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1. The ECMWF NWP Model

The behavior of the 
atmosphere is governed by a 
set of physical laws which 
express how the air moves, 
the process of heating and 
cooling, the role of moisture, 
and so on.

Interactions between the 
atmosphere and the 
underlying land and ocean are 
important in determining the 
weather.
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1. Surface processes

Surface processes determine the sources and 
sinks of temperature and moisture (in terms of 
sensible and latent heat fluxes) at the lowest 
boundary of the atmosphere. As a consequence, 
over land, they define the state of the ground 
(warm, cold, freezing, dry or wet) and whether 
falling rain or snow precipitation will remain or 
subsequently disappear. 

It is the surface characteristics, such as the 2-m 
temperature, humidity and wind, that are some 
of the most important (and most difficult) to 
predict, since, after all, the lowest 2 metres is 
exactly the part of the atmosphere in which we 
spend most of our lives!
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1. The importance of spatial resolution

A high spatial resolution is needed to achieve an accurate representation of the 
system physical processes. Similarly, the representation of the orography 
becomes more realistic with increased horizontal resolution.
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1. Parameterization of physical processes

Each physical process has a characteristic spatial and temporal scale. Many 
processes occur on a spatial scale smaller than the model grid. 

For example, over land a 40km 
square may include different 
types of vegetation, bare soil or 
buildings. Each type, for 
example, reflects the incoming 
solar radiation and affects 
moist processes in a different 
way.
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1. Starting a NWP: the initial conditions

To make accurate forecasts it is 
important to know the current 
weather:

observations covering the whole 
globe are continuously 
downloaded and fed into the 
system;
about 600,000 observations are 
processed every 12 hours;
complex assimilation procedures 
are used to optimally define the 
initial state of the system.

Unfortunately, very few observations 
are taken in some regions of the 
world (e.g. polar caps, oceans).



ICTP Conference & School on Predictability (July 2007) – Roberto Buizza: Sources of uncertainty (L1) 8

1. Sources of fc errors: initial and model uncertainties

Weather forecasts lose skill because of the growth of errors in the initial 
conditions (initial uncertainties) and because numerical models describe the 
laws of physics only approximately (model uncertainties). As a further 
complication, predictability (i.e. error growth) is flow dependent. The Lorenz 3D 
chaos model illustrates this.
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1. The atmosphere exhibits a chaotic behavior

A dynamical system shows a 
chaotic behavior if most orbits 
exhibit sensitivity to initial 
conditions, i.e. if most orbits that 
pass close to each other at some 
point do not remain close to it as 
time progresses. 

This figure shows the verifying 
analysis (top-left) and 15 132-hour 
forecasts of mean-sea-level 
pressure started from slightly 
different initial conditions (i.e. from 
initially very close points).
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2. Predictability is flow dependent: spaghetti plots 

The degree of mixing of Z500 isolines is an index of low/high perturbation 
growth.
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3. The probabilistic approach to NWP

A complete description of the weather prediction problem can be stated in terms 
of the time evolution of an appropriate probability density function (PDF). 
Ensemble prediction based on a finite number of deterministic integration 
appears to be the only feasible method to predict the PDF beyond the range of 
linear growth. 

Currently, the ECMWF operational suite includes every day:

a single deterministic forecast run at high resolution:
o Day 0 to 10: TL799L91, ~25km, 91 levels

51 15-day forecasts run at lower resolution:
o Day   0 to 10: TL399L62, ~60km, 62 levels
o Day 10 to 15: TL255L62, ~60km, 62 levels 

The 51 forecasts constitute the ECMWF Ensemble Prediction System. The first 
version of the EPS was implemented operationally in December 1992. The 
current version of the EPS  simulates both initial and model uncertainties.
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3. Schematic of ensemble prediction

Two are the main sources of error 
growth: initial and model 
uncertainties.

Predictability is flow dependent. 

A complete description of weather 
prediction can be stated in terms 
of an appropriate probability 
density function (PDF). Ensemble 
prediction based on a finite 
number of deterministic integration 
appears to be the only feasible 
method to predict the PDF beyond 
the range of linear growth. 
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3. What does it mean to ‘predict the PDF time evolution’?

The EPS can be used to 
estimate the probability of 
occurrence of any weather 
event.

