Workshop on Grand Unification and Proton Decay

$$
\text { 22-26 July } 2007
$$

New pathways to $\mathrm{SO}(10)$ unification

Pran NATH
Northeastern University
Boston, MA, USA

New Pathways to $S O$ (10) Unification

Pran Nath

Workshop on Grand Unification and Proton Decay
ICTP, Trieste, Italy
July 22-26, 2007

Contents

－Introduction
－Breaking of $S O(10)$ with 144
－Calculational tools and model building
－b－tau unification
－cancellation mechanism for proton stability
－Conclusions／prospects

Grand unifcation-status

- Grand unification $\left(\boldsymbol{S U (5) , S O (1 0) , ~} \boldsymbol{E}_{6} ..\right)$ has desirable features: quantization of charge, gauge coupling unification, .. $\boldsymbol{S O (1 0)}$: One gen of fermions in one IR rep. Unlike E6 not too many exotics.
$\boldsymbol{S O}(\mathbf{1 0})$: Can generate small neutrino masses via see-saw
- Too many Higgs representations to break SO(10). Many 'minimal' models.

Conventional schemes

－Conventional scenarios：several Higgs reps needed
－One needs at least $\mathbf{4 5}, 54$ or 210 and $16+\overline{\mathbf{1 6}}$ or $126+\overline{\mathbf{1 2 6}}$ to break $S O(10)$ down to $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ ， and further a 10 plet to break it to $S U(\mathbf{3})_{C} \times U(\mathbf{1})_{e m}$ ．
－The arbitrariness of the Higgs sector allows for many possibilities for building models．
－An ideal scenario
－Unification of 3 generation of matter．
－Unification of the Higgs sector．

A new path to $\mathrm{SO}(10)$ unfication Babu, Gogoladze, PN, Syed

- Quite remarkably it is possible to break $\boldsymbol{S O (1 0)}$ with a single irreducible rep. This is done by use of a vector-spinor 144 which under $S U(5) \times \boldsymbol{U}(1)$:

$$
144=\overline{5}_{3}+5_{7}+10_{-1}+15_{-1}+24_{-5}+40_{-1}+\overline{45}_{-3}
$$

The 24-plet has a $\boldsymbol{U}(\mathbf{1})$ charge which means that once the 24-plet gets a VEV, there is a change in the rank.

- The self couplings of the 144 are quartic or higher

$$
(144 \times \overline{144}) \cdot(144 \times \overline{144})
$$

Similarly the couplings of the 144 with quarks and leptons in the 16 -plets are at least quartic

$$
(16 \times 16) .(144 \times 144)
$$

Spontaneous breaking of SO(10)

The superpotential contains only couplings involving the 144 and $\overline{\mathbf{1 4 4}}$ of Higgs

$$
W=M(144 . \overline{144})+\sum_{i=1,45,210} \frac{\lambda_{i}}{M^{\prime}}(144 . \overline{144})_{i}(144 . \overline{144})_{i}
$$

Symmetry breaking generates VEVs for the 24 plets

$$
\begin{gathered}
<24_{144}>=q \operatorname{diag}(2,2,2,-3,-3)=\frac{q}{p}<24_{\overline{144}}> \\
\frac{M M^{\prime}}{q p}=116 \lambda_{45_{1}}+7 \lambda_{45_{2}}+4 \lambda_{210}
\end{gathered}
$$

With the above VEV's break the symmetry to SM

$$
S O(10) \rightarrow S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

Electroweak symmetry breaking

－The 144 －plet and $\overline{\mathbf{1 4 4}}$ contains SM Higgs doublets．

$$
\begin{aligned}
& 144: Q_{i}(\overline{5})+Q^{i}(5)+Q_{i j}^{k}(\overline{45}) \\
& \overline{144}: P_{i}(\overline{5})+P^{i}(5)+P_{k}^{i j}(45)
\end{aligned}
$$

The 45 plet in $\boldsymbol{S} \boldsymbol{U}(\mathbf{3}) \times \boldsymbol{S} \boldsymbol{U}(\mathbf{2}) \times \boldsymbol{U}(\mathbf{1})_{\boldsymbol{Y}}$ decomposition

$$
\begin{gathered}
45=(1,2)(3)+. . \\
\overline{45}=(1,2)(-3)+. .
\end{gathered}
$$

