

SMR/1849-19

Conference and School on Predictability of Natural Disasters for our Planet in Danger. A System View; Theory, Models, Data Analysis

25 June - 6 July, 2007

Seasonal Prediction & Predictability from Signal to Noise

In-Sik Kang Climate and Environment System Research Center Seoul National University, Korea

Seasonal Prediction & Predictability from Signal to Noise

In-Sik Kang

Climate and Environment System Research Center Seoul National University, Korea

lecture flows

Overview about Seasonal Prediction & Predictability

- Potential predictability Signal to Noise ratio
- Real predictability Tier-2 system
- Coupled model predictability Tier-1 system

Predictability in air-sea coupled system

- Air-sea interaction
- Tier-1 vs Tier-2 prediction system
- Predictability of various coupled models

Access to upper limit predictability

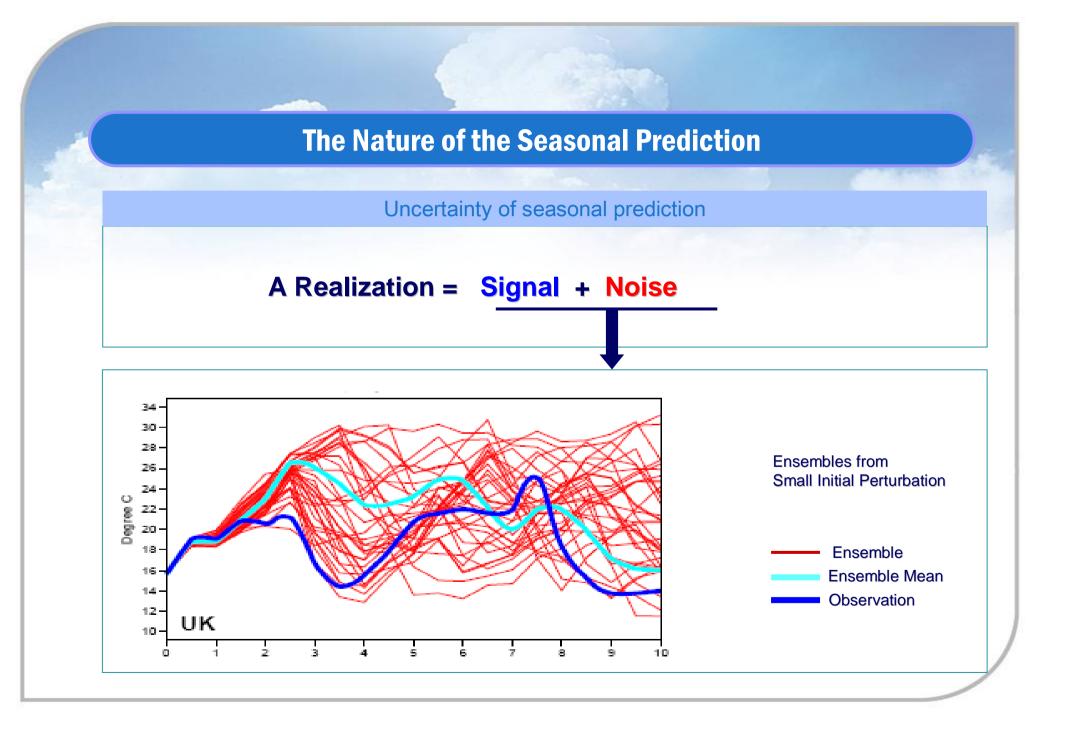
- Error correction
- Multi Model Ensemble Prediction
- Noise dynamics

Part III

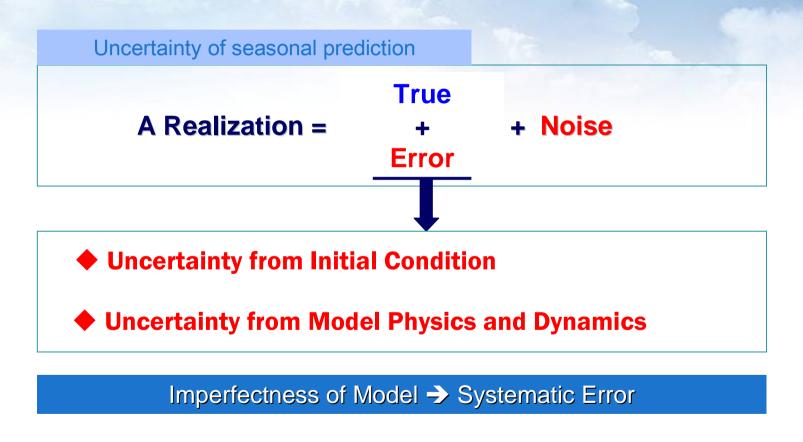
Part II

Part

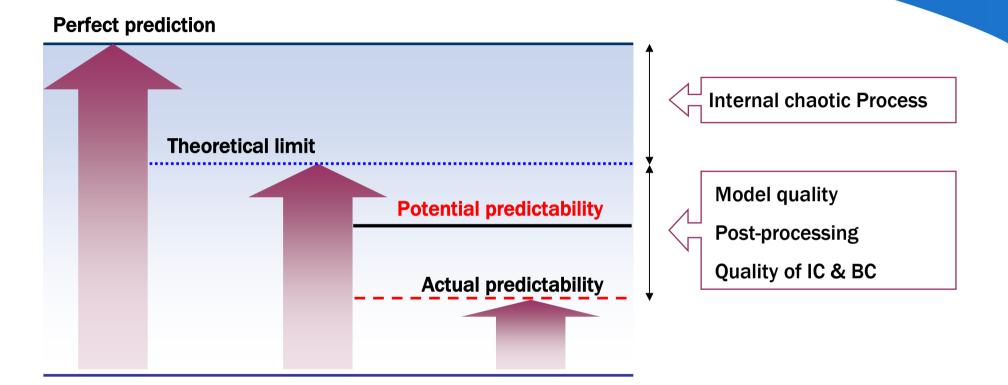
Part I. Overview of Seasonal Prediction & Predictability



The Nature of the Seasonal Prediction



Predictability of Seasonal Prediction



In climate prediction, potential predictability is regarded as the predictability with full information of future boundary condition (e.g., SST). Thus, predictability is varied with similarity between the response of real atmosphere and prediction method to the same BC.

Establish "potentially" possible prediction skill with state-of-art prediction system

Decomposition of climate variables

Climate state variable (X) consists of predictable and unpredictable part.

- Predictable part = signal (Xs) : forced variability
- Unpredictable part = noise (Xn) : internal variability

X = Xs + Xn

The dynamical forecast (Y) also have its forced and unforced part. forecast signal (Ys) : forced variability of model forecast noise (Yn) : internal variability of model

Y = Ys + Yn

The internal variability (noise) is stochastic

If the forecast model is not perfect, Xs≠Ys. (there is a systematic error)

Upper limit of prediction

Maximizing correlation in the presence of error in signal and noise

Observatio $n : x = x_s + x_n$ Forecast $: y = y_s + y_n = \alpha x_s + y_e + y_n$

Noise y_n and Error y_e are not correlated with others. α : regression coefficient of signal

$$Cov (x, y) = (\overline{xy}) = \overline{(x_s + x_n)(\alpha x_s + y_e + y_n)}$$

= $(\alpha \overline{x_s^2} + \alpha \overline{x_s x_n} + \overline{x_s y_e} + \overline{x_n y_e} + \overline{x_s y_n} + \overline{x_n y_n})$
= $\alpha V(x_s) + \alpha Cov(x_s, x_n) + Cov(x_s, y_e) + Cov(x_n, y_e) + Cov(x_s, y_n) + Cov(x_n, y_n)$
= $\alpha V(x_s)$

Correlation between observation (x) and forecast (y)

Cor (x,y) =
$$\frac{\alpha V(x_s)}{V(x)^{1/2} [\alpha^2 V(x_s) + V(y_e) + V(y_n)]^{1/2}}$$

The correlation coefficient is maximized by removing $V(y_e)$ and $V(y_n)$

→ The most accurate forecast will be the SIGNAL of perfect model.

Maximum prediction skill : potential predictability

When the forecast produces a perfect signal, the correlation coefficient is

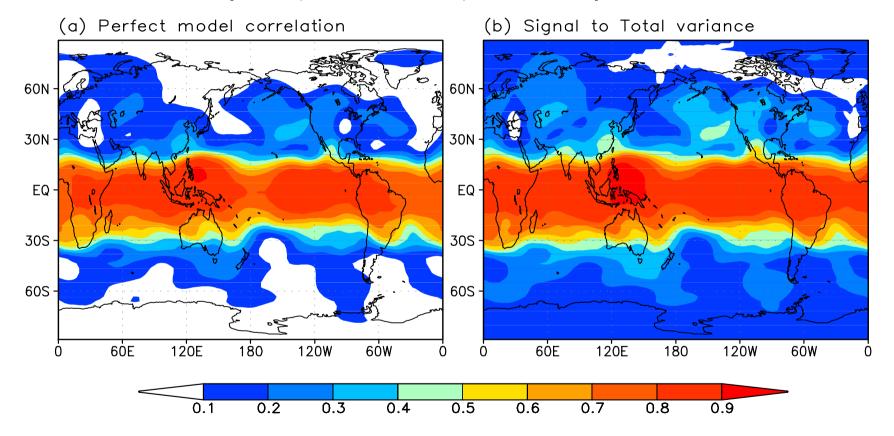
$$Cor(x,y) = \frac{\alpha V(x_s)}{V(x)^{1/2} [\alpha^2 V(x_s) + V(y_e) + V(y_n)]^{1/2}} = \frac{V(x_s)}{[V(x)V(x_s)]^{1/2}}$$
$$= \frac{V(x_s)^{1/2}}{V(x)^{1/2}}$$

$$\sqrt{\frac{V_{Signal}}{V_{Total}}} = \sqrt{\frac{\rho}{1+\rho}}, \quad \rho = \frac{V_{Signal}}{V_{Noise}} \equiv SNR \qquad \begin{array}{l} \rho: Signal \ to \ Noise \ Ratio}{V_{Total} = V_{signal} + V_{noise}} \end{array}$$

Maximum prediction skill (=potential predictability of particular predictand) is a function of Signal to Noise Ratio

Perfect model correlation & Signal to Total variance ratio

Z500 winter (C20C, 100 seasons, 4 member)



Although the 4 member is not enough to estimate Potential predictability precisely, the patterns of 2 metrics are quite similar

Strategy of Prediction

The strategy of seasonal prediction is to

obtain "perfect signal" as close as possible.

(i.e. reducing variance of systematic error and variance of noise)

1. Reduction of Noise

• Averaging large ensemble members

(if number of ensemble members is infinite, Noise will be zero in the ensemble mean)

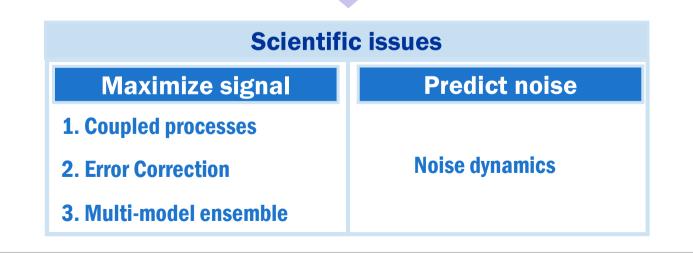
2. Correct signal

- Improving GCM
- Statistical post-process (MOS)
- Multi-model ensemble

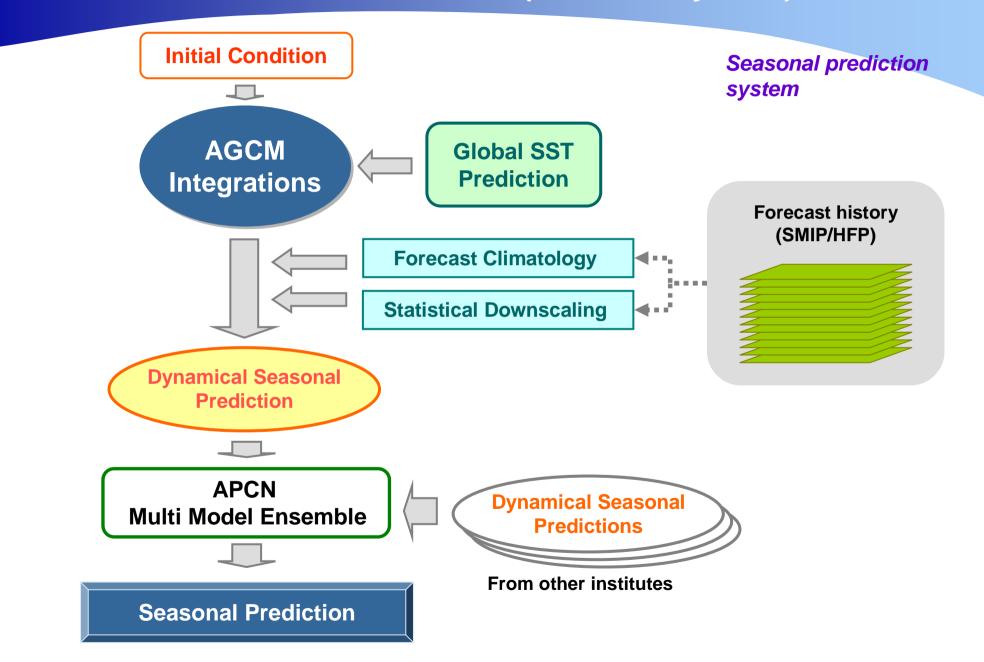
Contents

Overviews about seasonal predictability

- **1. Potential predictability Signal to Noise ratio**
- 2. Real predictability Current Tier-2 system
- **3. Coupled model predictability Tier-1 system**