Floods over Piemonte (Italy), 
6 Nov 94 (top right panel). 
The forecast skill of the single 
deterministic forecast given 
by the EPS control (top left) 
can be assessed by EPS 
probability forecasts (bottom 
panels). 
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3. What does it mean to ‘predict the PDF time evolution’?

The ensemble spread 
around the control 
forecast can be used 
to identify areas of 
potential large control-
forecast error. 

These figures show 
the 5-day control 
forecast and ensemble 
spread (left) and the 
verifying analysis and 
the control error 
(right) for forecasts 
started 18 January 
1997 (top) and 1998 
(bottom).
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4. What should an ensemble prediction system simulate?

What is the relative contribution 
of initial and model uncertainties 
to forecast error?

Richardson (1998, QJRMS) have 
compared forecasts run with two 
models (UKMO and ECMWF) 
starting from either the UKMO or 
the ECMWF ICs. Results have 
indicated that initial differences 
explains most of the differences 
between ECMWF-from-ECMWF-ICs 
and UKMO-from-UKMO-ICs 
forecasts. 
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4. Initial uncertainties have a dominant effect

This figure shows the difference 
between 3 120-hour forecasts: 
UK(UK) (i.e. UK-from-UK-ICs) 
and EC(EC) (top left), EC(UK) and 
EC(EC) (top right), UK(UK) and 
EC(UK) (bottom left). 

The error of the EC(EC) forecast 
is also shown (bottom left). Initial 
differences contributes more than 
model differences to forecast 
divergence. This suggests that 
initial uncertainties contributes 
more than model approximations 
to error growth during the first 3-
5 forecast days. 

How should an ensemble 
prediction system simulate initial 
uncertainties?
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5. How should initial uncertainties be defined?

Perturbations pointing along 
different axes in the phase-space 
of the system are characterized by 
different amplification rates. As a 
consequence, the initial PDF is 
stretched principally along 
directions of maximum growth. 

The component of an initial 
perturbation pointing along a 
direction of maximum growth 
amplifies more than a component 
along another direction (Buizza et 
al 1997). 

t=0

t=T1

t=T2
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5. Definition of the initial perturbations

To formalize the problem of the 
computation of the directions of 
maximum growth an inner product 
(metric) should be defined to be able 
to ‘measure’ growth.

The metric that has been used at 
ECMWF in the ensemble system is a 
total energy, defined as a function of 
vorticity, divergence, temperature 
and surface pressure.
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5. Asymptotic and finite-time instabilities

Farrell (1982) studying perturbations’ growth in baroclinic flows notices that the 
long-time asymptotic behavior is dominated by normal modes, but that there are 
other perturbations that amplify more than the most unstable normal mode over 
a finite time interval. 

Farrell (1989) showed that perturbations with the fastest growth over a finite 
time interval could be identified solving an eigenvalue problem of the product of 
the tangent forward and adjoint model propagators. This result supported earlier 
conclusions by Lorenz (1965).

Calculations of perturbations growing over finite-time interval intervals have 
been performed, for example, by Borges & Hartmann (1992) using a barotropic 
model, Molteni & Palmer (1993) with a quasi-geostrophic 3-level model, and by 
Buizza et al (1993) with a primitive equation model.
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5. Singular vectors (see appendix for more details)

The problem of the computation of the directions of maximum growth of a time 
evolving trajectory reduces to the computation of the singular vectors of 
K=E1/2LE0

-1/2, i.e. to solving the following eigenvalue problem:

where:

E0 and E are the initial and final time metrics
L(t,0) is the linear propagator, and L* its adjoint
The trajectory is time-evolving trajectory
t is the optimization time interval

υσν 221
0

*21
0 =−− ELELE
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5. SVs’ example: singular values for 18-20 Jan 1997

This figure shows the 
amplification rate (i.e. the 
singular value) of the leading 
30 unstable singular vectors 
growing between 18 and 20 
January 1997. The SVs were 
computed at the resolution 
T42L31 and were used to 
generate the EPS initial 
conditions.
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5. Leading singular vector for 18-20 Jan 1997

This figure shows the most unstable 
singular vector growing between 18 and 
20 Jan 1997. Left (right) panels show 
the SV at initial and final (i.e. +48h) 
time. 

The top panels show the SV T at model 
level 18 (~500hPa, shading) and the 
Z500 analysis; the bottom panels the SV 
T at model level 23 (~700hPa, shading). 
The contour interval is 8dam for Z, and 
0.01 (0.05) deg for T at initial (final) 
time (the SV is normalized to have unit 
total energy norm at initial time).

