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Predictability of Weather
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Part III: Scale Dependence of Error Growth in Large Models

Part I: Physical Interpretation of Error Growth
(or loss of predictability) in the atmosphere in terms of:
Fundamental Linear Instabilities of Atmospheric Flow

Part II: Error Growth in Numerical Weather Prediction Models
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Predictability of Weather
Large Atmospheric Models

Part I

Physical Interpretation of Error Growth
(or loss of predictability) in the atmosphere in terms of:

Fundamental Linear Instabilities of Atmospheric Flow
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The seasonal (DJF) mean “basic state” of the troposphere
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The seasonal (DJF) mean “basic state” of the troposphere

Zonal wind u
at the top of the 

troposphere (200 hPa)
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just above the
boundary layer
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The presence of strong gradients in the mean flow

and

leads to the rapid growth of small wavy perturbations.
For small amplitudes of waves, this is a linear problem.

The study of these perturbations, and how their growth is related
to the features of the gradients of the mean flow,  is an important

subject in geophysical fluid dynamics.

∂u

∂z
∝ −∂T

∂y

∂u

∂y

These wavy perturbations ultimately give rise to both weather fronts
and cyclones in mid-latitudes, by a complex set of linear and non-

linear interactions.

Connection to Predictability (sensitivity to initial conditions):
Consider the rapidly growing solution y(x,y,p,t) whose structure is fixed but whose amplitude 

grows with time:

y = y0e
a(t−t0)

Since y0 is the initial condition (value of y at t=t0), any change in
in the initial condition grows exponentially

Baroclinic Barotropic
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Idealized Structure of baroclinic growing waves
and their role in the general circulation

(1) They consist of waves that propagate eastward with periods of about 2 - 8 
� days

(2) They can be broken into components, each of which has a give zonal wavenumber m:

� where the amplitude A and phase � are functions of (�,�, p), and the growth rate � and frequency
� � are functions of the zonal wavenumber m and the basic state on which the wave propagates.
� (Note: Here � is longitude and � latitude). The streamfunction � is related to the horizontal flow
� by:

� where a is the earth’s radius.
(3) Their vertical structure, and the relationship between temperature T and height (Z) or streamfunction
� (�) is such that they transport heat and momentum towards the pole.

ψ = Aei(mλ−ωt+Φ)eαt

u = −1
a

∂ψ

∂λ

v = +
1
a

∂ψ

∂φ
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from:“Global Physical Climatology” by Dennis Hartmann
(Academic Press, 1994)

solid lines are streamfunction
dashed lines are temperature
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v′T ′
Covariance of northward velocity (v) and Temperature T due to

fluctuations with time scales of 2-8 days

Physically: Poleward heat transport by waves that form due to
baroclinic instability.The waves try to smooth out the temperature gradient

“Storm Tracks” closely
aligned with maximum

vertical shear
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Variance of northward velocity (v) due to fluctuations with time 
scales of 8-90 days (300 hPa - upper troposphere)

Physically: Maxima related to “blocking highs” , which are long-lived high pressure
systems that cause persistent weather regimes downstream



ICTP Weather Predictability 2007 David Straus (GMU)10

Types of Large Numerical Weather Models:

(1) Atmospheric General Circulation Models (Numerical Weather
� Prediction Models or Climate Models)

(2) Turbulence models (idealized) - two-dimensional, quasi-geostrophic.
� - Focus here is on wave-wave interactions, also called non-linear 
� � interactions
� - Models typically cover many orders of magnitudes of scales by
� � solving equations with “closure” schemes - a completely
� � different philosophy of solving the equations
� - Possible only for relatively simple governing equations 
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Atmospheric General Circulation Models

(1) Fundamental equations are the “primitive” equations

(2) parameterizations for processes not explicitly resolved (see below)

(3) Horizontal domain is global, with spherical geometry

(4)Vertical Domain encompasses the troposphere and stratosphere

(5) Difference between numerical weather prediction models and
� climate models are primarily resolution
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Primitive Equations
(1) Filtered version of the fundamental equations for fluid dynamics “Navier-Stokes” equations.

(2) Assumption made that vertical domain is much smaller than horizontal domain, so 
that the vertical velocity is much smaller than the horizontal velocity.

(3) Assumption (2) is consistent with the hydrostatic equation, which relates the
mass to the vertical derivative of pressure.This filters out sound waves from the set
of equations.