Multi-model Seasonal Prediction (Two-Tier system)



SMIP project

Seasonal prediction Model Intercomparison Project

Organized by World Climate Research Programme Climate Variability and Predictability Programme (CLIVAR) Working Group on Seasonal to Interannual Prediction (WGSIP)

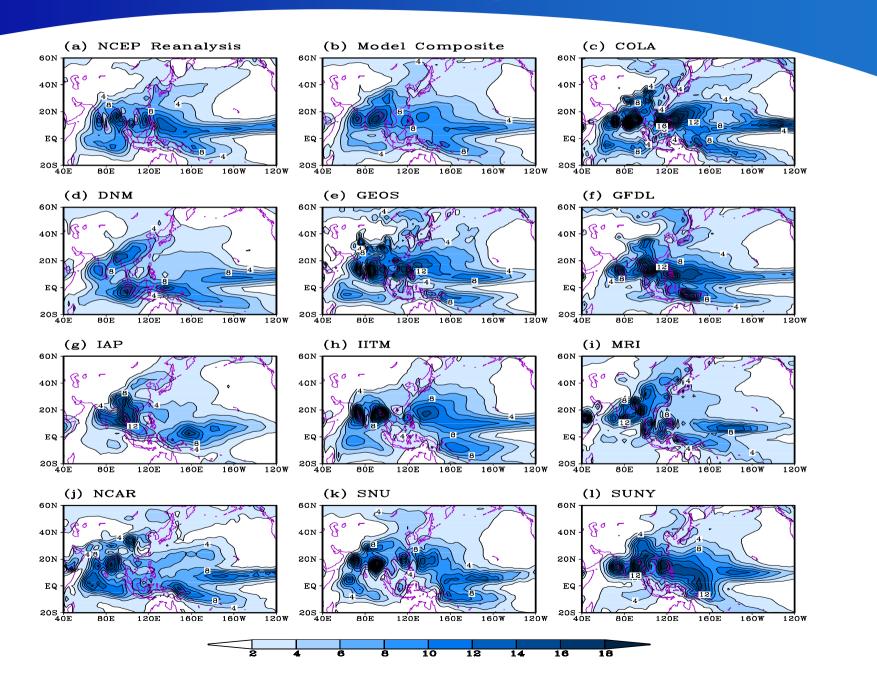
Coordinators

G. Boer(CCCma), M. Davey (UKMO), I.-S. Kang (SNU), and K. R. Sperber (PCMDI)

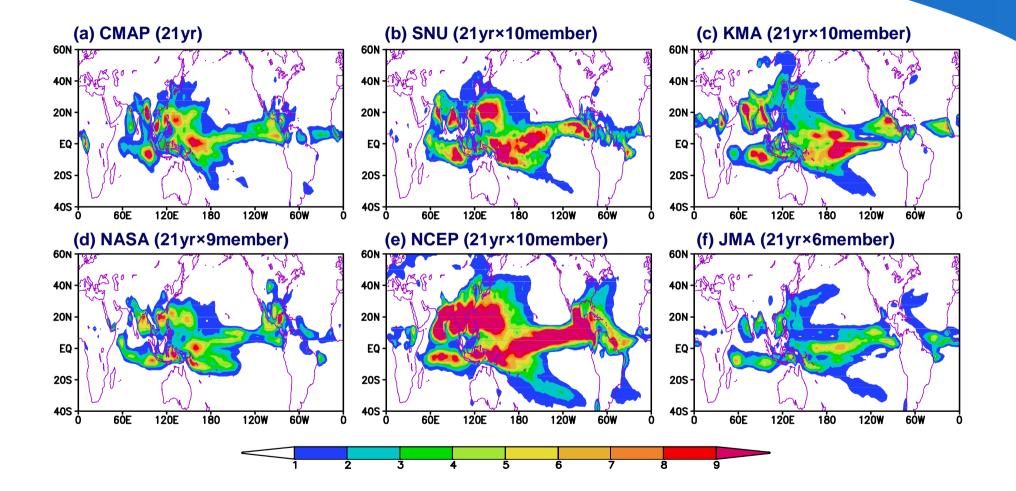
Purpose

Investigate 1 or 2 season potential predictability based on the initial condition and observed boundary condition

Monsoon Predictability: Climatological JJA Precipitation



Total Variance of JJA Precipitation Anomalies



Forced & Free variance

Forced variance

Climate signals caused by external forcing (e.g. SST)

$$\frac{1}{N-1} \sum_{i=1}^{N} (\overline{X}_{i} - \overline{\overline{X}})^{2} - \alpha$$
$$\alpha = \frac{1}{n} \cdot \text{ Free variance}$$

Free variance

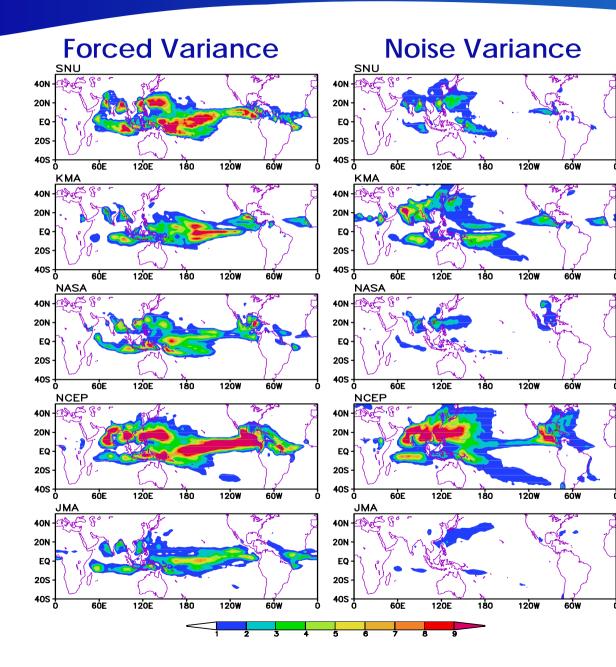
Intrinsic transients

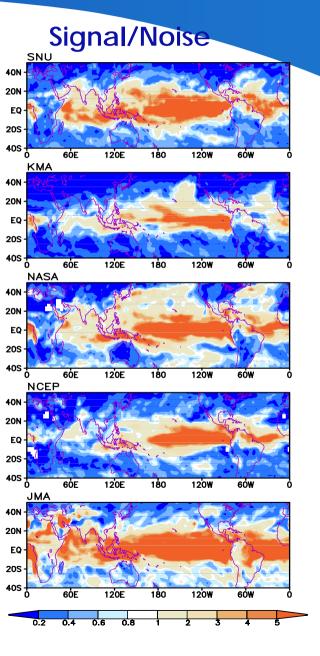
due to natural variability

$$\frac{1}{N(n-1)}\sum_{i=1}^{N}\sum_{j=1}^{n}(X_{ij}-\overline{X}_{i})^{2}$$

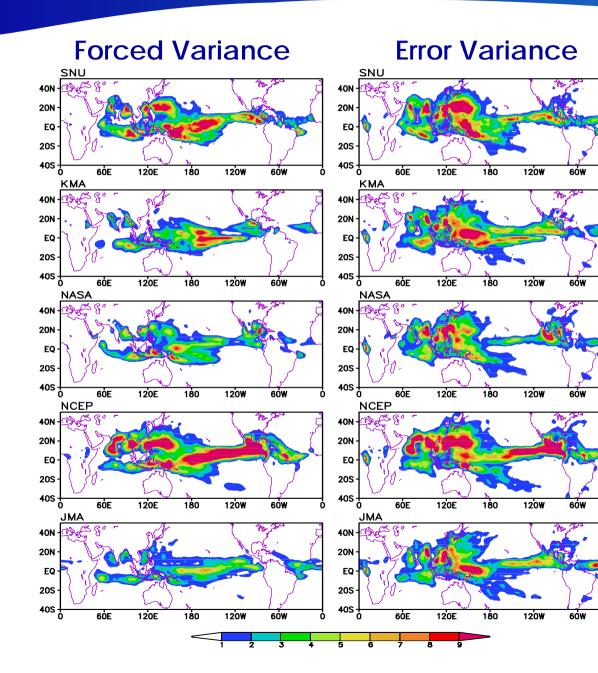
Ensemble mean variation with respect to time

Variance analysis of JJA Precipitation Anomalies

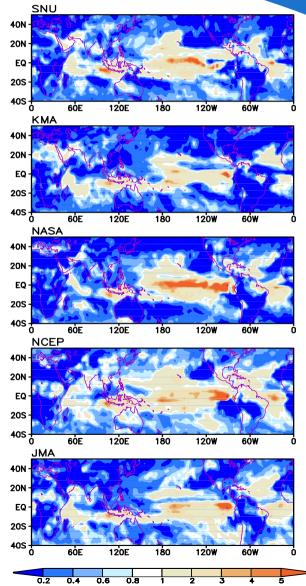




Variance analysis of JJA Precipitation Anomalies

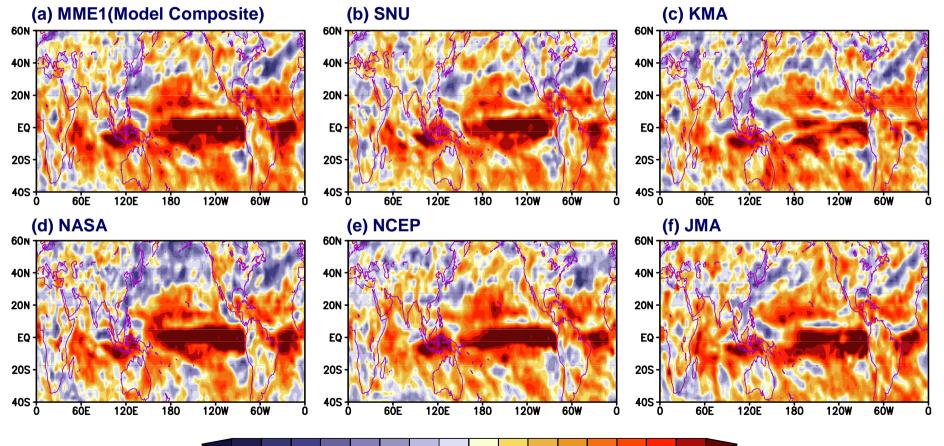


Forced/Error Variance



Prediction Skill of JJA Precipitation (21 yr)

Temporal Correlation

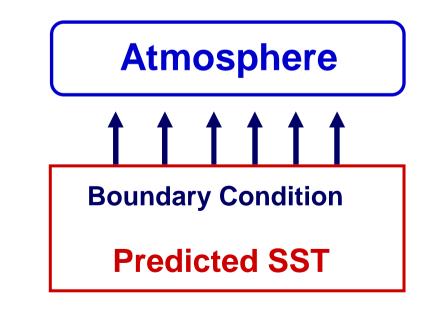


-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

How is real predictability?