－Thus we get 3 pairs of Higgs doublets．One can arrange one pair of Higgs doublets to be light．
－This allows the breaking in one step

$$
S O(10) \rightarrow S U(3)_{C} \times U(1)_{e m} .
$$

Calculational tools：Oscillator method
 ＋Basic Theorem

Mohapatra，Sakita；Wilczek，Zee ；PN，R．Syed

Oscillator method： $\boldsymbol{S O (1 0)}$ representations may be decomposed in term of $\boldsymbol{S U (5)}$ using harmonic oscillators

$$
\left\{b_{i}, b_{j}^{\dagger}\right\}=\delta_{i j}, \quad\left\{b_{i}, b_{j}\right\}=0
$$

Define $\mathrm{SO}(10)$ operators $\boldsymbol{\Gamma}_{\boldsymbol{\mu}}(\boldsymbol{\mu}=\mathbf{1}, \mathbf{2}, . ., \mathbf{1 0})$

$$
\begin{gathered}
\Gamma_{2 i}=\left(b_{i}+b_{i}^{\dagger}\right), \quad \Gamma_{2 i-1}=-i\left(b_{i}-b_{i}^{\dagger}\right) \\
\left\{\Gamma_{\mu}, \Gamma_{\nu}\right\}=2 \delta_{\mu \nu}
\end{gathered}
$$

$\overline{16}$ may be expanded as follows：

$$
\overline{\mathbf{1 6}}:\left|\Psi_{(-)}>=\left(\mathrm{P}+b_{i}^{\dagger} b_{j}^{\dagger} \mathrm{P}^{i j}+\epsilon^{i j k l m} b_{j}^{\dagger} b_{k}^{\dagger} b_{l}^{\dagger} b_{m}^{\dagger} \mathrm{P}_{\mathrm{i}}\right)\right| 0>
$$

Similarly 16.

The Basic Theorem

PN, Raza Syed: PLB 506,68(2001); NPB, 618, 138(2001); NPB 676, 64(2004)

The basic theorem allows one to decompose the $S O(2 N)$ vertices in representations of $\boldsymbol{S U}(\boldsymbol{N})$.

$$
\begin{gathered}
\Gamma_{\mu} \phi_{\mu}=\Gamma_{2 i} \phi_{2 i}+\Gamma_{2 i-1} \phi_{2 i-1}=b_{i}^{\dagger} \phi_{c_{i}}+b_{i} \phi_{\bar{c}_{i}} \\
\phi_{c i}=\phi_{2 i}+i \phi_{2 i-1}, \phi_{\overline{c i}}=\phi_{2 i}-i \phi_{2 i-1} \\
\phi_{c_{i} c_{j} \bar{c}_{k} \ldots}=\phi_{2 i c_{j} \bar{c}_{k} \ldots}+i \phi_{2 i-1 c_{j} \bar{c}_{k} \ldots} \quad 2^{N_{\mathrm{terms}}}
\end{gathered}
$$

 can express $\mathrm{SO}(2 \mathrm{~N})$ couplings in terms of $\phi_{c_{i} c_{j}} \bar{c}_{k} \ldots$ etc, then we need only to decompose $\phi_{c_{i} c_{j} \bar{c}_{k} \ldots}$ is terms of irreducible reps of $\boldsymbol{S U}(\boldsymbol{N})$.

Vertex expansion at

$$
\begin{gathered}
\Gamma_{\mu} \Gamma_{\nu} \Gamma_{\lambda} . . \Gamma_{\sigma} \phi_{\mu \nu \lambda . . \sigma}=b_{i}^{\dagger} b_{j}^{\dagger} b_{k}^{\dagger} . . b_{n}^{\dagger} \phi_{c_{i} c_{j} c_{k} \ldots c_{n}} \\
+\left(b_{i} b_{j}^{\dagger} b_{k}^{\dagger} . . b_{n}^{\dagger} \phi_{\bar{c}_{i} c_{j} c_{k} \ldots c_{n}}+\text { perms }\right) \\
+\left(b_{i} b_{j} b_{k}^{\dagger} . . b_{n}^{\dagger} \phi_{\bar{c}_{i} \bar{c}_{j} c_{k} . . c_{n}}+\text { perms }\right) \\
+\ldots+\left(b_{i} b_{j} b_{k} . . b_{n-1}^{\dagger} b_{n} \phi_{c_{i} c_{j} c_{k} . . c_{n-1} c_{n}}+\text { perms }\right)+ \\
+b_{i} b_{j} b_{k} \ldots . . b_{n} \phi_{\bar{c}_{i} \bar{c}_{j} \bar{c}_{k} \ldots . \bar{c}_{n}}
\end{gathered}
$$

where one must take into account all possible permutations of b and b^{\dagger} in writing the expansion.