(4) Often solved with the use of pressure (or a related quantity) as the vertical coordinate.
In these “pressure” coordinates, the fundamental dynamical equations consist of:

Momentum equations for horizontal flow - Newton’s Second Law in a rotating
frame of reference. (F = ma = m dv/dt)

Thermodynamic equation (T dS/dt = Q)  where S=entropy, Q=heating

Conservation of mass

Conservation of water (vapor + liquid + ice)
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Primitive Equations (continued)

(5) In these fundamental equations the basic non-linearity arises because of the distinction 
between Lagrangian rates of change (following a parcel of air), and Eulerian rates of change,
(expressed) in a fixed (x,y,p,t) coordinate system:

(Lagrangian)                                                                               (Eulerian)

(6) The fundamental dynamical equations of motion are supplemented by very important physical
processes, a few of which are listed here.

Radiation - both incoming and reflected solar radiation, and thermal radiation
from the ground, from gases in the troposphere, and from clouds.

Latent heat release from condensation of water vapor due to resolved motions.

Latent heat release and motion due to motions not resolved - convection
(includes both deep convection and shallow convection).

Planetary Boundary Layer diffusion and turbulence.

These processes can be very non-linear, if fact not even analytic!

dT

dt
=

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ ω

∂T

∂p
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A bulk mass flux scheme:

What needs to be considered

Entrainment/Detrainment

Downdraughts

Link to cloud parameterization

Cloud base mass flux - Closure

Type of convection shallow/deep

Where does convection occur

Generation and
fallout of
precipitation

(Andreas Chlond)
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Atmospheric Forecast and Climate Models
Variables which predicted by explicit evolution equations (“prognostic”):

At every model vertical level:
(1) Horizontal flow (zonal and meridional winds)
(2) Temperature
(3) WaterVapor
(4) Liquid and Solid water (clouds)

Surface Fields:
(1) surface pressure
(2) wind stress on the ocean

Total number of variables (estimated from NCEP Global Forecast System):
http://wwwt.emc.ncep.noaa.gov/gmb/moorthi/gam.html

Weather forecasting configuration ~ 47,100,000
Climate forecasting configuration ~  1,300,000

Very rough estimate of smallest scale resolved:

Weather forecasting configuration ~ 100 km
Climate forecasting configuration ~ 650 km
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Error Growth in Numerical Weather Prediction Models

Weather Predictability:
Growth of Errors in Operational Forecast Models

Lorenz, E. N., 1982: Atmospheric Predictability Experiments with a Large Numerical  Model.
Tellus, 34, 505-513.

Dalcher, A., and E. Kalnay, 1987: Error Growth and Predictability in Operational ECMWF 
Forecasts. Tellus, 39A, 474-491.

Simmons,A., and A. Hollingsworth, 2002: Some Aspects of the Improvement in Skill of 
Numerical Weather Prediction, Quart. J. Roy. Meteor. Soc., 128, 647-678.

Predictability of Weather
Large Atmospheric Models

Part II 
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Schematic of Analysis Forecast System. The bold letter A within a box refers to an

analysis for the given day, that is the estimate of the real state of the atmosphere on that

day. The bold numbers in the boxes refer to the range of the forecast. The days labeled on

the left refer to the verifying time

Analysis and Forecast

Analysis is the estimation of the current state of the atmosphere,
expressed as a state of a numerical model (denoted by “A” in diagram).*
The analysis is expressed in terms of all model prognostic variables, on the 
model’s horizontal and vertical grid.

Forecast is a projection into the future made using a numerical model from
an initial state given by the Analysis. 

* In practice, the analysis starts from a previous very short range (6 hour) forecast - the model 
variables are changed to be consistent with the current observations for those areas/levels/
variables which are observed
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The difference between a forecast which has been run for N days and the 
analysis at the end of the N days (the so-called “verifying analysis”) is 

called the forecast error.

Forecast error has several components: 
(1) analysis error: The initial conditions obtained from the analysis may 
have errors that are not small. 
(2) model error: The model itself has physical errors.
(3) predictability error: Any (inevitable) small errors in the analysis will 
amplify with time.

Definition of predictability error:
The difference between two model forecasts started from initial 
conditions very close to each other. (The predictability error measures
the forecast error that would be seen if the models were perfect and the 
analysis very good.)

Identical twin model configuration:
Run forecasts with the same model, but with initial states close to each 
other.

It is generally believed that with current NWP forecast models (e.g.
ECMWF), the forecast error for the first few days is dominated by the 
analysis error.



4

Operational ECMWF forecasts and analyses for winter of
1980 / 1981

100 - day period starting from 1 December 1980

For each day we have the analysis, and forecasts starting from that analysis
for 1 day, 2 days, ... 10 days.