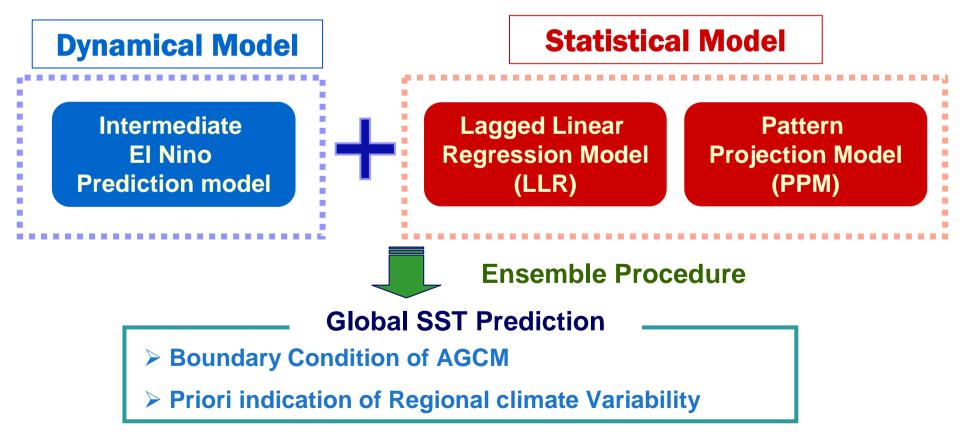
SMIP/HFP (Historical Forecast Project)

Investigate 1 season real predictability based on the observed initial condition and predicted boundary condition



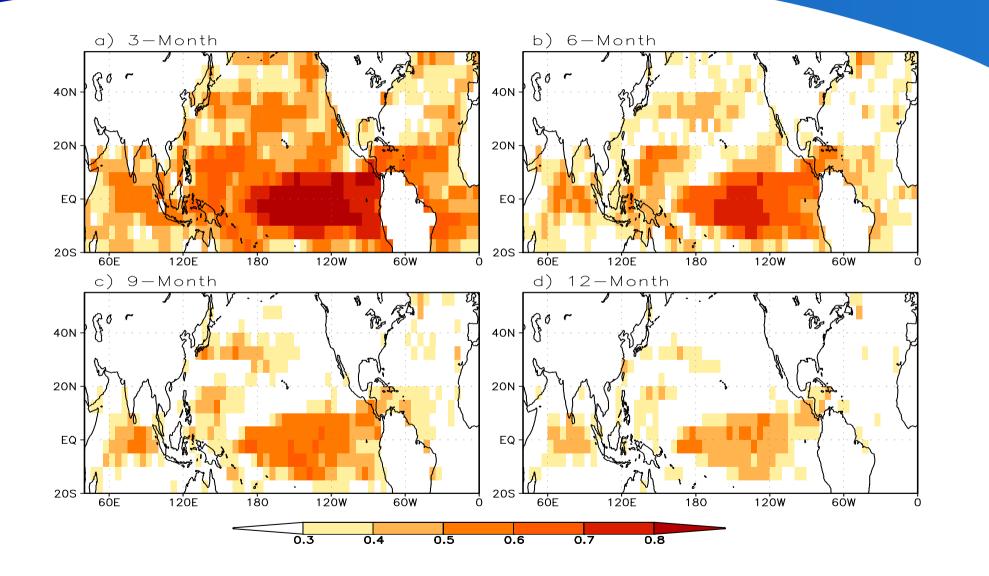
CES Global SST Prediction System

 In the 2-tier climate prediction system, global SST forecasts are required for boundary conditions of AGCM in seasonal climate prediction.
 The Ensemble Global SST Prediction System was developed for the seasonal climate prediction



Combined System of Dynamical and Statistical Models

Correlation Skill of SST Ensemble Prediction

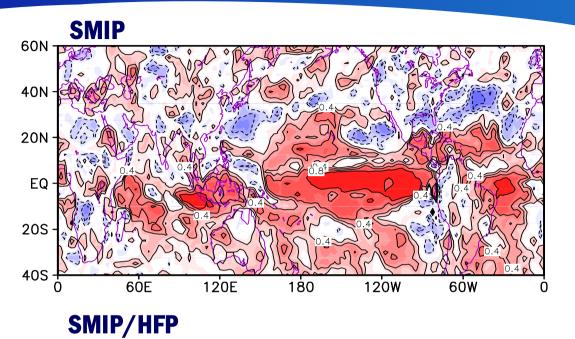


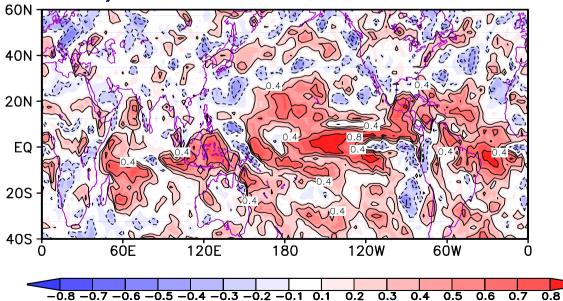
CliPAS/APCC prediction system

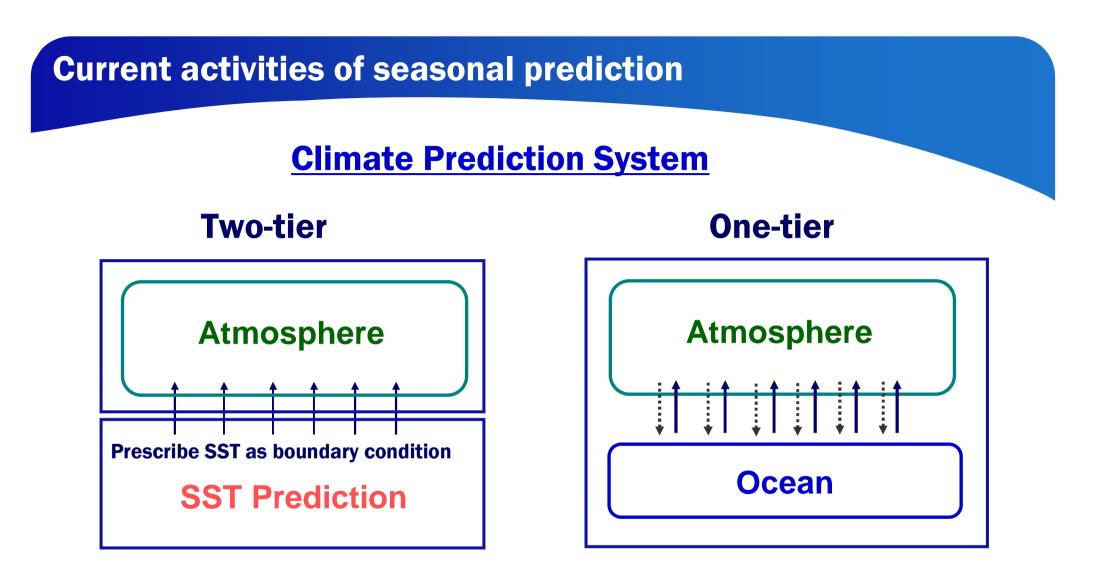
AGCM prediction system

Institute	AGCM	Resolution	Ensemble
FSU	RSUGCM	T63 L27	10
GFDL	AM2	2.0lat x 2.5lon L24	10
SNU	GCPS	T63 L21	6
CAM2/UH	CAM2	T42 L26	10
ECHAM/UH	ECHAM4	T31 L19	10

Temporal Correlation of summer PRCP







Coupling of atmosphere and ocean process

DEMETER/ ECMWF Prediction system

- One-tier prediction system using CGCM

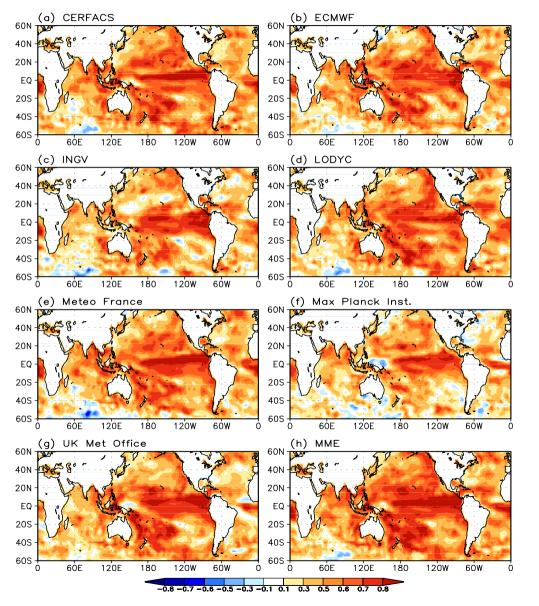
- Development of European Multimodel Ensemble system for seasonal-tointerannual prediction

- 9 ensemble members of 7 models; 1980-1999 forecast

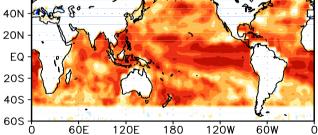
Institute	AGCM	Resolution	OGCM	Resolution	Atmosphere initial conditions	Ensemble generation
CERFACE	ARPEGE	T63 31 Levels	OPA 8.2	2.0x2.0 31 Levels	ERA-40	Windstress and SST perturbations
ECMWF	IFS	T95 40 Levels	HOPE-E	1.4x0.3-1.4 29 Levels	ERA-40	Windstress and SST perturbations
INGV	ECHAM-4	T42 19 Levels	OPA 8.1	2.0x0.5-1.5 31 Levels	Coupled AMIP-type experiment	Windstress and SST perturbations
LODYC	IFS	T95 40 Levels	OPA 8.2	2.0x2.0 31 Levels	ERA-40	Windstress and SST perturbations
Meteo-France	ARPEGE	T63 31 Levels	OPA 8.0	182GPx152G P 31 Levels	ERA-40	Windstress and SST perturbations
MPI	ECHAM-5	T42 19 Levels	MPI-OM1	2.5x0.5-2.5 23 Levels	Coupled run relaxed to observed SSTs	Atmospheric conditions from the coupled initialization run (lagged method)
UK Met Office	HadAM3	2.5x3.75 19 Levels	GloSea OGCM based on HadCM3	1.25x0.3- 125 40 Levels	ERA-40	Windstress and SST perturbations