$16-16-120$ coupling example

$$
\frac{1}{3!} f_{a b} \tilde{\Psi}_{a} B C^{-1} \Gamma_{\mu} \Gamma_{\nu} \Gamma_{\lambda} \Psi_{b} \phi_{\mu \nu \lambda}
$$

The vertex can be expanded using the basic theorem

$$
\begin{gathered}
\Gamma_{\mu} \Gamma_{\nu} \Gamma_{\lambda} \phi_{\mu \nu \lambda}=b_{i} b_{j} b_{k} \phi_{\bar{c}_{i}} \bar{c}_{j} \bar{c}_{k}+\left(b_{i} b_{j} b_{k}^{\dagger} \phi_{\bar{c}_{i}} \bar{c}_{j} c_{k}+\text { perms }\right) \\
+\left(b_{i} b_{j}^{\dagger} b_{k}^{\dagger} \phi_{\bar{c}_{i} c_{j} c_{k}}+\text { perms }\right)+b_{i}^{\dagger} b_{j}^{\dagger} b_{k}^{\dagger} \phi_{c_{i} c_{j} c_{k}}
\end{gathered}
$$

Decompose 120 into $\operatorname{SU}(5)$ reps:

$$
120=5+\overline{5}+10+\overline{10}+45+\overline{45}
$$

A direct computation gives

$$
\begin{gathered}
W^{(120)}=i \frac{2}{\sqrt{3}} f_{\dot{a} \dot{b}}^{(-)}\left[2\left(1{ }_{\dot{a}} 5_{i \dot{b}} 5_{H}^{i}\right)+10_{\dot{a}}^{i j} 1_{\dot{b}} 10_{H i j}+5_{i \dot{a}} 5_{j \dot{b}} 10_{H}^{i j}\right. \\
\left.-10_{\dot{a}}^{i j} \overline{5}_{i \dot{b}} \overline{5}_{H j}+\overline{5}_{i \dot{a}} 10_{\dot{b}}^{j k} \overline{4} 5_{H j k}^{i}-\frac{1}{4} \epsilon_{i j k l m} 10_{\dot{a}}^{i j} 10_{\dot{b} \equiv}^{m n} 45_{H n}^{k l}\right]_{\overline{\underline{E}}}
\end{gathered}
$$

Field theoretic description of vector spinor

Babu, Gogoladze, PN, Syed: hep-ph/hep-ph/0506312

To generate a $144(\overline{\mathbf{1 4 4}})$ we start with a unconstrained vector spinor $160(\overline{160})$ and then obtain a constrained vector-spinor.
$160:\left|\Psi_{(+) \mu}>=\left(\mathrm{P}_{\mu}+b_{i}^{\dagger} b_{j}^{\dagger} \mathrm{P}_{\mu}^{i j}+\epsilon^{i j k l m} b_{j}^{\dagger} b_{k}^{\dagger} b_{l}^{\dagger} b_{m}^{\dagger} \mathbf{P}_{i \mu}\right)\right| 0>$
$144, \overline{144}\left(\mid \Upsilon_{(\pm) \mu}>\right)$ are constrained vector spinors

$$
\Gamma_{\mu}\left|\Upsilon_{(\pm) \mu}>=\right| \Psi_{\mp}>=0
$$

The constraint require that $\mathbf{1 6}_{\mp}$ fields must be removed from the $160_{ \pm}$reducing it to $144_{ \pm}$.

Vector-spinor continued

To get the $\overline{\mathbf{1 4 4}}$ spinor impose $\boldsymbol{\Gamma}_{\boldsymbol{\mu}} \mid \mathbf{\Upsilon}_{(-) \boldsymbol{\mu}}>=\mathbf{0}$ which gives

