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I. Linear and Nonlinear Signatures of Modes of 

Variability

Recognizing that much of variability on monthly and longer timescales is 

composed of a few recurring patterns is helpful for understanding variability on 

these timescales as well as its predictability characteristics. But there is more 

than one idea as to what are the fundamental dynamical processes that produce 

these patterns.  In particular it is not clear how important nonlinear processes 

are in their formation and behavior.  
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What are natural modes of variability?

There is no consensus as to the exact meaning of mode of variability, but one of 

the consequences of their existence is that a large fraction of variability can be 

explained by just a few patterns. 
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Another consequence is that there is strong covariability between widely spaced 

points on the globe.

But the pattern of co-varying points varies markedly from place to place on the 

globe.
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Many researchers associate some of the prominent modes of variability with 

special external forcing.  For example, the pattern on the right, which is often 

called the Pacific North American pattern can be stimulated by tropical Pacific 

rainfall associated with El Nino and La Nina events.  But natural modes of 

atmospheric variability are produced by intrinsic atmospheric processes and do 

not rely on special external forcing events for their existence. In fact, the 

patterns shown in this diagram result from a numerical integration of a general 

circulation model in which external conditions are kept fixed from one year to 

the next. 
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h500 EOFs

Most predictable patterns for 10d forecasts

The existence of prominent modes of variability has many important 

consequence.  As we shall see, they are patterns that are easily generated and 

which naturally last a long time.  This makes them easier to forecast for long 

periods than most patterns are to forecast.  Here we see that the two best 

forecast patterns at a 10 day range by an operational forecast model are very 

similar to the most prominent patterns in nature.
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Though they do not rely on special forcing for their existence, modes of 

variability often play prominent roles in the atmospheric response to forcing 

events.  Here we see that the average response of the atmosphere to El Nino 

events has a midlatitude structure that is a combination of two prominent 

modes, the PNA and a second mode that we will encounter later.



7

Are modes affecting observed climate change?

Another possible example of intrinsic modes being important for understanding 

why the structure of the atmospheric response to external conditions concerns 

global warming.  One of the most famous modes of variability is the North 

Atlantic Oscillation.  

Over the last 40 or so years there has been a distinct trend in the amplitude of 

the NAO.
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This trend in the NAO appears to be related to a concurrent trend in surface 

temperatures in that the observed trends (right) have similar structure to the 

surface temperature distribution associated with strong NAO events (left).
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Two Competing Definitions of “Mode”

Given the prominence of intrinsic modes of variability and their importance to 

forecasts from the weekly to interannual to secular timescales, we would like to 

understand what produces them.  But there is no consensus as to what the essential 

processes are.  An interesting consequence of this lack of agreement is that there is not 

even agreement as to what the definition of “modes of variability” is.  The 

disagreement about processes and definition can be traced to the question of whether 

modes are a result of linear processes or whether nonlinearities must be included to 

reproduce their characteristics.   
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Linear Initial Value Problem Using 

Normal Mode Basis

That linear processes alone have the ability to produce many of the attributes of 

modes of variability can be seen by analyzing the behavior of a linearized

system in terms of a basis consisting of its normal modes.  One finds that for the 

unforced initial value problem, after a time just a few, and eventually only one, 

oscillating pattern will dominate a solution.  These dominant patterns 

corresponds to the normal modes of the problem whose natural (complex) 

eigenfrequencies either grow the fastest or decay the slowest. 
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Linear Response Problem Using 

Normal Mode Basis

Similarly, using an eigenbasis demonstrates how some normal modes will 

dominate over others for forced linear systems.  Here we see that for the steady 

problem, it is modes that have small (complex) eigenfrequencies that will be 

easiest to excite.
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Linear Vorticity Equation

To see how these ideas might apply to the earth’s atmosphere, we consider the 

leading terms of the one level vorticity equation linearized about the mean state 

from the upper troposphere.
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(Branstator, 1985) (Simmons et al., 1983)

The spectrum from an eigenanalysis of that model is very peaked, with a few 

modes having much faster growth rates than all others.  (Also, with realistic 

levels of damping these same normal modes have the smallest amplitude 

eigenvalues. Thus they are the easiest to stimulate.)  Interestingly, the structure 

of these leading normal modes is very reminiscent of some of the observed most 

prominent patterns of variability.
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Simmons et al. (1983)

The dominance of this normal mode for initial value problems can be seen in 

these two solutions, which demonstrate that for very different initial 

perturbations, the solutions tend to take on the character of the leading mode 

within a couple of weeks of initiation.
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Simmons et al. (1983)

Similarly, this solution shows the prominence of the leading normal mode for 

steadily forced solutions.  Here is shown the response to forcing over the eastern 

Indian Ocean takes on the structure of the leading normal mode.
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Gaussian PDFs

Elliptical trajectories

Signatures of linear behavior:

For comparison to behavior of the atmosphere it is worth noting a couple of attributes 

of a system where linear dynamics are prominent.  In general one cannot ignore the 

nonlinearities because the are responsible for keeping the system from reaching 

unbounded amplitudes and because they serve to scatter energy from one mode into 

another.  But these processes can be approximated by linear damping and random 

forcing.  So if we want to assume that atmospheric dynamics are fundamentally linear 

we can take the linearized equations and add these two additional terms.  In this case 

our (stochastic) linear system will have two important signatures.  First, it will have 

Gaussian PDFs.  Second average trajectories will be sinusoidal oscillations.
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Why does a system have natural modes of variability?