Temporal Correlation of SST

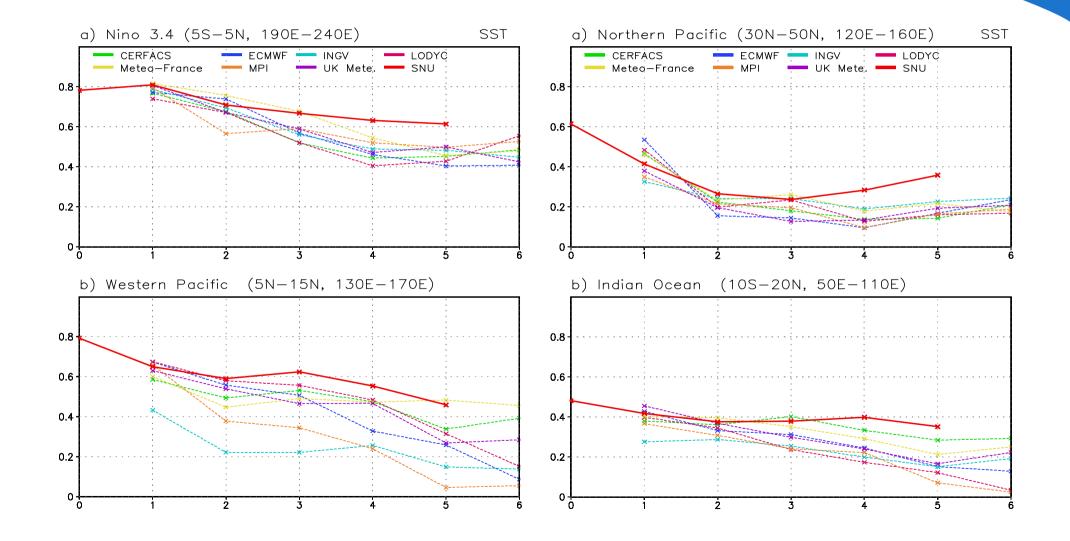
DEMETER



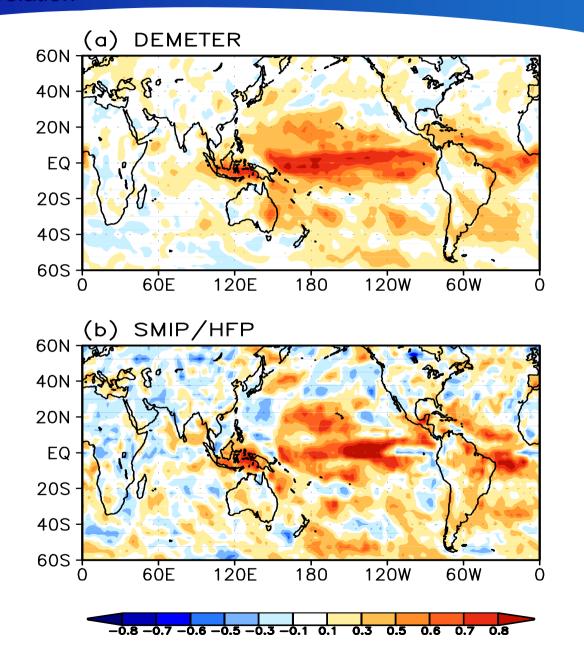
Prescribed SST



Correlation of area averaged SST

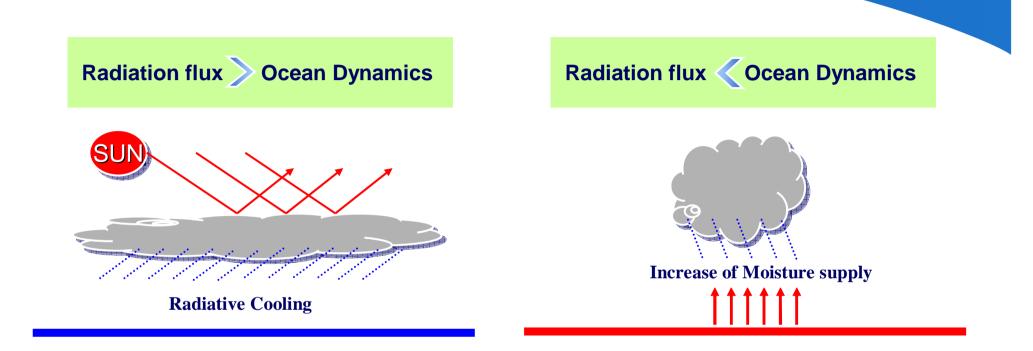


Temporal Correlation of PRCP



Part II. Predictability of air-sea coupled system

Air-sea interaction in the tropical Pacific



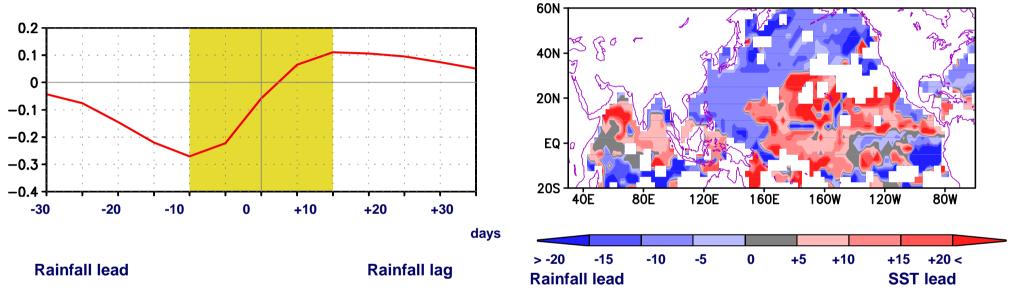
Where radiative flux control the SST...

- 1. Radiative flux would lead the SST anomalies
- 2. Temporal correlation between PRCP & SST can be a negative sign

Lead-lag correlation between pentad SST and rainfall data for JJA 82-99

Western North Pacific (5-30N, 110-150E)

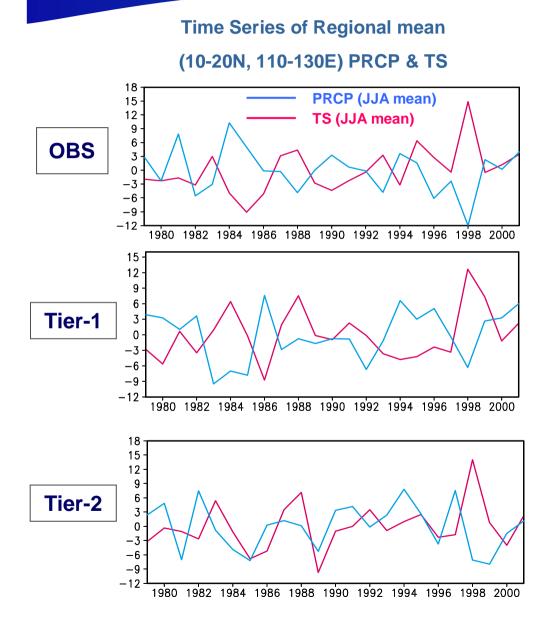
Lead-lag pentad number



Only more than 95% significance level is shaded

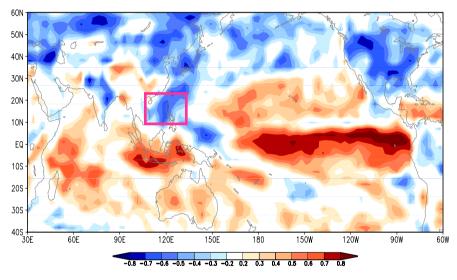
 \rightarrow Atmosphere forces the ocean where the correlation coefficients between rainfall and SST show negative.

Role of the air-sea coupled process on seasonal prediction



Correlation between OBS JJA precipitation

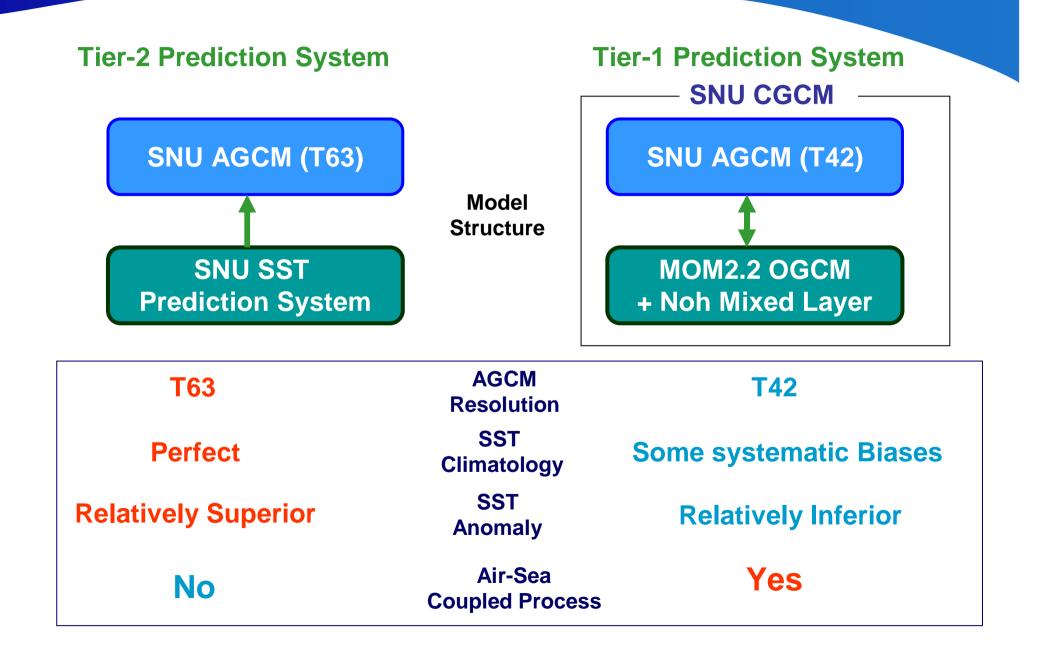
and TS during 1979-2001



Correlation between PRCP & TS

	OBS	Tier-1	Tier-2
COR	- 0.64	- 0.38	- 0.02

Tier-2 vs Tier-1 Prediction Systems

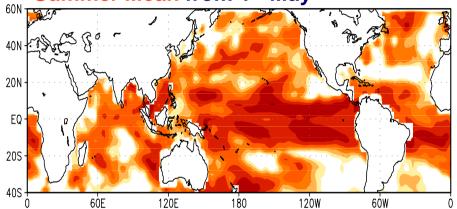


Correlation Skill for SST

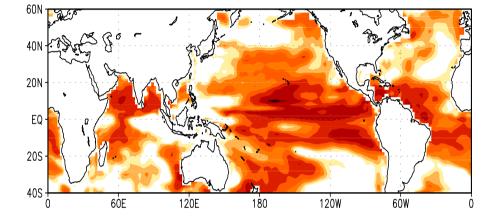
Tier-2 Prediction

(dynamical and statistical ensemble prediction)

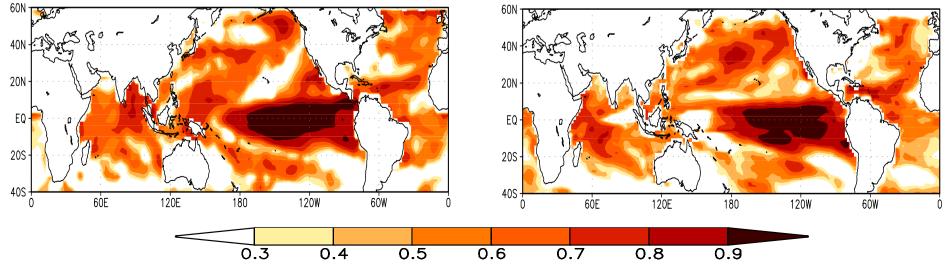
Tier-1 Prediction



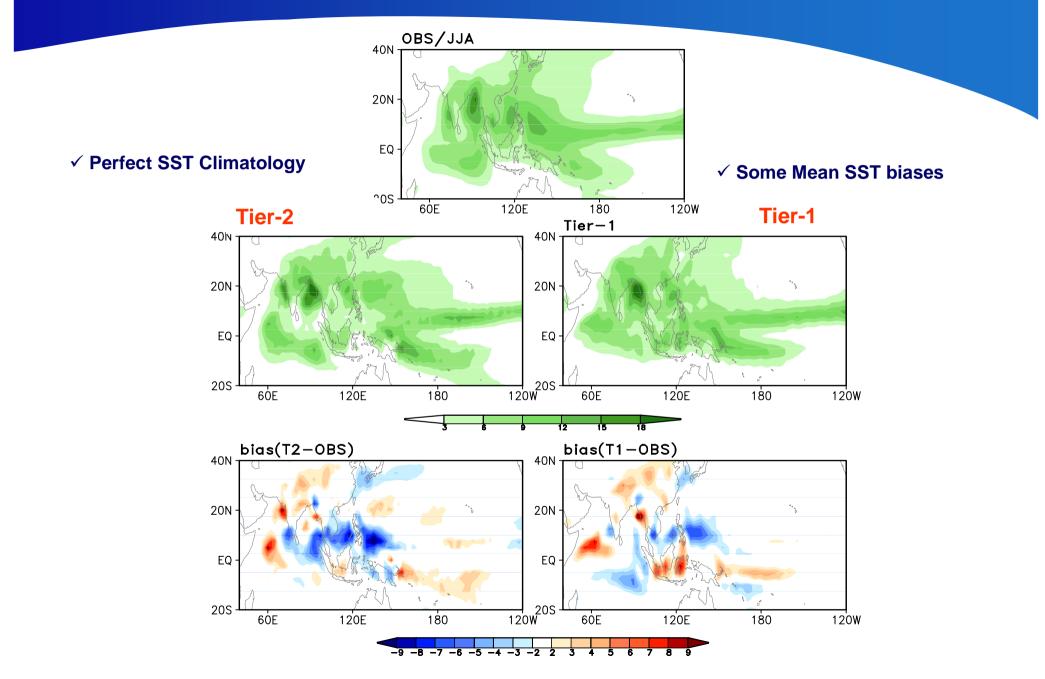
Summer Mean from 1st May



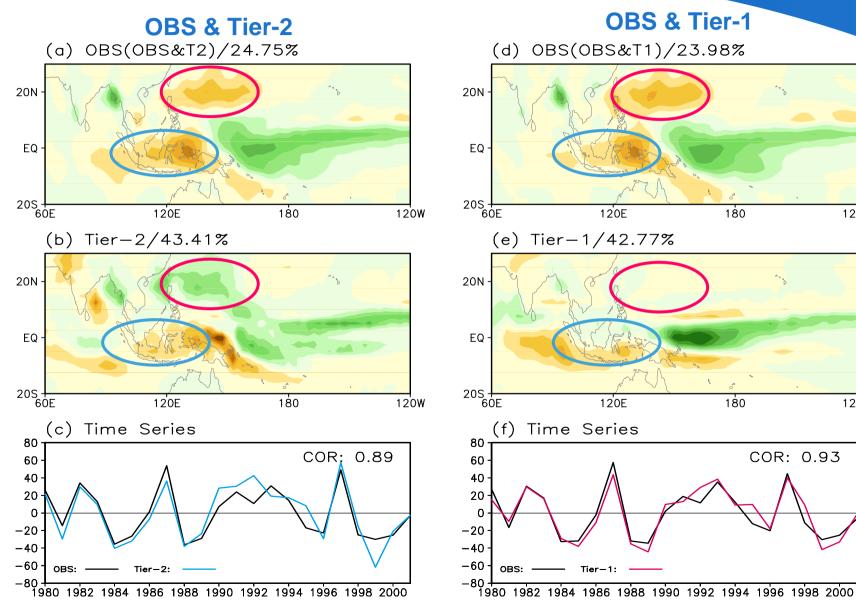
Winter Mean from 1st Nov.