T=0 T=+48h

500hPa

700hPa
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5. Vertical cross section of SV 1 for 18-20 Jan ‘97

This figure shows, for SV 1, the vertical 
cross section of the T component at 
initial time (top, for 36N) and of the 
vorticity component at final time 
(bottom, for 44N). The two cross 
sections have been taken along the 
parallel where the SV had maximum 
amplitude. 

Note the strong initial tilt, suggesting 
baroclinic instability, and the final time 
more barotropic-type structure. Note 
that T is shown at initial time and vor at 
final time because the initial time SV has 
a strong potential energy part.
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5. Average energy distribution for 18-20 Jan 1997

The top figure shows the SV1:25 average 
vertical distribution at initial time of the 
kinetic (red dotted, x100) and total (red 
solid, x100) energy, and the 
corresponding final time distributions 
(blue). 

The bottom figure shows the SV1:25 
average total energy spectrum at initial 
(red solid, x100) and at final time (blue 
solid). Note the SV typical upward and 
upscale energy transfer/growth, and the 
transformation from initial potential to 
mainly final kinetic energy.
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5.  SVs’ and Eady index for 18-20 Jan 1997

The top panel shows the t+24h average root-
mean-square (rms) amplitude (in terms of Z500) 
of the first 25 singular vectors growing between 
18 and 20 January 1997. 

The bottom panel  shows the 18-20 January 1997 
average Eady index. The contour isolines are 
0.5dam for the SV’s rms amplitude and 0.5d-1 for 
the Eady index. 

Results indicate a good correspondence between 
areas of SV concentration and of maximum value 
of the Eady index.
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5. NH SVs and Eady index - JFM ‘97 & ‘98

The top panels show the average t+24h 
root-mean-square amplitude (in terms 
of Z500, ci=0.3dam) of the first 25 
singular vectors during JFM 1997 (left) 
and 1998 (right) over the NH. 

The bottom panels show the average 
Eady index computed between 1000 
and 300 hPa (ci=0.2d-1). Results 
indicate a good agreement between 
areas of large Eady index and high SV 
concentration. 
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6. Simulation of model uncertainties

The fact that numerical models describe the 
laws of physics only approximately (model 
uncertainties) contributes to the growth of 
forecast errors. 

This figure shows the effect of small random 
perturbations added to the tendencies due 
to the parameterized physical processes on 
a 4d forecast (MSLP). 
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6. Stochastic physics: the rationale 

The stochastic scheme (named ‘stochastic physics’) currently used in the ECMWF 
ensemble system has been designed such that:

• It is simple and ‘robust’ to model changes

• It simulates the sort of random errors in parameterized forcing which are 
coherent among the different parameterization models (moist-processes, 
radiation, turbulence, ..). A way to take this into account is to apply the 
stochastic forcing on the total tendency.

• The random numbers that are used to perturb the model tendencies have a 
space-time correlation designed to emulate the coherence of the model 
tendencies due to parameterized physical processes (such a coherence 
represents, e.g., the space and time scales associated with organized 
convection). 

• It should improve the model climate.
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Each ensemble member evolution is given by the time integration

of the perturbed model equations. 

The model tendency perturbation is defined at each grid point by

where r(x) is a random number.

6. The EPS with perturbed physics
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6. Selection of random numbers

Random numbers can be selected with 
different spatial correlation scales. 

The top figure shows the case when 
different random numbers are used at 
each grid point. 

The bottom figure shows the case when 
the same random number is used inside 
5-degree boxes. In this case the 
numbers have been selected inside the 
interval -0.5 ≤ r(x) ≤ 0.5:

blue is for -0.5≤ r(x) ≤ -0.3;
green is for -0.1 ≤ r(x) ≤ 0.1;
red is for 0.3 ≤ r(x) ≤ 0.5.
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6. Selection of random numbers

Random numbers can be selected with 
different temporal correlation scales.

These two figures shows the effect on 
the amplitude of the perturbation 
tendency for two adjacent boxes when 
the random numbers are re-selected 
every time step (red) or every 4 time 
steps (green). In this case the 
numbers have been selected inside the 
interval -0.5 ≤ r(x) ≤ 0.5.
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6. Stochastic physics as a source of spread in the tropics

Currently, stochastic physics 
is the dominant source of 
ensemble spread in the 
tropical region (the SVs are 
optimized to grow north of 
30N and south of 30S). 

