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Dynamical Systems

1. Chaos in deterministic systems

2. Low-order dynamical systems and predictability

3. Attractors and bifurcations

Theory of Error Growth

1. Linear stability analysis

2. Structure of errors

3. Growth of random errors
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Linear Stability Analysis

Study the stability of solutions with respect to small perturbations (or errors).

Consider a dynamical system

In compact notation,

where 

Consider two solutions X and X+x, where  x = (x1,…,xM) is small.

Neglecting higher order terms (because x is small), we obtain a linear equation for x.
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Error equation:

where

If X is a steady state, H is constant,

If X is periodic or chaotic, H is time-dependent.

Because H is linear, the error equation can be integrated from time t0 to t1 to obtain

x(t1) = A(t1,t0) x(t0)

xi(t1) = ∑ aij(t1,t0) xj(t0),        i= 1, …., M

A is a square matrix which depends on the behavior of X between t0 and t1.

Hx
x =

dt
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A is multiplicative:

If t0 < t 1< t2,

Equating the RHS of the two equations,

A(t2,t0) = A(t2,t1) A(t1,t0)

Simple solution:

If M = 1 or 

if M > 1 and H is constant,
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Linear Stability Analysis of Lorenz Model

Let the state of the system at time t be (X, Y, Z) and

let a state with a small perturbation be (X+x, Y+y, Z+z) where x, y, z are small.

The linear perturbation equation for the Lorenz model is

The stability equation is linear and should be integrated numerically when (X,Y,Z) is time-

dependent.

When (X,Y,Z) is time-independent, the stability equation can be solved by assuming some 

form of the solution for (x,y,z).
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Stability of steady states

Denote the steady states by (X0,Y0,Z0).
Lorenz model has three steady states O, C and C .  H is constant.

Solve the linear stability equation by assuming 

x = x0 exp( t),    y = y0 exp( t),     z = z0 exp( t)

Solve the characteristic equation

or perform an eigenanalysis of H for each steady state.

Solve Hv= v, where v is an eigenvector with a corresponding eigenvalue .

For distinct eigenvalues ( 1, 2, 3) with eigenvectors (v1,v2,v3), the general solution is

x(t) = c1exp( 1t)v1 + c2exp( 2t)v2 + c3exp( 3t)v3 (8.14)

where c1, c2 and c3 depend on the initial perturbation (x0,y0,z0).
The stability of the steady state depends on .

01

0

00

00 =
−−

−−−−
−−

λ
λ

σλσ

bXY

XZr



July 3, 2007 ICTP   SMR 1849    Theory of Error Growth    Lecture 1    V. Krishnamurthy 8

Stability of O

X0 = 0,  Y0 = 0,   Z0 = 0

Solve ( +b)[ 2 + ( +1) + (1−r)] = 0

When r > 0, the characteristic equation has three real roots.

When 0 < r < 1, all three roots are negative.  This means that the perturbation decays at an 

exponential rate.  The steady state O is stable in this case.

When r > 1, one root is positive indicating that the perturbation grows at an exponential 

rate.  The steady state O is now unstable.
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Stability of C and C

When r > 1, there are two more steady states

For stability analysis, solve the characteristic equation:

When r > 1, the equation has one real root and two complex conjugate roots.

The complex roots become pure imaginary if

i.e., if the complex root is = r+i i,       r< 0 for 1 < r < rc and r > 0 for r > rc.

This is the critical value for the instability of C and C .

If > b+1, the steady states C and C will become unstable for sufficiently high Rayleigh

numbers.

For = 10 and b = 8/3, the instability occurs at the critical value of rc = 24.74.
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Stability of Steady States in Lorenz Model

= 10 and b = 8/3
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Stability of Periodic Solutions and 
Transition to Chaos

Floquet theory

Consider a periodic solution

X(t+T) = X(t), where T = period.

A periodic solution corresponds to a fixed 

point X0 on a Poincaré cross-section S.