JJA Precipitation Climatology and Mean Bias



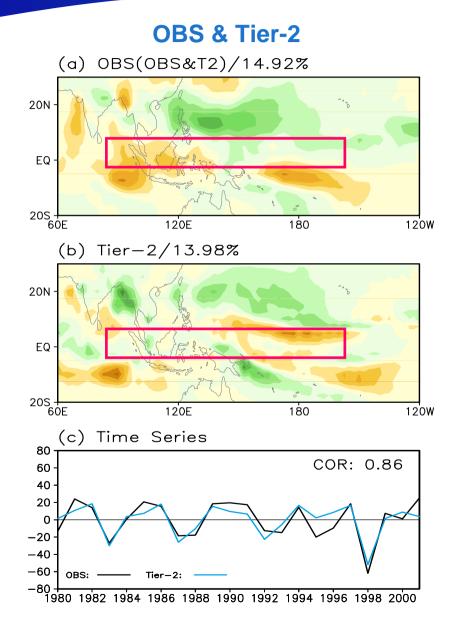
1st SVD Mode for Precipitation (ENSO mode)

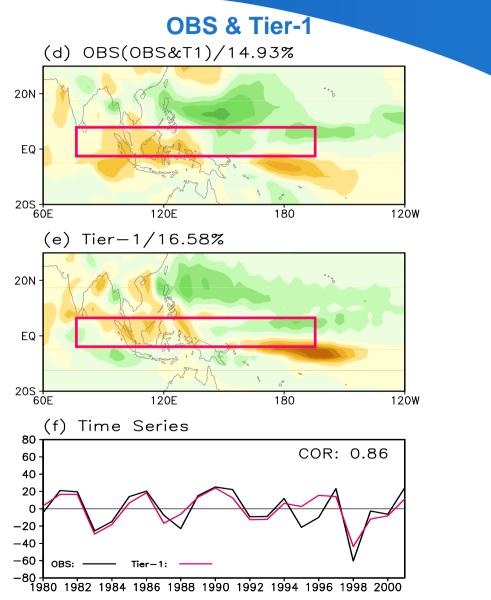


12'0W

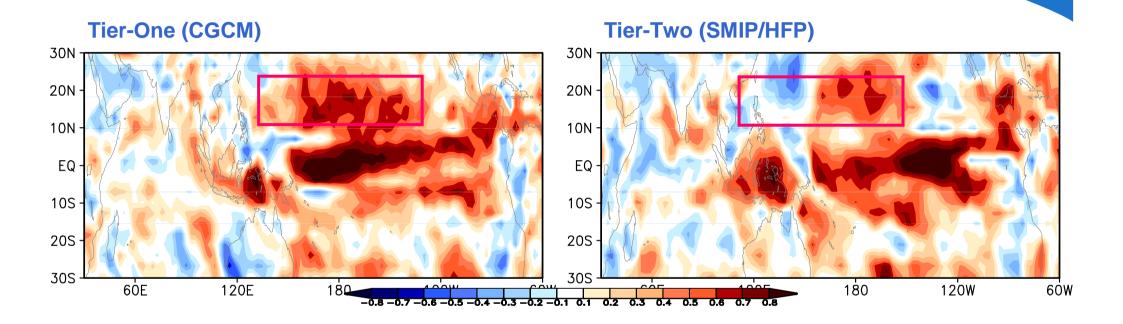
12'0W

2nd Mode for Precipitation (WNP Monsoon mode)



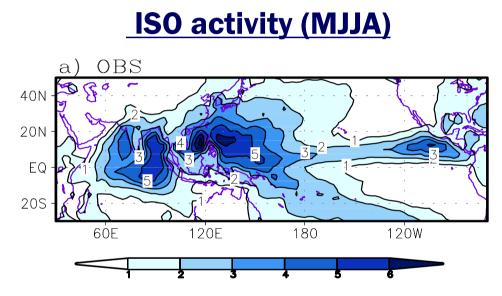


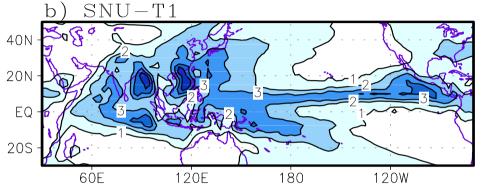
Correlation skill for JJA Precipitation

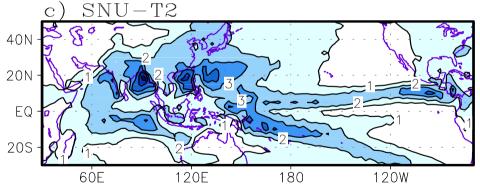


Tier-1 prediction is superior to Tier-2 prediction, even though the tier-2 SST prediction is better.

Role of air-sea interaction on ISO activity



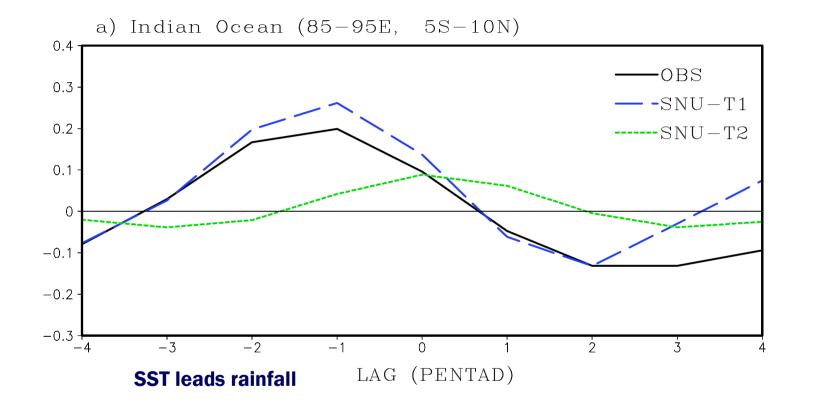




* ISO activity : STD of 20-90 filtered prcp 1980-2001 MJJA

Enhanced ISO activity in Tier-1

Phase relationship with PRCP and SST

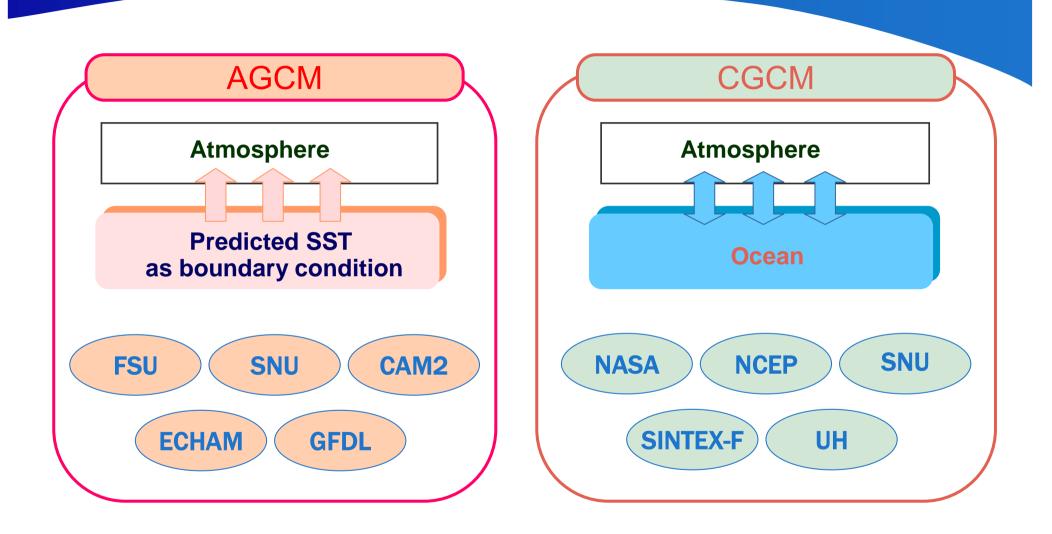


- SST leads rainfall by one-two pentads in OBS and T1
- PRCP and SST are almost in phase in T2

Prediction models of various institutes – CliPAS project

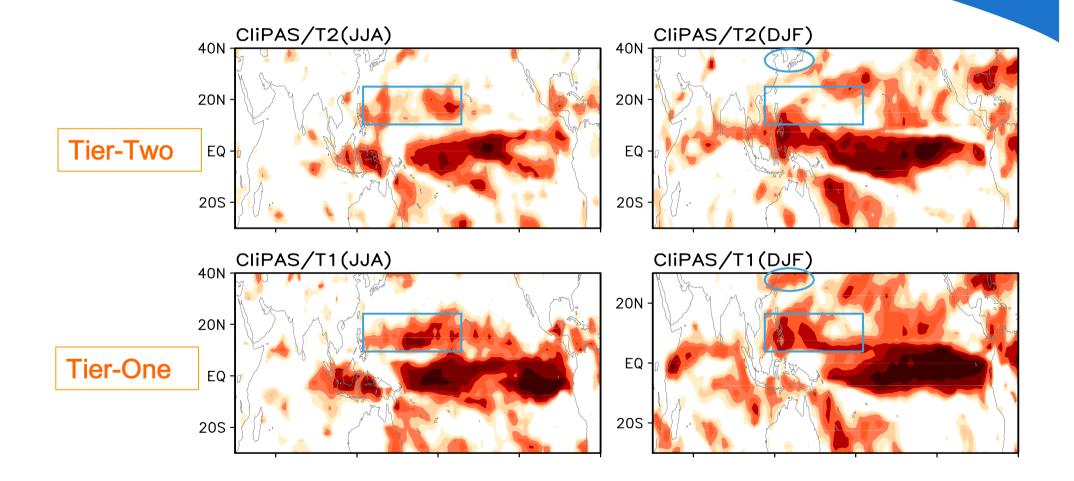
Experiment

design



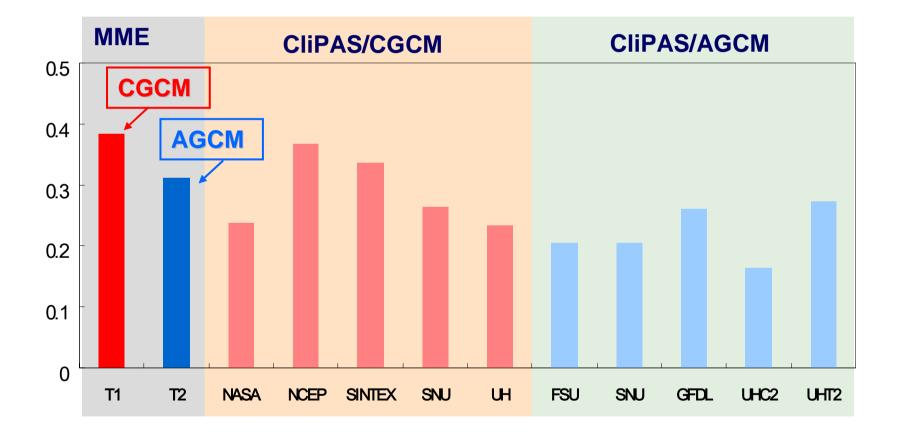
1981 – 2004 summer (MJJAS)and winter (NDJFM) seasons for 24 years
 6-15 Member ensemble for each model
 4-9 months lead time forecast