Consider measure of error between two forecasts at any time to be the 
square root of the global mean of the squared difference between 500 hPa
height (Z). This error is called the rms error.

Consider two forecasts one started j days earlier, one started k days earlier,
both verifying for (valid for) the current time.
� Example:
� Forecast A is a 2-day forecast started on 23 December (j=2)
� Forecast B is a 3-day forecast started on 22 December (j=3)

The “error” in height between these two forecasts valid for Dec. 25 is:

where � is latitude and � longitude.

E2
j,k =

1
4π

∫ π
2

−π
2

dφ

∫ 2π

0

dλ cos(φ) (ZA − ZB)2
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heavy solid line is the 
forecast error

light solid lines are errors of
forecasts started d days apart

= predictability error

E(j,k)
j=0 is the analysis

Focus on this curve
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Estimate of
dE/dt

estimate of E

x - forecast error
dots - predictability error

for forecasts verifying
one-day apart
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dE
dt

= aE−bE2

Limt→�E = E�

aE� = bE2� E� = a/b

d�
dt

= a�−bE��
2 = a

(
�− �

2
)

= a�(1− �) �≡ E/E�

d
dt

(
�

1− �

)
= a

�

1− �

or

previous figure suggests a parabolic form for error growth:

E = rms of 500 hPa z

At large time, errors should saturate

d
dt

(
�

1− �

)
=

(
1

1− �

)
d�
dt

+
�

(1− �)2
d�
dt

=
1

(1− �)2
d�
dt
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f ≡ �

1− �

defining:

d f
dt

= a f

we have

f = ea(t−t0) (here t0 has a specific meaning)

or

tanh(x) ≡ ex− e−x

ex+ e−x

1+ tanh(x) =
2ex

ex+ e−x
1
2
(1+ tanh(x)) =

ex

ex+ e−x

Some identities:

 t0 is the time at which E = 1/2

�=
1
2

[
1+ tanh

(
1
2
a(t− t0)

)]

�=
f

1+ f
=

ea(t−t0)

1+ ea(t−t0)
=

e
1
2a(t−t0)

e−
1
2a(t−t0) + e

1
2a(t−t0)



9

�� 1
d�
dt

= a�

for we have

�= cea(t−t0)
or

the doubling time for small errors  is defined by:

or

doubling time for small errors is 2.42 days

�(t2)
�(t1)

= ea(t2−t1) = 2 (t2− t1) ≡ �= ln(2)/a
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Modified model: Correct all forecast height fields (after the fact) so 
that at each grid point:

(1) mean over all forecasts will equal the observed mean
(2) variance over all forecasts will equal the observed variance

Modified model has smaller error doubling time: 2.16 days 
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Hemispheric modified model: this measures the rms Z 500 error for the 
Northern Hemisphere only, with the statistical correction.  Since 
restricting the analysis to the NH emphasizes the more active winter 
synoptic systems, we would expect an even lower doubling time (higher 
error growth) . Here the doubling time is 1.85 days
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Overview of results for winters of 1981/82 - 2000/01

Some general questions that we may ask:

Is the error at day 1 decreasing as we improve the assimilation and models?

Has the rate of growth of small errors increased or decreased?

Are the “upper limit” and “lower limit” curves getting closer?

How much does this depend on the dynamics of the particular winter?
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Update from 1981 (light curves) to 2001 (dark curves)
 - Solid curve is again forecast error.
 - Dashed curve is error of forecasts one-day apart valid for same time
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Update from 1994 (light curves) to 2001 (dark curves)
 - Solid curve is again forecast error.
 - Dashed curve is error of forecasts one-day apart valid for same time
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Mean squared height errors

Contour
interval =
200 m2

Contour
interval =
3000 m2
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History of errors as the NWP models and analysis systems have improved
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An important point to note:

As the error itself has decreased with improved models and better data 
analysis, the error growth has increased - that is the doubling time has 
decreased!

We saw this also in the Lorenz analysis - the statistically corrected model 
had a smaller doubling time.