The stability of the periodic solution is the 

same as the stability of the fixed point on the 

Poincaré cross-section S.

Let X be a small perturbation such that X0+ 
X is in S.

Linearizing the flow about the

periodic orbit, the initial condition

X0 + X is mapped to X
0

+ M X at 

the end of the period T.

X(T) = M X(0)

Bergé, Pomeau and Vidal, 1984: Order 
within chaos, John Wiley & Sons
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M is a square matrix called the Floquet matrix and determines the stability of the periodic 

orbit.

M can be computed by numerically integrating

for exactly one period on the Poincaré cross-section.

The stability of the periodic solution is determined by the eigenvalues i of M.

One of the eigenvalues will always be equal to one, corresponding to the direction of the 
flow.

If all other eigenvalues are located inside the unit circle complex plane, the periodic solution 
is stable.

i.e., the closed orbit is stable if | i | < 1 all i = 1, …, M−1.

If at least one of the eigenvalues is outside the unit circle, the periodic solution is unstable. 
i.e., the modulus of the eigenvalue is greater than one.

The i are called the Floquet multipliers.
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Instabilities of periodic solutions
There are three possibilities for an eigenvalue i to cross the unit circle and cause 

instability.

(From Bergé, Pomeau and Vidal, 1984: Order within chaos, John Wiley & Sons)

(a) i > 1:  X for each cycle is amplified in the same direction.  This is saddle-node

bifurcation.

(b) i < −1:  X is amplified in the opposite direction alternately after each cycle.  This is 

subharmonic or period-doubling bifurcation.

(c) i = + i with | i | > 1: X rotates by an angle after each cycle, while their lengths 

increase. This is Hopf bifurcation.
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Evolution of small errors in chaotic systems
Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. 
Tellus, 17, 321-333.

Linear tangent equation
As discussed earlier, the evolution of small perturbations in an M-dimensional  dynamical 

system represented by

is given by the linear tangent equation

where X and X+x are basic and perturbed states of the system and
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When X is a state of a chaotic attractor, H is time-dependent.

Because H is linear, the tangent equation can be integrated from time t1 to t2 to obtain

x(t2) = A(t2,t1) x(t1)

xi(t2) = ∑ aij(t2,t1) xj(t1),        i = 1, …., M

A is an M × M square matrix which depends on the behavior of X between t1 and t2.

The matrix A controls the growth of small errors during the interval t1 to t2, and is called the 

error matrix. It is also known as the resolvent or propagator of the tangent equation.

Note that 

if t1 < t 2< t3,     A(t3,t1) = A(t3,t2) A(t2,t1)

A(t1,t2) = A(t2,t1)
−1
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Growth of errors

An individual set of errors x can be treated as a point in the M-dimensional phase space.

The amplitude of the error is defined as the distance of this point from the origin.

The squared-amplitude of the error at time t1 is

where the superscript T denotes the transpose of a matrix.

The squared-amplitude of the error at time t2 is

The matrix ATA is symmetric positive-definite and possesses M real positive eigenvalues.
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Growth of an initial sphere of errors

Consider an ensemble of random initial errors, each of amplitude at time t1, occupying the 

surface of an M-dimensional sphere

or

x(t1)
Tx(t1) = 2

If each error in the ensemble evolves according to the propagator of the tangent equation, 

the sphere will be deformed into an ellipsoid 

x(t2)
Tx(t2) = S2 2

at time t2.  Here, the matrix S2 is diagonal with diagonal elements consisting of the M real 

positive eigenvalues of ATA.
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If 1
2,…., M

2 are the the eigenvalues of ATA, then

1,…., M are the lengths of the semiaxes of the ellipsoid.

1,…., M are the singular values of A and depend on t1 and t2 and

let  1 > 2 >….> M.

Whether or not any small errors grow between t1 and t2 depends on whether any semi-axis 

of the ellipsoid is greater than the radius of the sphere. 

The error growth, therefore, depends on whether the singular value 1, or the eigenvalue

1
2 is greater than one.
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