Correlation Skill for Precipitation - CliPAS data

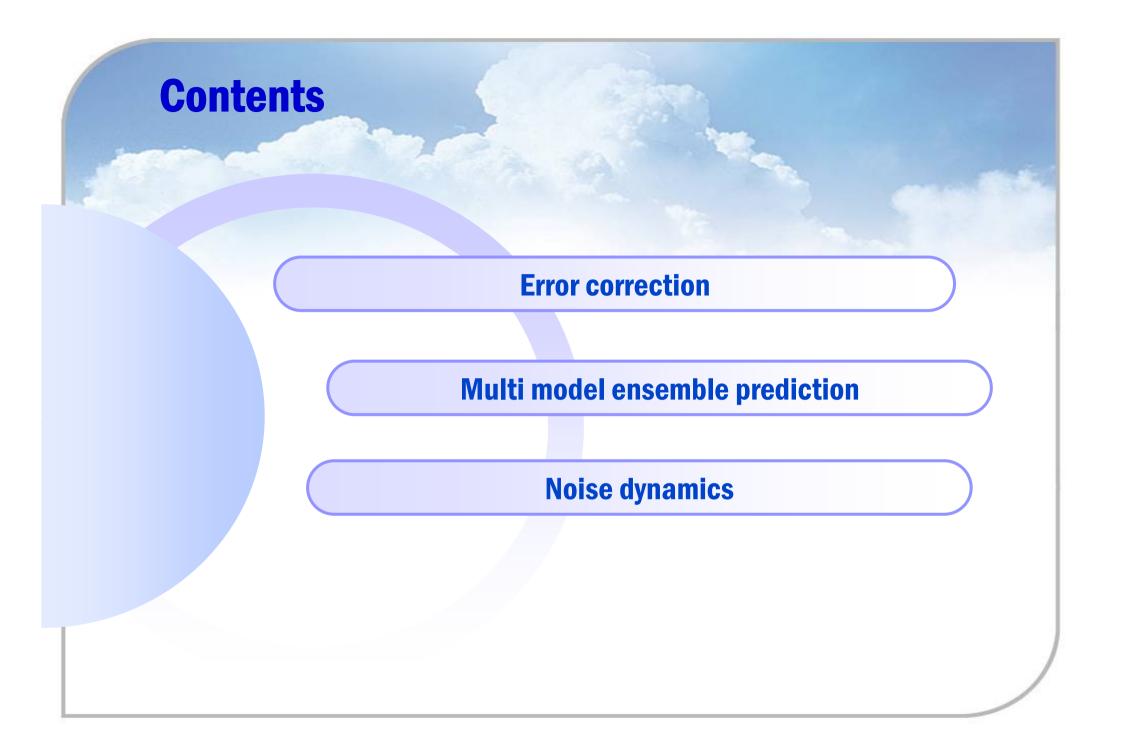


The state-of-the-art Climate Prediction

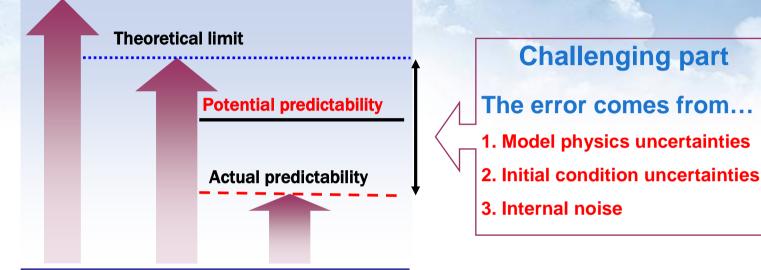
Global domain pattern correlation(60S-60N, 0-360)

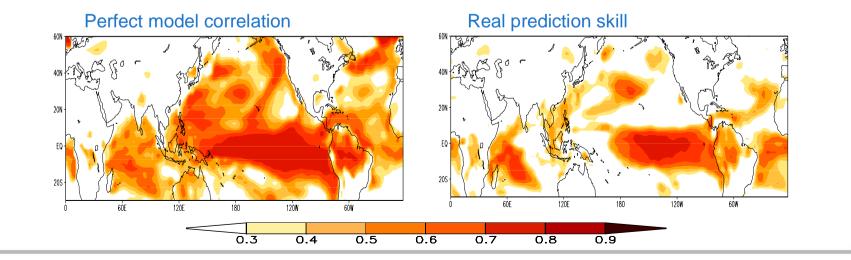


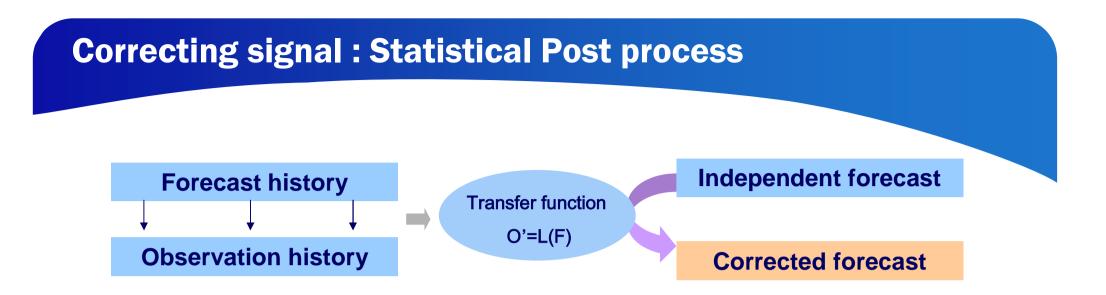
Part III. Access to upper limit predictability



Approach to the theoretical limit







There are many approaches in post-process, All of them share similar assumption. : Statistics between forecast and observation is stationary

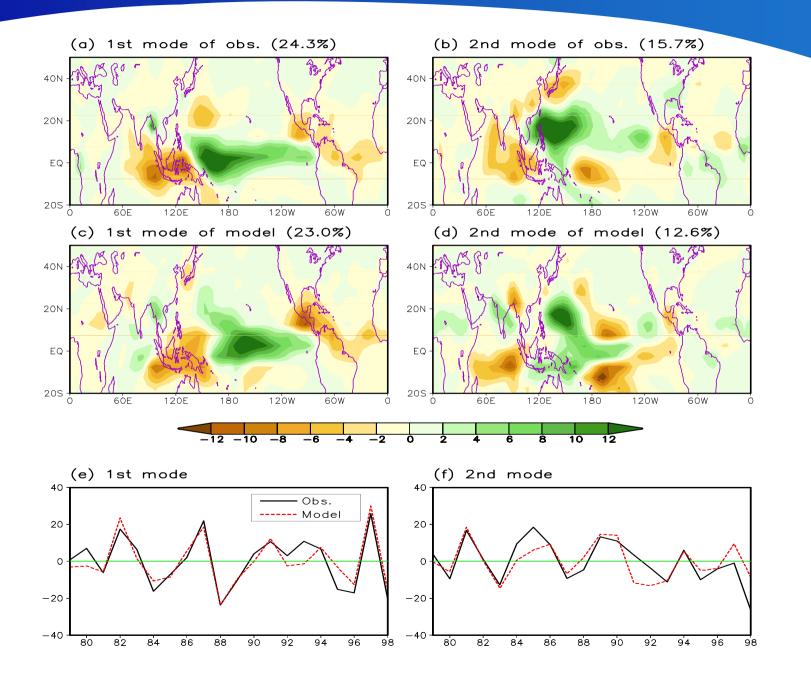
If statistics is not stationary, post-process will not work in independent forecast

Thus, statistical stability is a rule of thumb in the statistical post-process (avoiding overfitting)

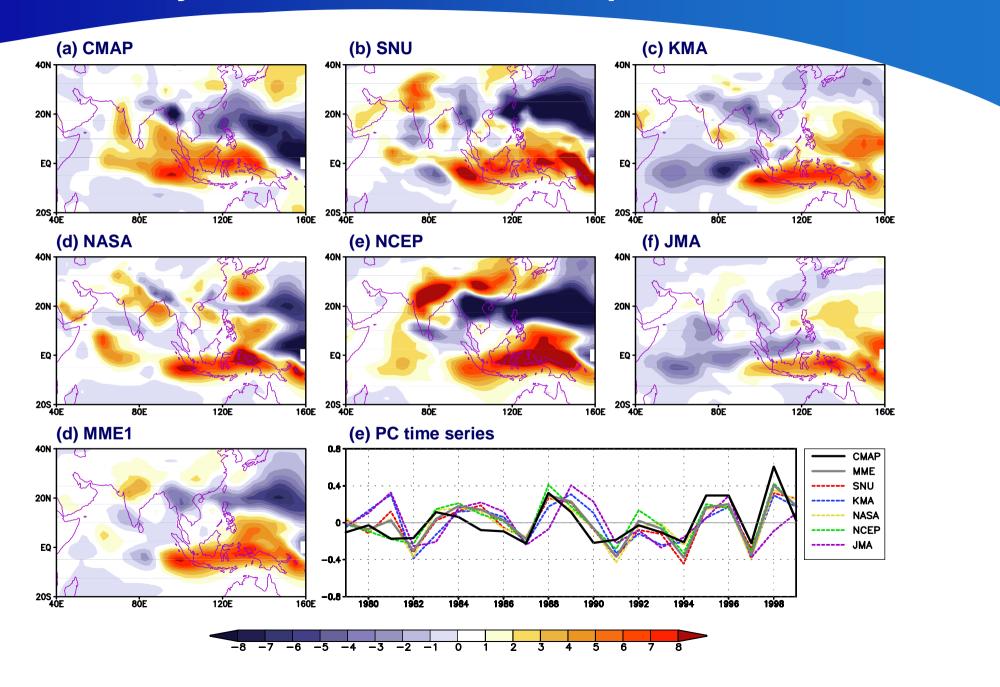
Regarding actual constraints, available large ensemble forecast with well-tuned post process will be an appropriate strategy of seasonal forecast.

→ Statistically optimized multi model ensemble prediction

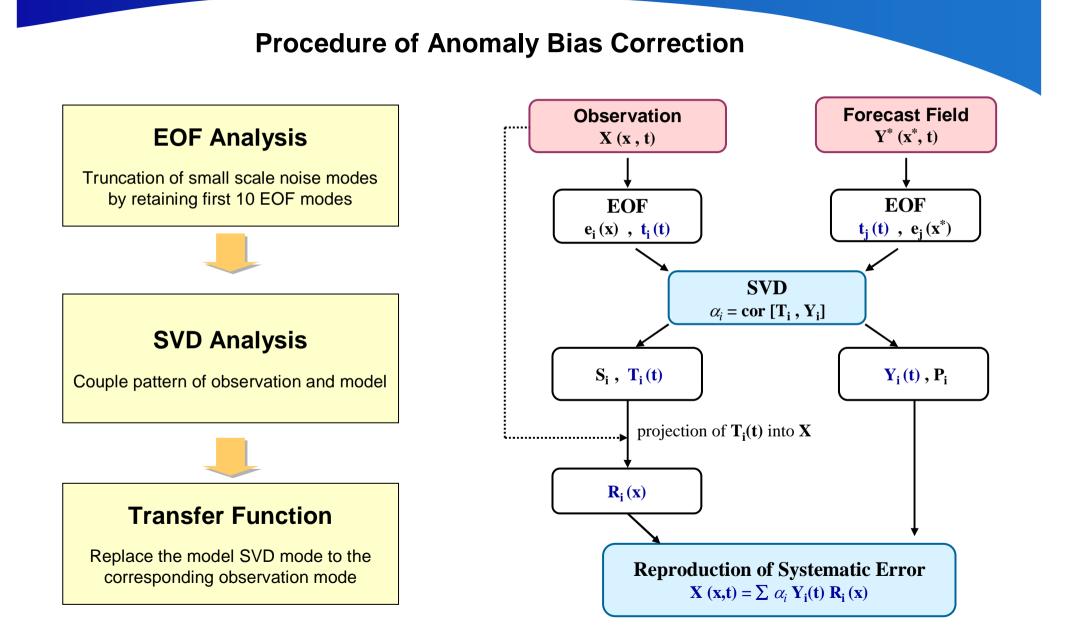
EOF of Summer Mean Precipitation



EOF Analysis of Summer Mean Precipitation

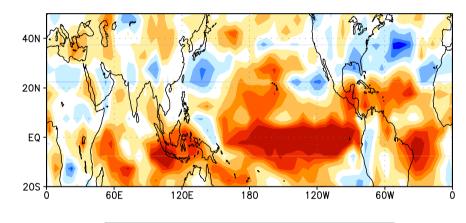


Anomaly Bias Correction



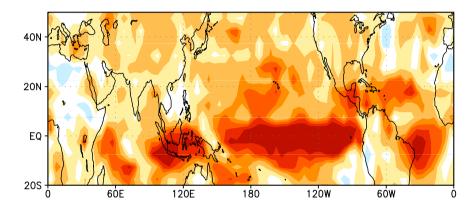
Correlation and Forecast Skill Score

Before Bias Correction



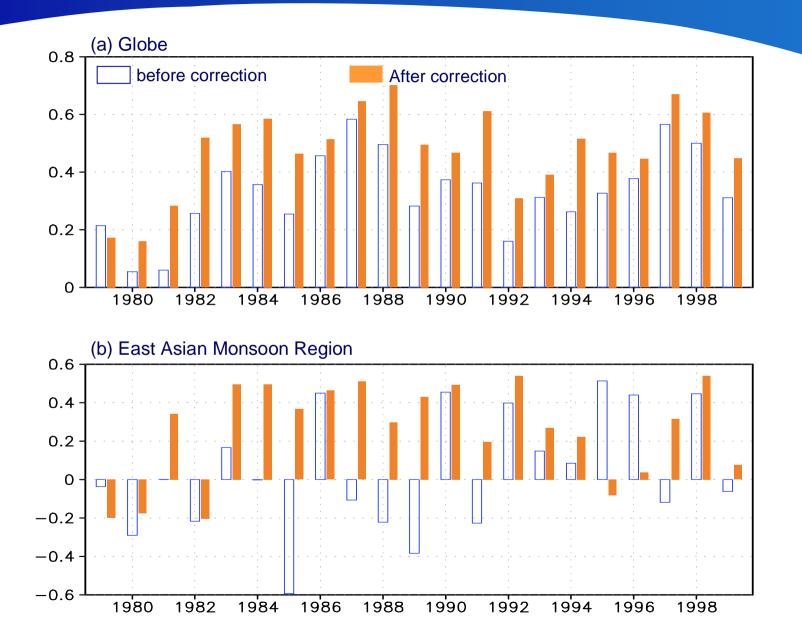
-0.8 -0.7 -0.6 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.6 0.7 0.8

