chaos
occurs with bursts of nonperiodic
variation at irregular intervals between
nearly periodic behavior.

The intermittent bursts of chaos
increase in frequency and duration as
r changes, such as in r = 166.3.

Lorenz Model (3—Variable Convection)
Intermittent Chaos
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Symmetric saddle-node bifurcation

In a symmetric saddle-node bifurcation, one stable symmetric orbit becomes unstable while
two stable nonsymmetric orbits come into existence after the bifurcation point. This
bifurcation is a result of some symmetry in the model and is similar to the pitchforck
bifurcation of the fixed point.

Example in Lorenz model: symmetric xy orbit at » = 350 and nonsymmetric xy orbits at r =
260.

non-symmetric
and stable

Orbits § - _\

symmetric symmetric and
and stable non-stable

Parameter —= \

stable symmetric
orbit

stable
non-symmetric
orbits

non-stable .
symmetric orbit

Sparrow, C., 1983: The Lorenz equations: Birfucations, chaos and strange attractors, Springer.
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Period-doubling bifurcation

As the parameter value is changed, a periodic orbit of period T becomes unstable while a
stable periodic orbit of period 27T comes into existence. As the parameter is further
changed, period 2T orbit becomes unstable and a stable 47 orbit is born. The period
doubling sequence continues until the transition to chaos occurs.

)
stable orbit of period 2T ;II
/ i =
Orbits \
stable non-stable

orbit of period T

Parameter — ==

Sparrow, C., 1983: The Lorenz equations: Birfucations, chaos and strange attractors, Springer.
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Let r, be the value of the parameter at which
a period-doubling bifurcation occurs. Then
r._,and r,, are the values at which previous
and subsequent period-doubling bifurcations
take place.

The length (in parameter value) of each

successive periodic window reduces
according to Feigenbaum constant given by

S= 1imw = 4.6692016.....

e (rn o rn+1)

9.1)

The Feigenbaum constant is universal.
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stable orbits
~— = 7 7 non-stable orbits
{1} symmetric orbits

() non-symmetric orbits

(xy)4
P S (xyxy)

(xy)

i (xyxy)

(x}’)d'

214 313

Period doubling in Lorenz model

Sparrow, C., 1983: The Lorenz equations:
Birfucations, chaos and strange attractors,
Springer.
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Period doubling in Lorenz Model

At r = 350, the model has a symmetric
xy orbit. After undergoing a symmetric
saddle node bifurcation, there is a
nonsymmetric xy orbit at r = 260.

When r is further decreased, the model
undergoes period doubling bifurcation.
There is a period-2 orbit (xy)? at r =
222, a period-4 orbit (xy)* at r = 216.2,
a period-8 orbit (xy)8 atr = 215.6.

This sequence ends in chaos as shown
for r = 203.

Lorenz Model: Period Doubling Transition to Chaos

450 350
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4001 300
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350- 2507
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Hopf bifurcation of the periodic solution

This is also known as the Ruelle-Takens transition to chaos
In this scenario, three successive Hopf bifurcations occur before the transition to chaos.

Steady state — Limit cycle — T2 Torus — T2 Torus — Chaos
The three independent frequencies are f,, f, and f;.

@ ® ©

st s st

Tonea VIIE Q el gnl H
EIQURY ¥V Ll (Wl e

Takens theory.

a) periodic regime

b) quasnpenodlc regime with two frequencies

¢) chaotic regime

S( £) is the power spectrum defined in chapter ITI (designated there by !j..]z),

u‘_’ ’ ID LT i llv' WA ﬂr\o‘ AL BN R RAR

Bergé, Pomeau and Vidal, 1984: Order within chaos, John Wiley & Sons
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Bifurcations in the Lorenz model
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Sparrow, C., 1983: The Lorenz equations: Birfucations, chaos and strange attractors, Springer.

July 2, 2007

ICTP SMR 1849 Dynamical Systems Lecture3 V. Krishnamurthy

31