In this case, the cause of the increased error growth is that the horizontal 
and vertical resolution of the models has increased over time, so that 
smaller and smaller scales are resolved.  Errors on these smaller scales grow
more rapidly!
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Solution of three-term error growth model
We rewrite the model in a slightly different form, following Kalnay and Dalcher:

dE
dt

= (AE+S)
(
1− E

E�

)
where E�is the value of E as t ��

and S is hypothesized by KD to be related to 
GCM error

d�
dt

= (A�+�)(1− �)

e
E�

=�

S
E�

=�

with

we have:

d
dt

(
�

1− �

)
=

1
(1− �)2

d�
dt

=
1

(1− �)
(A�+�)

d f
dt

= A
�

(1− �)
+�

1
(1− �)

= A f +�(1+ f ) = (A+�) f +�

with: f =
�

(1− �) �=
f

(1+ f )
1+ f =

1
1− �

Note that � is a growth rate (units of inverse time)
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The solution is given by the sum of the general homogeneous solution plus the 
particular solution: 

f =Ce(A+�)t− �

A+�

�=
Ce(A+�)t− �

A+�

1+Ce(A+�)t− �

A+�

�=
Ce(A+�)t + A

A+�−1
Ce(A+�)t + A

A+�

�= 1− 1

Ce(A+�)t + A
�+A

= 1− A+�

A+(�+A)Ce(A+�)t

�= 1− 1
1+Ce(A+�)t

where C can be related to the initial error. If the term S = 0, we just obtain:
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Predictability of Weather
Large Atmospheric Models

Part IIIa

Scale Dependence of Error Growth in Large Models

Zonal Fourier Spectrum:

An Introduction to Scale Selection



Consider any atmospheric field at a pressure level

 which lies above the surface at all longitudes. 

For a fixed latitude, this can be represented simply as a one-

dimensional function which is periodic in longitude �:

F(�)=
m=�

�
m=0

Amcos(m�)+
m=�

�
m=1

Bm sin(m�)

=Re

[
m=�

�
m=−�

Cme
im�

]
(1)

The coefficients A and B are real, while C is complex. 

The integer m is known as the zonal wave number.
m=0 is just the longitudinal average or “zonal mean”.
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A Note on the upper limits of the wavenumber m:

In principle there is no upper limit in the expansions because here the function F 

is continuous. 

However, most energy in the real atmosphere is contained in the range m < 20,

although the upper limit of m retained in current weather prediction models is as 

high as ~500

m = 0 - 3  are often called “planetary waves”

m = 0 - 10 are often called “large scale waves”

m = 6 - 20 are often called “synoptic scale waves”

m = 20 -40 are often called “sub-synoptic waves”

From equation (1) we have:

where R and I denote real and imaginary parts. 

To invert the expansion, and obtain the coefficients C, multiply equation (1) on the left by 

e
-il�

 and integrate over � (where l also refers to zonal wavenumber) : 

A0=C0
Am=2CR

m (2)
Bm=−2CI

m

1
2�

Z �

−�
d�F(�)e−il�=

�

�
m=−�

Cm

(
1
2�

Z �

−�
d� eim�e−il�

)

= Cl (3)
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In the case of a discrete grid of N=2n points around the latitude circle we have:

where �
j
 = 2� j / N. In terms of A and B:

where we have used the conventional bracket notation to define the zonal mean. 

Synthesizing the discrete field F in term of components gives:

where the largest wavenumber M = n.

Cl =
1
N

n−1
�
j=−n

Fj e
−il 2� jN (9)

C0 = A0=[F ]

Am = 2CR
m=2

1
N�j

Fj cos(m
2� j
N

)

Bm = −2CI
m=2

1
N�j

Fj sin(m
2� j
N

) (10)

Fj = [F ]+
M

�
m=1

Amcos(m� j)+
M

�
m=1

Bm sin(m� j) (11)
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We can also write this expansion in terms of the amplitude (�) and phase (�) of different

zonal waves:

Note that the tangent is to be computed from the point (A
m

,B
m

) in the polar plane.

It is straightforward to prove that, neglecting the zonal mean, we have:

If F
1

 and F
2

 are two fields, the squared “error”  [(F
1

-F
2

)
2

]  = [ (�F)2 ]  can be written as:

Fj = [F ]+
M

�
m=1

�m (cos(m� j−�m)) (12)

�m=
(
A2m+B2m

)1
2

tan(�m)=Bm/Am (13)

[
F 2

]
=

1
2

M∑
m=1

(
A2

m + B2
m

)

[
(δF )2

]
=

1
2

m=M∑
m=1

(
(δAm)2 + (δBm)2

)
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An interesting way to write the squared error for a single wavenumber is in terms of the 

amplitude (�) and phase (�) of each solution (denoted by subscripts 1 and 2): 

where all terms inside the square brackets depend on m.  Clearly the first term is

the error due to the amplitudes of the waves differing (it vanishes when the amplitudes are

the same), and the second term is the error due to differing phases (it vanishes when the 

phases are the same).