After Bias Correction



-0.8 -0.7 -0.6 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.6 0.7 0.8

Pattern Correlation : Interannual Predictability



SNU correction model

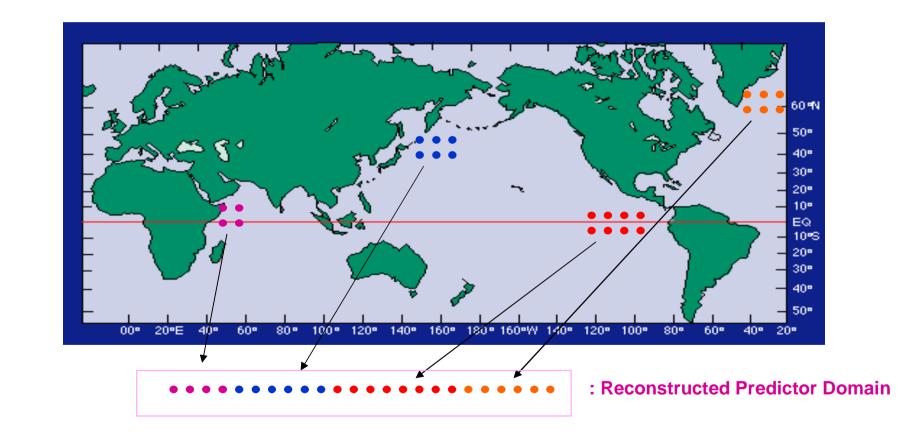
First Step : Prior Predictor Selection

- Select qualified predictor grid based on correlation for training period
- Gather split predictors and regard as a predictor pattern

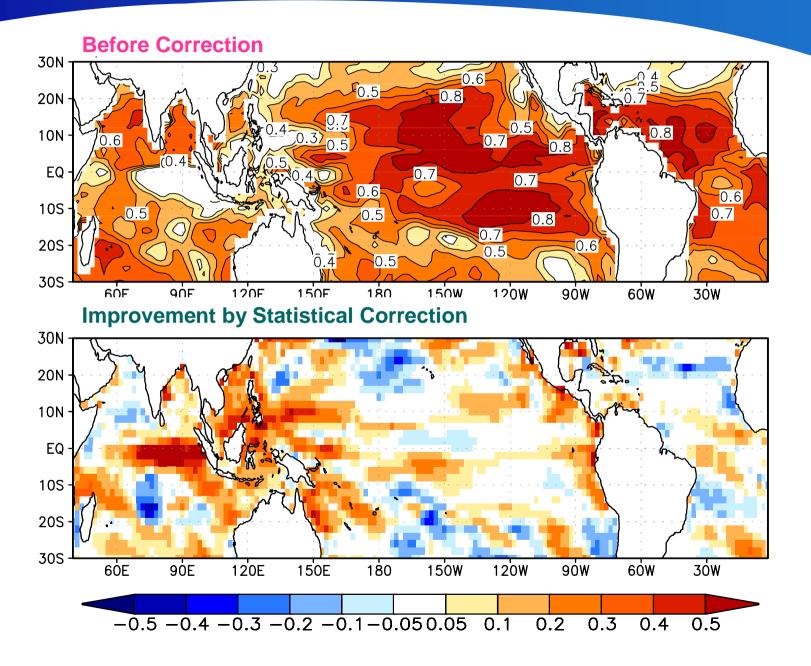
Second Step : Pattern Projection

- Construct covariance pattern between observation and reconsturcted model pattern
- Obtain prediction by projecting model pattern on the covariance pattern

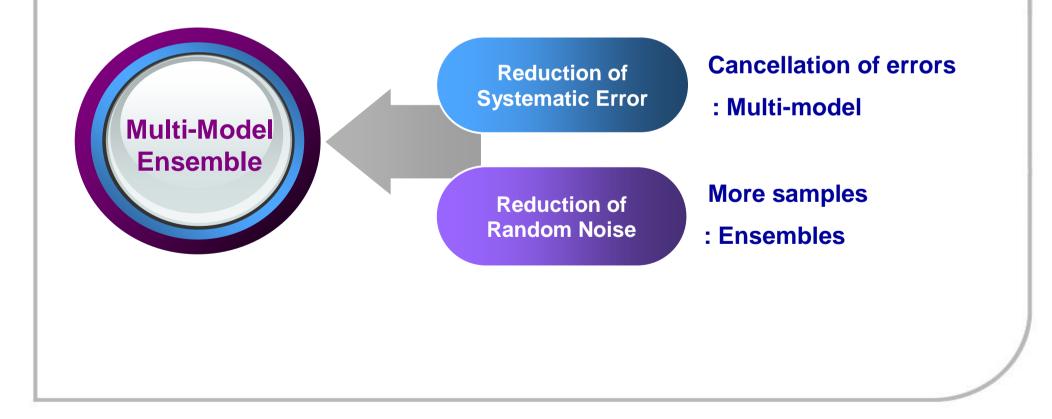
$$\mathbf{X}_{\mathbf{P}}(t) = \sigma_{\mathbf{Y}} \sum_{\mathbf{i}, \mathbf{j}} \frac{\mathbf{COV}(\mathbf{i}, \mathbf{j}) \cdot \mathbf{X}(\mathbf{i}, \mathbf{j}, t)}{\sigma_{\mathbf{X}}^{2}(\mathbf{i}, \mathbf{j})}$$



Statistical Downscaling/Correlation Skill for SST



Multi-model Ensemble Prediction



Benefits of Multi Model Ensemble

$$x_i = y + e_i + \varepsilon_i$$

Forecast = True + Error + Noise

E_M : Error variance of Multi-Model Ensemble

$$E_{M} = \frac{1}{M} \left[\overline{V}(e) + \frac{2}{M} \sum_{ij} COV(e_{i}, e_{j}) + \overline{V}(\varepsilon) \right]$$

 E_{s} : Error variance of Single Model $E_{s} = \overline{V}(e) + \overline{V}(\varepsilon)$

[Example] Two Models (M=2)

Error variance of Multi-Model Ensemble $E_M = \frac{1}{2} \left[\overline{V}(e) + COV(e_1, e_2) + \overline{V}(\varepsilon) \right]$ Error variance of Single Model $E_s = \overline{V}(e) + \overline{V}(\varepsilon)$

Mean Square Error
$$E = E_M - E_s = -\frac{1}{2}\overline{V}(e) + \frac{1}{2}COV(e_1, e_2) - \frac{1}{2}\overline{V}(\varepsilon)$$

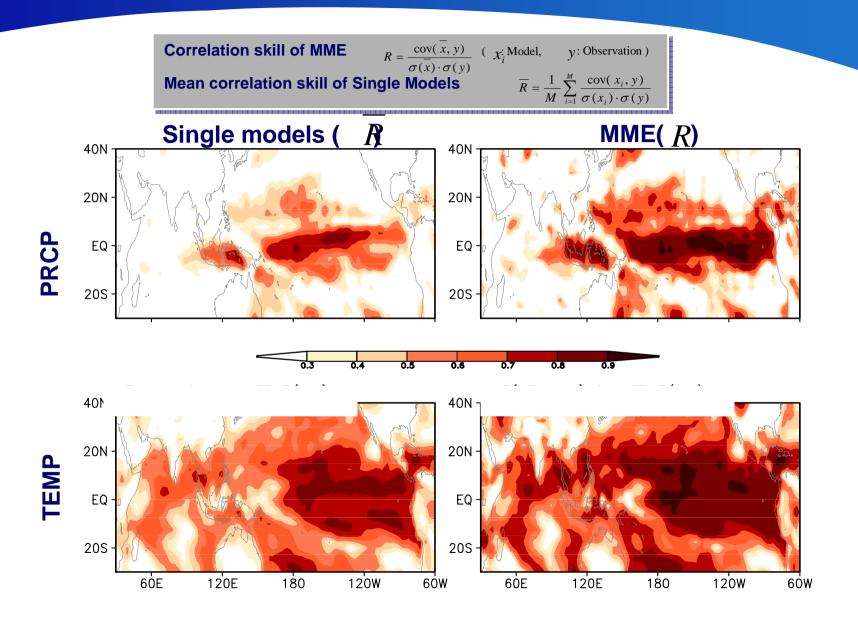
Reduction of Systematic Error Reduction of Random Noise

• For Improvement \rightarrow E < 0

Where Models are independent each other ->

 $COV(e_i, e_j) = 0$

Correlation skill (JJA)



17 Models : CliPAS 10 models and DEMETER 7 models

Characteristics of each MME method

MME1

 $P = \frac{1}{M} \sum_{i} F_{i}$ - simple composite - equal weighting

MME2

- $P = \sum_{i} a_i F_i$ superensemble
 - Weighted Ensemble

MME3

 $P = \frac{1}{M} \sum_{i} \hat{F}_{i}$ - simple composite after correction

Issues on Multi Model Ensemble prediction

• Is a multi model better than a single good model?

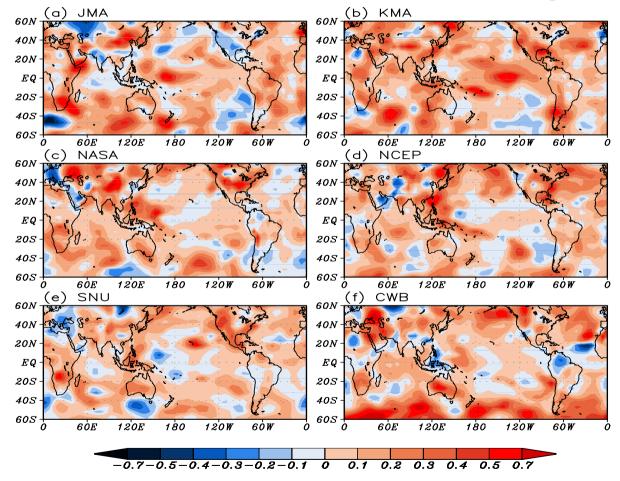
(Graham et al. 2000; Peng et al. 2002; Doblas-Reyes et al. 2000)

• Is a sophisticated technique better than a simple composite?

(Krishnamurti et al. 2000; Kharin and Zwiers 2002; Pavan and Doblas-Reyes 2000)

Multimodel ensemble forecast in GCM

Temporal correlation of JJA PRCP. : MME1 - single model



For the most of region,

the multi model ensemble (simple composite) is better than single model

Sampling error

Expected value of Normalized error variance of multi model ensemble

- Every model has same variance with observation.
- R : Correlation bet. Obs and model
- r : correlations among the models.