$$
\overline{144}=\overline{144}^{n}(79)+\overline{144}_{n}(65)
$$

In oscillator decomposition $144=79+65$ components are

$$
\begin{aligned}
& \left|\overline{144}^{n}>=\left|0>P^{n}+\frac{1}{2} b_{i}^{\dagger} b_{j}^{\dagger}\right| 0>\left[\epsilon^{i j k l m} P_{k l m}^{n}-\frac{1}{6} \epsilon^{i j n l m} P_{l m}\right]\right. \\
& \left.+\frac{1}{24} \epsilon^{i j k l m} b_{j}^{\dagger} b_{k}^{\dagger} b_{l}^{\dagger} b_{m}^{\dagger} \right\rvert\, 0>P_{i}^{n} ; 5+\overline{10}+\overline{40}+24=79 \\
& \mid \overline{144} \\
& n
\end{aligned}>=\left|0>P_{n}+\frac{1}{2} b_{i}^{\dagger} b_{j}^{\dagger}\right| 0>\left[\mathrm{P}_{n}^{i j}+\frac{1}{4}\left(\delta_{n}^{i} \mathrm{P}^{j}-\delta_{n}^{j} \mathrm{P}^{i}\right)\right] .
$$

Couplings with fermions

Matter－Higgs couplings are at least quartic

$$
\begin{array}{cl}
(16 \times 16)_{10}(144 \times 144)_{10}, & (16 \times 16)_{10}(\overline{144} \times \overline{144})_{10} \\
(16 \times 16)_{120}(144 \times 144)_{120}, & (16 \times 16)_{120}(\overline{144} \times \overline{144})_{120} \\
(16 \times 16)_{\overline{126}}(144 \times 144)_{126}, & (16 \times 16)_{\overline{126}}(\overline{144} \times \overline{144})_{126}, .
\end{array}
$$

Quark－lepton－neutrino masses arise as follows

$$
\text { up - quarks : } \quad 10_{M} 10_{M} \frac{24_{H}}{M} 5_{H}
$$

$$
\text { down - quark - lepton }: \quad 10_{M} \overline{5}_{M} \frac{24_{H}}{M} \overline{5}_{H}
$$

$$
\mathrm{RR}-\nu \mathrm{mass}: \quad 1_{M} 1_{M} \frac{24_{H}}{M} 24_{H}
$$

$$
\mathrm{LR}-\nu \mathrm{mass}: \quad \overline{5}_{M} 1_{M} \frac{24_{H}}{M}\left(5_{H}, 45_{H}\right)
$$

$$
\mathrm{LL}-\nu \text { mass }: \quad \overline{5}_{M} \overline{5}_{M} \frac{\mathbf{5}_{H}}{M} 5_{H}
$$

Third generation fermion masses

Babu，Gogoladze，PN，Syed：hep－ph／0607244
－3rd gen cubic couplings from additional $10+45$ of matter

$$
W_{F_{3}}=10^{2}+45^{2}+16.10 .144+16.45 . \overline{144}
$$

－ $\boldsymbol{b}-\boldsymbol{\tau}$ and $\boldsymbol{b}-\boldsymbol{t}-\boldsymbol{\tau}$ unification（a bit more tricky！）
－Conventional 10－plet breaking of EW symmetry

$$
h_{\tau}=h_{b}=h_{t}
$$

－The modified relation

$$
\left|h_{\tau}\right| \approx h_{b} \approx \frac{z}{6}\left|h_{t}\right|, z=O(1)
$$

$b-\boldsymbol{t}-\boldsymbol{\tau}$ unification can be achieved with a $\tan \boldsymbol{\beta}$ as low as 10 instead of $\tan \beta=\mathbf{5 0}$ ．

$b-\tau$ unification

Gomez, Ibrahim, PN, Skadhauge
(i) $\boldsymbol{g}_{\boldsymbol{\mu}}-\mathbf{2}$ favors $\boldsymbol{\mu}>\mathbf{0}$
(ii) $b-\tau$ unification favors $\mu<0$.

- Collison of galaxy clusters (1E 0657-56 = bullet cluster)
- optical image: Magellan and Hubble ST shows galaxies in orange and white.
- Chandra X-ray Observ. Hot gas, normal matter (pink)

- Most of the mass (blue), from gravitational lensing dominated by dark matter ; first clear separation of DM

Satisfaction of relic density in $m_{0}-m_{1 / 2}$ plane in mSUGRA

Feldman, Kors, PN: hep-ph/0610133

$b-\tau$ unification $+b \rightarrow s \gamma+$ relic density

Gomez, Ibrahim, PN, Skadhauge

Proton stability: review Phys. Rep. PN \& PF Perez

- Nature and strength of $\boldsymbol{B} \& \boldsymbol{L}$ violating interactions at the GUT scale.
- Nature of soft breaking which enters in the dressing loop diagrams.
- Constraints on gauge coupling unification which constrain the heavy thresholds and the Higgsino triplet mass.
- $b-\tau$ unification, $g_{\mu}-2$, and $b \rightarrow s \gamma$.
- Quark-lepton textures.
- Dark matter constraint
- Planck slop corrections.
- Gravitational warping effects
- Accuracy of effective lagrangian approximation which converts operators such as $Q Q Q L$ and $\boldsymbol{U}^{C} \boldsymbol{U}^{C} \boldsymbol{D}^{C} \boldsymbol{E}^{C}$ into lagrangian for mesons + baryons.