[
δF 2

]
=

1
2

M∑
m=1

[
(α1 − α2)2 + 2α1α2 (1 − cos(Ψ1 − Ψ2))

]
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Overview of Global Predictability

• Mid-latitude weather error growth dominated by baroclinic
instability:

– Synoptic scales to large scales involved

– Time scales of 1-10 days (very roughly)

– Release of latent heat (condensation of water) plays a
secondary role

• Tropical weather error growth involves processes on several
scales:

– Deep convection (latent heat release plays dominant role)
• Very small spatial scales (~1 km)

• Short time scales (hours)

– Tropical Waves and the Madden-Julian Oscillation
• Synoptic to planetary scales

• Range of time scales 1 - 60 days
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Identical Twin Experiment

• Simulations using an atmospheric model (AGCM)

– Horizonal Resolution T63 (maximum of 63 zonal waves)

– forced by observed SSTs (given each week) for winter only

• “Control Experiments”: For each of 18 winters (1981-82 / 1998/99)

– 10 “control” simulations started from analyses in Late November: (Nov. 30,

29, 28, … ,21)

– Each simulation run for at least 60 days

• “Perturbed Experiments”: For each of 18 winters (1981-82 / 1998/99)

– 10 “perturbed” simulations started from analyses in Late November: (Nov.

30, 29, 28, … ,21) but with added, very small, random, errors*.

– Each simulation run for at least 60 days
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Identical Twin Experiment (continued)

• *Error in each variable (for example T) is given by dT = T * 0.001 * r,
where r is a random number in the range (-1,1)

• Such errors (or perturbations) are applied globally.

• Each Control Experiment thus has a “twin” Perturbed Experiment:

– They start from almost the same initial condition

– They are forced by the same, time varying, SSTs.

• The error is defined as the difference between a Control Experiment
and its twin.

• The error variance is defined as the error2, averaged over longitude,
and then averaged over all 18 x 10 = 180 identical twin pairs.
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There are two ways defining a climatological mean in general from a

set of atmospheric GCM experiments:

(1) Average over all possible model states consistent with winter. This

is called an ensemble average, and can be obtained by sampling

states from a number of simulations.

(2) Time average over a single winter simulation that is long enough -

for example a very long simulation of the model using constant

winter SSTs.

The equivalence of these two types of averages, ensemble average

and time average, is called the ergodic hypothesis. The point is that

if we follow a single solution (trajectory) of the model for a long

enough time, it will eventually cover all the states of the system

consistent with winter boundary conditions.

Variance and Error Variance - The Ergodic Hypothesis
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Let <T> be the ensemble average defined in the previous slide. Then the

variance V is defined as:

V = < (T - <T> )2>

In practice this is estimated by taking the temporal variance of T about its

seasonal mean for a given winter simulation, and averaging over all simulations.

It does not depend on time.

The error variance E is defined as:

E = <(T(1) - T(2))
2>

 where (1) and (2) refer to pairs of twins. This clearly has a sense of time, since it

is very small at small forecast time, and becomes very large as time increases.

But we have:

 E = <(T(1) - T(2))
2> = < ( (T(1) - <T>) - (T(2)-<T>) )2> =

< ( T(1) - <T>)2> + < (T(2)-<T>) 2> - 2 < ( (T(1) - <T>)(T(2)-<T>) )>

The last term is just the covariance between the two twin forecasts. For large

enough forecast time, we expect the covariance to approach zero, since the

forecasts are expected to be completely uncorrelated.

Variance and Error Variance: Saturation at for Large Forecast Time
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In general, then we have

E = < ( T(1) - <T>)2> + < (T(2)-<T>) 2> - 2 < ( (T(1) - <T>)(T(2)-<T>) )>

At large times, the last term is expected to vanish. Each of the first two terms is a

valid estimate of the variance, so that we have the result:

For large times, the error variance becomes twice the variance:

E = (t�� ) 2 V

This value is called the saturation value - Once the error variance has reached

this value it is saturated, and will not grow any further.

The error variance divided by the saturation value is called the normalized error

variance EN:

EN = E/(2V) = (t�� ) 1

The normalized error variance saturates at the value of 1

Please note that this applies only to the ensemble averaged error variance, so

that the brackets < > refer to an average over many pairs of twins.