• Predictand :
$$\phi$$
• Assumption
• Forecasts : ϕ_1, ϕ_2
 $V(\phi) = V(\phi_1) = V(\phi_2) = \Phi$
 $Cor(\phi, \phi_1) = Cor(\phi, \phi_2) = R$
 $Cor(\phi_1, \phi_2) = r$
 $\phi^* = \sum_{i=1}^m a_i \phi_i$
 $MSE = \overline{(\phi^* - \phi)^2} = \overline{\phi^2} - 2\sum (a_i \overline{\phi_i \phi}) + 2\sum_i \sum_j a_i a_j \overline{\phi_i \phi_j} + \sum_i a_i^2 \overline{\phi_i \phi_i}$
 $E^* = MSE / \Phi = 1 - 2\sum_i a_i R_i + 2\sum_i \sum_j a_i a_j r_{ij} (1 - \delta_{ij}) + \sum_i a_i^2$

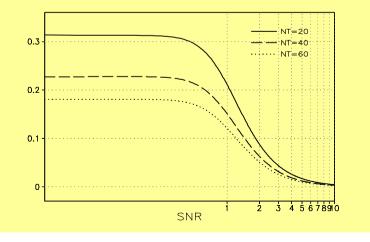
м

In the superensemble, the training period and forecast period should be different. Then there must be a difference in the statistics of 2 period.

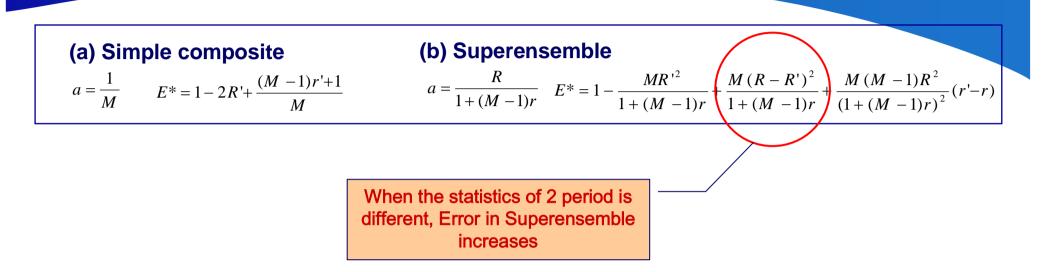
R, **R**' is a statistical coefficient (correlation) of each period.

The difference of 2 coefficient depends on the sample size and signal to noise ratio

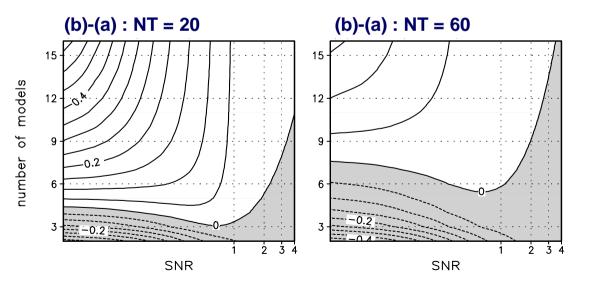
Due to the finite samples, Correlation in the training period (R, r) and forecast period (R', r') will be different



Impact of Sampling error in MME2

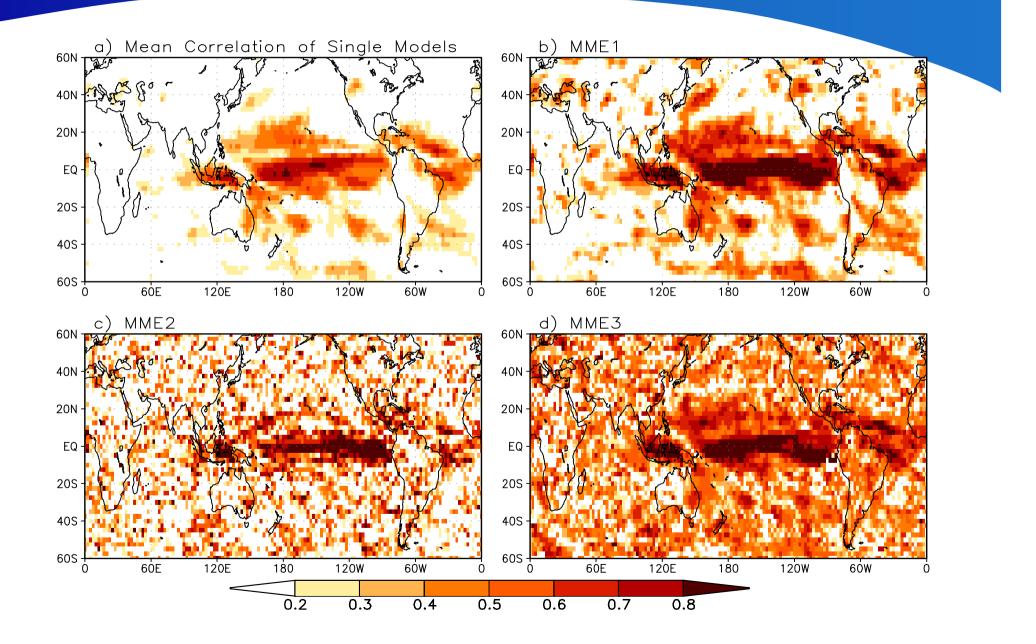


Error variances



Since normal multiple regression has no procedure to prevent overfitting, superensemble is easy to fail in extratropics where the signal to noise ratio is small.

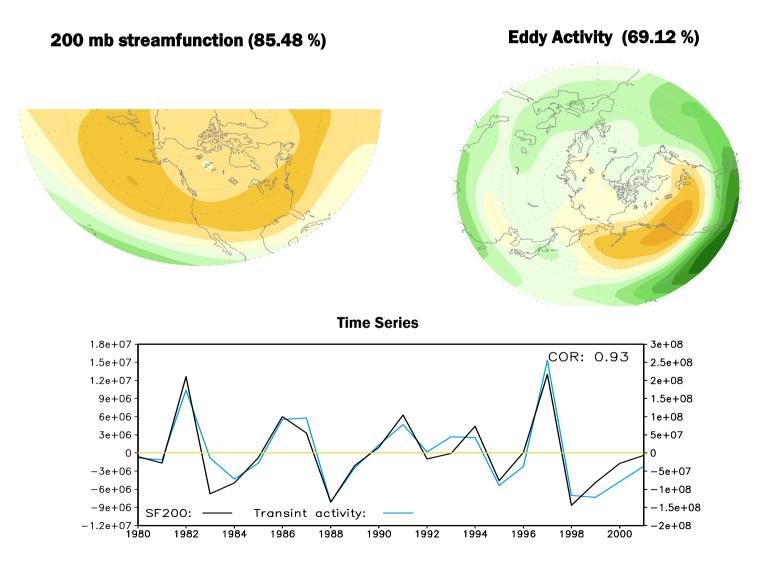
Correlation Skill of MME



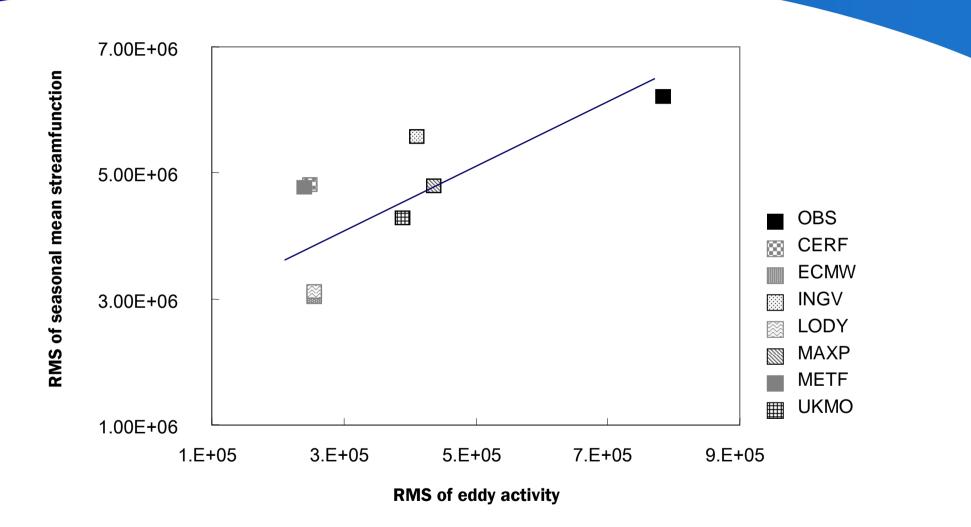
- Noise dynamics
- Predict an atmospheric noise interact with low-frequency
- Understand the relationship between noise & low-frequency

Relationship between seasonal mean flow & eddy activities

SVD 1st mode between 200mb streamfunction and eddy activity

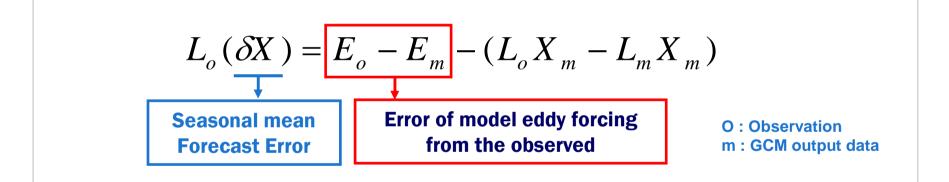


Relationship between eddy activity and seasonal mean variability



Eddy activity is proportional to Seasonal mean variability

Dynamical eddy forcing correction

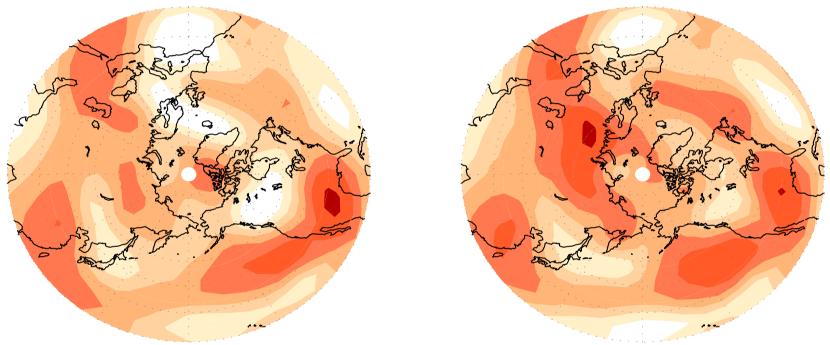


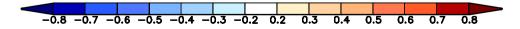
$$L_j X_j = E_j + R_j$$
, $j = 1,..., J$ E_j : The eddy forcing
 R_j : The residual term
 L_j : Linearized barotropic model

Dynamical Correction - Eddy forcing correction

Correlation Skill of 300mb streamfunction

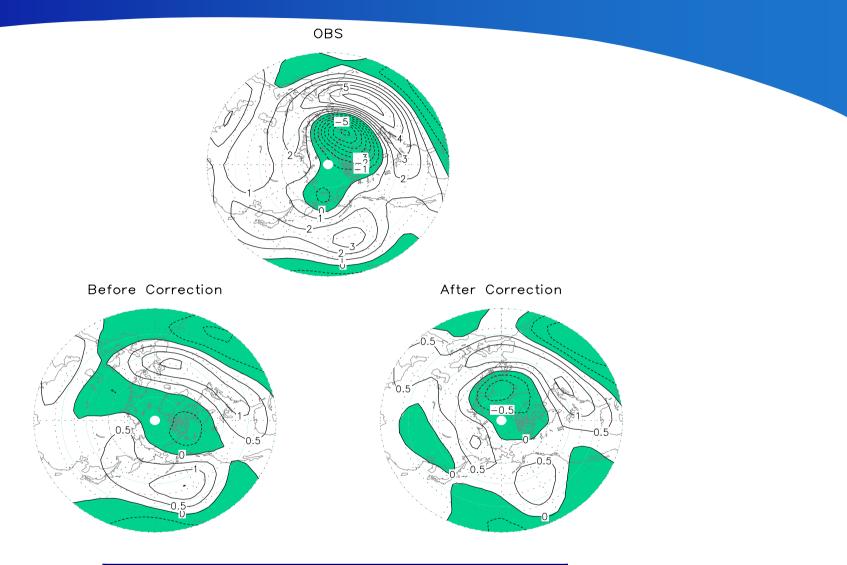
After Correction





Before Correction	After Correction
0.32	0.40

Dynamical Correction - Streamfunction regressed by observed NAO index



Before Correction	After Correction
0.54	0.74

Other Important Issues

- **1.** Initialization
- **2. Model improvement**
 - Physical parameterization
 - High resolution modeling
- **3. Subseasonal (MJO) prediction**