This can be seen, e.g., by 
comparing the 48-h ensemble 
spread in terms of 
precipitation in a tropical 
region for ensembles run 
without (top) and with 
(bottom) stochastic physics.
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6. Stochastic physics as a source of spread in the tropics

After 5-days of time 
integration, initial 
perturbations initiated north 
of 30N and south of 30S 
induce divergence also in the 
tropical region.  

Thus, the difference between 
the ensemble spread  in 
terms of precipitation for 
ensembles run without (top) 
and with (bottom) stochastic 
physics is smaller.
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6. Impact of stochastic physics: the US storm case

Between 25 and 26 Jan 2000 a very intense 
storm affected the US East Coast. Sensitivity 
experiments have indicated that stochastic 
physics had a key positive role in producing 
some skilful members. 

These figures show the MSLP analysis for 26 
Jan 00UTC (top left) and t+60h ensemble 
forecasts (started on 23 Jan at 12UTC) run 
with and without stochastic physics.

NOST

OPE
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7. The current ECMWF Ensemble Prediction System

The Ensemble Prediction System consists of 51
forecasts run with variable resolution:

• TL399L62 (~60km, 62 levels) from day   0 to 10

• TL255L62 (~80km, 62 levels) from day 10 to 15 
[1,5,7,8,13,11,15].

The EPS is run twice a-day, at 00 and 12 UTC.

Initial uncertainties are simulated by perturbing the 
unperturbed analyses with a combination of 
T42L62 singular vectors, computed to optimize 
total energy growth over a 48h time interval (OTI). 

Model uncertainties are simulated by adding 
stochastic perturbations to the tendencies due to 
parameterized physical processes.

NH SH TR

Definition of the 
perturbed ICs

11 22 5050 5151…..

ProductsProducts
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7. The ECMWF Ensemble Prediction System 

Each ensemble member evolution is given by the time integration

of perturbed model equations starting from perturbed initial conditions

The model tendency perturbation is defined at each grid point by

where r(x) is a random number.
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7. Since May ‘94 the EPS configuration changed 15 times

Between Dec 1992 and Sep 2006 the ECMWF system changed several times: 
~50 model cycles (which included changes in the model and DA system) were 
implemented, and the EPS configuration was modified 15 times.



ICTP Conference & School on Predictability (July 2007) – Roberto Buizza: Sources of uncertainty (L1) 44

7. The variable resolution ensemble system (VAREPS)

The key idea behind VAREPS is to resolve small-scales in the forecast up to 
the forecast range when resolving them improves the forecast, but not to 
resolve them when unpredictable.

VAREPS aims to increase the value of the current EPS in two ways:

• in the short range, by providing more skilful predictions of the small scales

• in the medium-range, by extending the range of skilful products to 15 days 

VAriable Resolution EPS (VAREPS)

T0 T+168 T+360 T+768
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7. VAREPS

Results have indicated that:

• In the short-range, increasing the EPS resolution improves the average skill,
in particular in cases of extreme weather events (hurricanes, small-scale 
vortices, wind, intense precipitation, ..)

• In the long-range, the impact of increasing resolution can still be detected, 
but it is less evident

• These results suggest that, given a limited amount of computing resources, 
it is more valuable (i.e. cost effective) to use most of them in the short-
range

• The EPS benefits from better starting from a better analysis
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7. The future ensemble systems at ECMWF

• Until 1 Feb ‘06, the EPS had 51 10-day forecasts at TL255L40 resolution

• On the 1st of Feb ‘06, the 10-day EPS resolution was upgraded to TL399L62

• On the 12th of Sep ’06, the new Variable Resolution EPS (VAREPS) was 
introduced, and the ensemble forecast range was extended to 15 days

• The next change will be to link the 15-day VAREPS with the monthly forecast 
system will continue, with the goal to implement a seamless d0-32 VAREPS

Jan 2006
Feb 2006
Sep 2006
end 2007

TL255L40
TL399L62

TL255L62TL399L62
TL399L62 TL255L62 TL255L62

T=0 10 d 32 d15 d
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7. First case of a 3-legs VAREPS (17 July 2002)

OPEVAREPS

VAriable Resolution EPS (VAREPS)
T0 T+168 T+360 T+768
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8. Conclusion

• Initial and model uncertainties are the main sources of error growth. Initial 
uncertainties dominates during the first 3-5 forecast days. Predictability is flow 
dependent. 