Variance and Error Variance: Saturation at for Large Forecast Time



Weather Predictability Part III

David M. Straus / GMU

8

Square root of variance

Obs GCM
sfp

u(BC)

v(BC)

u(BT)

v(BT)

q(BT)

sfp = surface pressure

u = zonal wind

v = meridional wind

q = specific humidity

BT means vertical average

BC means deviation from

vertical average

Tropical variance much

less than mid-latitude

variance:

Expect smaller values of E
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Log (error) vs. Forecast Day

sfp 5S-5N

sfp

40N-50N

50S-40S

U200  5S-5N

U200

40N-50N

50S-40S

log(E) = � + � t � E = E0e
(� t)

Note rapid

error growth

for very small

time!
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Normalized Error Variance (total) vs. Forecast Day

5S - 5N

20N-30N 20S-30S

40N-50N 40S-50S
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(1) For short times, mid-latitude error growth slower than tropical error growth:

convective instability sets in very rapidly compared to baroclinic instability.

(2) For longer times, mid-latitude error growth is more rapid as baroclinic

instability sets in.

(3) Mid-latitude error saturates at higher values than tropical error, but you can’t

see that using normalize error!

(4) Exact time for errors to saturate is hard to estimate -so:

the predictability time � is estimated as the time it takes for EN to reach 1/2.
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Error Variance E

days 1,2,3,4,5

Error Variance E

days 5,10,15,20,25,30

Norm. Error Variance EN

days 1,2,3,4,5

u 850 hPa

E and EN

40-50N

Norm. Error Variance EN

days 5,10,15,20,25,30
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Error Variance E

days 1,2,3,4,5

Error Variance E

days 5,10,15,20,25,30

Norm. Error Variance EN

days 1,2,3,4,5

u 200 hPa

E and EN

40-50N

Norm. Error Variance EN

days 5,10,15,20,25,30
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(1) The error E initially grows more rapidly at large scales (smaller values of m) than

at smaller scales (larger values of m)

(2) But this is because there is more variance at large scales (in mid-latitudes)

(3) Once E is divided by the variance to obtain EN, we see that the smaller scales

grow more rapidly - that is they approach their saturation values more 

quickly than do the larger scales

(4) Another way of saying this is that the predictability time � is longer for large 

scales-This is very apparent at 200 hPa, less so at 850 hPa

(5) Even though the error at large scales is larger than at small scales, the large 

scales in the pairs of identical twins do not become completely de-correlated

as rapidly as the small scales. Thus for example, at day 20 at 200 hPa, 

there is still some useful information left in the large scales (but not in the

small scales).
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Comparison of tropical vs. mid-latitude error variance growth for different scales

The following plots show normalized error variance growth, summed over

wavenumbers m=1-5,  m=6-10, m=11-20, and m=21-30, as a function of time

Red lines show results averaged over Northern mid-latitudes 40N-50N

Blue lines show results averaged over Southern mid-latitudes 40S-50S

Black lines show results averaged over the deep tropics (5S-5N).

(The grey shaded band around the tropical error curve gives the estimate of the

variability from year to year of the error growth).
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Normalized u200 error

m=1-5 m=6-10

m=11-20

m=21-30



Weather Predictability Part III

David M. Straus / GMU

17

Normalized u850 error

m=1-5 m=6-10

m=11-20 m=21-30
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Comparison of tropical vs. mid-latitude error variance growth for different scales

The following plots show normalized error variance growth, summed over

wavenumbers m=1-3,  m=4-6, m=7-9, and m=10-12, as a function of time

Red lines show results averaged over Northern mid-latitudes 40N-50N

Blue lines show results averaged over Southern mid-latitudes 40S-50S

Black lines show results averaged over the deep tropics (5S-5N).

(The grey shaded band around the tropical error curve gives the estimate of the

variability from year to year of the error growth).

The dotted lines show the growth of errors due to phase differences only (see

Lecture IIIa)
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Normalized u200 error

m=1-3 m=4-6

m=7-9 m=10-12
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Normalized u850 error

m=1-3 m=4-6

m=7-9 m=10-12
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(1) Generally the mid-latitude predictability time is longer for the large scales:

� ~ 25 days for m=1-5, but � ~16-18 days for m=21-30.

(2) Generally the tropical error growth is generally slower after day 10 than the

mid-latitude error growth; this is seen especially in the largest scales and

at lower levels (850 hPa)

(3) The slow tropical error growth at 850 hPa at the largest scales suggests that

SST may have a greater effect in regulating the large scales in the tropics

than in mid-latitudes.

(4) The phase errors contribute more than half of the total errors.