Condition for suppression of proton decay

Below the unification scale in GUTs/strings one can write $S U(3)_{C} \times S U(2)_{L} \times \boldsymbol{U}(1)_{Y}$ invariant theory, specifically the color Higgsino color triplet (anti-triplet) $\boldsymbol{H}^{a}\left(\boldsymbol{H}_{a}^{\prime}\right)$ with charges $Q=-1 / 3(1 / 3)$ couplings with sources J_{a}, K^{a}

$$
\boldsymbol{H}^{\prime} \mathcal{M} \boldsymbol{H}+\boldsymbol{H}^{\prime} \boldsymbol{K}+\boldsymbol{H} \boldsymbol{J}
$$

Suppose we are in a basis where only the Higgs $\boldsymbol{H}_{1}^{\prime}, \boldsymbol{H}_{1}$ couple with matter. Then the condition for suppression of dimension five operators is

$$
(\mathcal{M})_{11}^{-1}=0
$$

More general constraints for suppression of \mathbf{p} decay

PN, R.M. Syed: 0707.1332 [hep-ph]
More generally in GUTS/strings the Higgisino triplets could also have charges $-4 / 3(4 / 3)$

$$
\tilde{H}^{a}\left(\tilde{H}_{a}\right): Q=-4 / 3(4 / 3)
$$

which generate additional terms

$$
\tilde{H}^{\prime} \tilde{\mathcal{M}} \tilde{H}+\tilde{H}^{\prime} \tilde{K}+\tilde{H} \tilde{J}
$$

Including these the supression conditions are

$$
L L L L:\left(U \mathcal{M} V^{T}\right)_{11}^{-1}+\Lambda_{\text {Planck }}=0
$$

$R R R R:\left(U \mathcal{M} V^{T}\right)_{11}^{-1}+\left(\tilde{U} \tilde{\mathcal{M}} \tilde{V}^{T}\right)_{11}^{-1}+\tilde{\Lambda}_{\text {Planck }}=0$

Suppression of p decay in SU(5) GUT

Consider a model with the Higgs content $\mathbf{2 4}, \mathbf{5}, \overline{5}, 45, \overline{45}$ with the color triplets (anti-triplets) as follows

$$
\begin{gathered}
H^{a}(5 ; q=-1 / 3), P^{a}(45 ;-1 / 3), Q^{a}(\overline{45} ;-4 / 3) \\
H_{a}^{\prime}(\overline{5} ; q=1 / 3), Q_{a}(\overline{45} ; 1 / 3), P_{a}(45 ; 4 / 3)
\end{gathered}
$$

$$
\left.\begin{array}{c}
\\
H_{\alpha}^{\prime} \\
Q_{\alpha} \\
P_{\alpha}
\end{array} \quad \begin{array}{ccc}
H^{\alpha} & P^{\alpha} & Q^{\alpha} \\
M_{11} & M_{12} & 0 \\
M_{21} & M_{22} & 0 \\
0 & 0 & M_{33}
\end{array}\right)
$$

P decay suppression: Assume couplings of $\mathbf{4 5}(\overline{\mathbf{4 5}})$ have the same flavor dependence as couplings for $5(\overline{5}): 45 \sim \lambda 5, \overline{45} \sim \lambda^{\prime} \overline{5}$.
(i) $\lambda^{\prime}=0, M_{11}^{-1}+\lambda M_{12}^{-1}=0 ;\left(\right.$ ii) $\lambda=0, M_{21}^{-1}+\lambda^{\prime} M_{22}^{-1}=0$