• A complete description of weather prediction can be stated in terms of an 
appropriate probability density function (PDF). Ensemble prediction based on a 
finite number of deterministic integration appears to be the only feasible 
method to predict the PDF beyond the range of linear growth. 

• The initial error components along the directions of maximum growth 
contribute most to forecast error growth. These directions are identified by the 
leading singular vectors, and are computed by solving an eigenvalue problem. 

• The EPS changed 14 times between 1 May 1994 (first day of daily production) 
and now. Currently, it includes 50 perturbed and 1 unperturbed 15-day 
forecasts with variable resolution [TL399L62(0-10)+TL255L62(10-15)]. Soon, 
once a-week the 15-day VAREPS will be extended to 32-day, with a coupled 
ocean from day 10.
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Appendix: singular vector definition

Hereafter, some more details on the definition of singular vectors, and their 
relationship with normal modes, is reported. 
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Inner product and norm definition

Given two state-vectors x and y expressed in terms of vorticity ζ, divergence D, 
temperature T, specific humidity q and surface pressure π, the following inner 
products (and the associated norms) can be defined (<..,..> is the Euclidean 
inner product):

• total energy inner product (no humidity term):

• enstrophy inner product:

• ψ-square inner product:
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Inner product and norm definition

Denote by ζn,l the level-l vorticity component with total wave number n, by Dn,l

…. of a state vector x. The norm of x can be written in matrix form as:

where n is the total wave number, δp is the pressure difference between two 
half-levels; Tr=350deg and pr=100kPa are reference values;   Ra=6371km, 
Rd=287JK-kg-1, Cp=1004JK-kg-1.  
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Definition of the system instabilities: normal modes 

Consider an N-dimensional autonomous system: 

The method most commonly applied to study the stability of a solution z of the 
system equations is based on normal modes, whereby small disturbances are 
resolved into modes which may be treated separately because each of them 
satisfies the system equations. The system equations are linearized around the 
constant solution z:

A normal mode is a solution of the linearized equations of the form:
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Definition of the system instabilities: normal modes

By substituting the normal mode definition into the linear equations an 
eigenvalue problem is defined:

The eigenvectors with real positive eigenvalues λ identify the unstable normal 
modes of the systems. A system is defined asymptotically stable if and only if 
every eigenvalue has negative real part.

Charney (1947) and Eady (1949) considered idealized atmospheric flows and 
by applying a normal-mode stability analysis they studied the baroclinic 
instability mechanism and showed that the zonal mean component of realistic 
mid-latitude flows is unstable. The resulting exponentially growing structure 
proved to have length and time scales similar to observed atmospheric 
cyclogenesis.
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Singular vector definition: the linear equations

Consider an N-dimensional autonomous system: 

Denote by z’ a small perturbation around a time-evolving trajectory z:

The time evolution of the small perturbation z’ is described to a good degree of 
approximation by the linearized system Al(z) defined by the trajectory. Note 
that the trajectory is not constant in time.
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Singular vector definition: the linear propagator

The perturbation z’ at time t is given by the time integration from the initial 
state z’(t=0) of the linear system:

The solution can be written in terms of the linear propagator L(t,0):

The linear propagator is defined by the system equations and depends on the 
trajectory characteristics. The E-norm of the perturbation at time t is given by:
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Singular vector definition: the adjoint operator

Given any two vectors x and y, the adjoint operator L* of the linear operator L
with respect to the Euclidean norm <..,..> is the operator that satisfies the 
following property:

Using the adjojnt operator L* the time-t E-norm of z’ can be written as:

>>=<< LyxyxL ;;*

>′′>=<′′=<′ 0
*

000
2 ;;)( zELLzzELzLtz



ICTP Conference & School on Predictability (July 2007) – Roberto Buizza: Sources of uncertainty (L1) 63

Singular vector definition: the problem

The problem of the computation of the directions of maximum growth can be 
stated as ‘finding the directions in the phase-space of the system characterized 
by the maximum ratio between the time-t and the initial norms’. Formally, this 
problem reduces to an eigenvector problem:

The problem can be generalized by using two different norms at initial and final 
time:
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Singular vector definition: the eigenvalue problem

Apply the following coordinate transformation:

Then the generalized problem reduces to:

The directions of maximum growth are defined by the following eigenvalue 
problem:
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