(Possibility II – Nonlinear System)
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As similar as linear behavior seems to be to certain characteristics of prominent 

atmospheric modes, there is some reason to believe that linear theory is not 

capturing important processes that affect these modes.  In particular nonlinear 

terms appear to be too large to ignore.  Examples of simple nonlinear systems 

show how nonlinearity can completely change the characteristics of a 

dynamical system.  One such system that is often used to demonstrate the 

possible effects of nonlinearity is Lorenz’s 1963 model. For time averages the 

PDF of the system is completely different from a linear system, with two 

distinct maxima.  The dominant pattern of variability consists of the difference 

between the centroids of these features as the system jumps from one lobe to the 

other.  In this situation the term “modes of the system” refers to the two local 

maxima (that is “modes” in the statistical sense), not to normal modes of a 

linearization of the governing equations.  Note in this case, as in the linear 

system, modes are an intrinsic property of the system and are not dependent on 

special forcing.



18

PDFs of Forced Lorenz’ 3-Parameter Model

Palmer (1999)

Another property of this nonlinear system that matches observed behavior is 

that its response to forcing is similar in structure to the leading pattern of 

variability.  This is because if one forces the system, its modes (i.e. maxima) do 

not change position.  Rather one lobe simply becomes more populated than the 

other.
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Signatures of nonlinear behavior:

Nongaussian PDF

Modes (i.e. PDF maxima) insensitive to forcing

Nonelliptical trajectories

From the Lorenz example we see features that can distinguish nonlinear 

behavior from linear behavior.
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Low pass winter h500 EOFs Projections onto EOF1&2
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Cheng & Wallace (1992)
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Many researchers have considered PDFs of leading patterns from nature to see 

if they have evidence of nonlinear modes.  They find slight departures from 

Gaussianity.
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Cheng & Wallace (1992)

The modes from PDF analysis tend to match an alternative analysis in which 

one searches for “clusters” of similar states.  The modes found with either of 

these methods are structuraly similar to the patterns found from EOF analysis.



22

Smyth, Ide & Ghil (1999)

Fit mixture of 3 Gaussians
Projections of low pass 

winter h500 onto EOFs

One technique sometimes used to characterize PDF nonGaussianity is to fit a 

mixture (i.e. combination) of several Gaussian distributions to the data.  
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10d means from 5000d sample
10d means from 7,500,000d 

sample

Unfortunately our tests with AGCM data indicate that the dataset from nature is 

too short to identify structure using Gaussian mixtures.  Here we see that two 

dataset (left and center), each with a length similar to the observed record, have 

very different mixture fits even though they are taken from the same model.  In 

fact the true distribution (right), found using more than a 1000 times as many 

samples, is completely different from either estimate.
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Branstator & Berner (2005)

If one looks at trajectories of the atmospheric state by looking at projections 

onto a low-dimensional state space, it is difficult to see any organization.  Here 

we see part of the observed NH wintertime trajectory in a two-dimensional state 

space defined by projections onto the two leading EOFs of 500mb heights.  

If, however, we focus on a small region of the phase space and find the average 

of all trajectories in that region, then we do see evidence of organization in the 

evolution of the system. 
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Branstator & Berner (2005)

Mean 24hr increments

It turns out that for nature there is not enough data to find mean trajectories with 

statistical confidence.  But if one carries out a mean trajectory calculation for 

very long integrations of general circulation models, then one does find 

distinctive structure in the mean trajectories, as in this example.  In some state 

space planes the trajectories (for example the EOF2-3 plane in the lower right 

hand corner of this figure) have the elliptical shaped trajectories of linear 

dynamics.  But in others (for example the EOF1-3 and EOF1-4 planes) the 

trajectories have highly nonlinear characteristics.
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Branstator & Berner (2005)

In three dimensions, the nonlinear component of mean trajectories is highly 

suggestive of a system that is under the influence of two distinct regimes.
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Branstator & Berner (2005)

Interestingly, the centers of the two regimes in the mean phase space trajectories 

correspond to Pacific blocking and anti-blocking events.  These are similar to 

the states that Charney and DeVore (1980) first proposed as regimes based on a 

highly reduced, nonlinear version of the barotropic quasi-geostrophic potential 

vorticity equation, which has two stable equilibria. 
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Selten & Branstator (2004)

PDF of EOF1,2,3 

Another indication of the influence of nonlinearities can be seen in a three-level 

quasi-geostrophic model examined by Selten and Branstator (2004).  This 

model has three local maxima in its distribution of states in state space, though 

this is most evident only if one factors out distinctions in pattern amplitude.
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Selten & Branstator (2004)

Preferred transition routes

The routes taken by the system as it moves from one PDF maximum to another 

are very organized.  Here we see that in moving from maximum A to maximum 

R the system takes a completely different route than if it is moving from 

maximum R to maximum A.  However, though the local maxima in PDFs are 

indicative of the influence of nonlinear processes, the trajectories indicated by 

this figure are well-approximated by linear dynamics.  From all of the above 

examples, we see that in many ways the distribution of states and the 

trajectories taken by atmospheric systems are consistent with linear behavior, 

but there are some characteristics of behavior that can only be explained by 

resorting to nonlinear effects.