Suppression of p decay in SO(10) GUT

- Couplings of type $16.16 .10,16.16 .120$, and $16.16 . \overline{126}$ do not give a cancellation, since 10 plet couplings symmetric, 120 plet couplings anti-symmetric and $\overline{\mathbf{1 2 6}}$ do not contribute.
- The cancellation possibility arises in $144(\overline{\mathbf{1 4 4}})$ plet couplings

$$
\begin{gathered}
144-\text { Higgs }: 5(3)+\overline{5}(7)+\overline{45}(3)+. . \\
\overline{144}-\text { Higgs }: \overline{5}(-3)+5(-7)+45(-3)+. .
\end{gathered}
$$

- Two pairs of color triplets (anti-triplets) from $\mathbf{5 (5)}$).
- Two pairs of color triplets (anti-triplets) from $45(\overline{45})$.
- An internal cancellation can occur in the dim 5 operators originating from the two types of contributions.

p decay suppression constraints

$$
\begin{aligned}
& \left\{\boldsymbol{\zeta}_{\dot{a} b}^{(10)(+\dot{c} \dot{d}}\right\}\left(16_{\dot{a}} \times 16_{\dot{b}}\right)_{10}\left(144_{\dot{c}} \times 144{ }_{\dot{d}}\right)_{10} \\
& \left\{\xi_{\dot{a} \dot{b}, \dot{c} \dot{d}}^{(10)(+)}\right\}\left(16_{\dot{a}} \times 16_{\dot{b}}\right)_{10}\left(\overline{144}_{\dot{c}} \times \overline{144}_{\dot{d}}\right)_{10} \\
& \left\{\varrho_{\dot{a} \dot{b}, \dot{c} \dot{d}}^{(126, \bar{c})(+)}\right\}\left(16_{\dot{a}} \times 16_{\dot{b}}\right)_{\overline{126}}\left(144_{\dot{c}} \times 144_{\dot{d}}\right)_{126} \\
& \left\{\lambda_{\dot{a} \dot{b}, \dot{c} \dot{d}}^{(45)}\right\}\left(16_{\dot{a}} \times \overline{144}_{\dot{b}}\right)_{45}\left(16_{\dot{c}} \times \overline{144}_{\dot{d}}\right)_{45}, \\
& \left\{\begin{array}{l}
\zeta_{\dot{a} \dot{b}, \dot{c} \dot{d}}^{(120)(-)}
\end{array}\right\}\left(16_{\dot{a}} \times 16_{\dot{b}}\right)_{120}\left(144_{\dot{c}} \times 144_{\dot{d}}\right)_{120} \\
& \left\{\xi_{\dot{a} \dot{b}, \dot{c} \dot{d} \dot{d}}^{(120)(-)}\right\}\left(16_{\dot{a}} \times 16_{\dot{b}}\right)_{120}\left(\overline{144}_{\dot{c}} \times \overline{144}_{\dot{d}}\right)_{120} \\
& \left\{\lambda_{\dot{a} \dot{b}, \dot{c} \dot{d}}^{(54)}\right\}\left(16_{\dot{a}} \times \overline{144}_{\dot{b}}^{\dot{b}}\right)_{54}\left(16_{\dot{c}} \times \overline{144}_{\dot{d}}\right)_{54} \\
& \left\{\lambda_{\dot{a} b}^{b}, \dot{c} \dot{d}\right\}\left(16_{\dot{a}}^{(10)} \times 144_{\dot{b}}\right)_{10}\left(16_{\dot{c}} \times 144_{\dot{d}}\right)_{10}+\text { cubic terms. }
\end{aligned}
$$

Cancellation constraints

$$
\lambda_{\dot{a}, \dot{b}}^{(45)}=4 \xi_{\dot{a} \dot{b}}^{(10)(+)}, \quad \zeta_{\dot{a} \dot{b}}^{(10)(+)}=0=\varrho_{\dot{a} \dot{b}}^{(126, \overline{126})(+)}
$$

Conclusions/prospects

- The attactive feature of the model with 144 plet of Higgs is that the Higgs sector is unified in one irreducible representation and one can accomplish breaking of $\boldsymbol{S O}(\mathbf{1 0})$ down to $\boldsymbol{S} \boldsymbol{U}(\mathbf{3})_{C} \times \boldsymbol{U}(\mathbf{1})_{e m}$ in one step.
- A second attractive feature is that all the ingredients of getting quark lepton masses and see-saw masses for the neutrino are built in.
- A third attractive feature is that a cancellation mechanism can operate and one can easily enhance the proton decay lifetime.
- One issue concerns fine tuning but is acceptable in the context of current ideas of landscape.

