

1854-6

Workshop on Grand Unification and Proton Decay

22 - 26 July 2007

Unification of dark matter and baryogenesis

Salah NASRI University of Florida Gainesville, FL, USA

Unification of Dark matter and Baryogenesis

Salah Nasri

University of Florida Institute of Fundamental Theory

Phys. Rev. Lett, 97 (2007) (K.S.Babu, R. N. Mohapatra, S.N)

July 23, 2007

Neutrinos have mass

{Homestake, SAGE, GALLEX, SNO, SK, Soudan II, MACRO, K2K, MINOS, KamLAND, CHOOZ, ..}

parameter	best fit	3σ range
$\Delta m^2_{21} \ [10^{-5} \ { m eV}^2]$	7.9	7.1–8.9
$\Delta m^2_{31} [10^{-3} \; { m eV}^2]$	2.6	2.0-3.2
$\sin^2 heta_{12}$	0.30	0.24–0.40
$\sin^2 heta_{23}$	0.50	0.34–0.68
$\sin^2 heta_{13}$	0.00	\leq 0.040

- In standard model $m_{\nu} = 0$
- Need to extend the SM :
 - 1. Higgs sector: SU(2) Triplet $\Delta \rightarrow$ Type II see-saw
 - 2. Fermion sector: $\begin{cases} SM \text{ singlet } (\nu_R) \rightarrow & \text{Type I see-saw ;} \\ SU(2) \text{ triplet } \rightarrow & \text{Type III see-saw.} \end{cases}$

P. Minkowski 1977;

M. Gell-Mann, P. Ramond and R. Slansky (1979);

R.N.Mohapatra and G. senjanovic (1980); Ma (1998).

- Most of the matter in the universe is dark
 - Rotation curves of spiral galaxies

- measurement of X-ray emission from the hot gas in clusters
- Gravitational lensing
- SDSS + 2dGRS
- WMAP + SNIa + BBN

$$\Rightarrow \Omega_{DM} h^2 \simeq 0.11$$

Baryogenesis

• our solar system is made entirely from matter.

• \overline{p} are observed in the cosmic rays : $n_{\overline{p}}/n_p \sim 10^{-4}$ but are likely to be understood as secondaries in $p + p \rightarrow 3p + \overline{p}$

• On larger scale if there were both matter and anti-matter galaxies in one cluster there would be a strong γ -ray from

$N\overline{N} \to \pi' s \to \gamma' s$

 $\Rightarrow L_M \gg 1000 Mpc \qquad A.Cohen, S.Glashow, A.DeRujula$ Astrophys. J. 495 (1998)

• The abundance of matter over anti-matter is measured by the baryon asymmetry:

$$\eta = \frac{n_B - n_{\overline{B}}}{s} \simeq 0.8 \times 10^{-10} \ \{BBN, WMAP\}$$

Sakharov's Conditions

A. D. Sakharov JETP Lett.5 (1967)

- Baryon number violation
- ► C and CP violation
- Departure from thermal equilibrium

• Electroweak baryogenesis

Qualitatively the SM satisfies the 1^{st} and 2^{nd} ingredients, and the 3^{rd} requires the phase transition to be first order. However quantitatively it does not work in the SM because:

(a) The EWPT is too weak
$$\left(\frac{v(T_c)}{T_c} > 1 \Rightarrow m_H < 40 \text{ GeV}\right)$$

(b) CP violation is too small $(\sim 10^{-20}!!)$

May be the *MSSM*:

- $m_{\widetilde{t_P}} \leq 172 \; GeV$
- $m_H < 120 \ GeV$
- $m_{\widetilde{Q}} = 100 \ GeV \exp\left\{\frac{1}{9.2}\left(\frac{m_H}{GeV} 85.9\right)\right\}$

Carena, Quiros, Wagner; Nucl.Phys.B 524 (1998) J. Cline, G. Moore; Phys. Rev. Lett 81 (1998) • GUT Baryogenesis with $\Delta(B-L) = 0$

Here the baryon asymmetry is generated from the out of equilibrium decay of heavy GUT gauge boson or heavy colored triplet Higgs. eg:

$$X \rightarrow lq; qq$$

where $X \in GUT/SM$.

However above the EWPT the sphalerons transition rate is

$$\Gamma_{sph}\simeq lpha_W^5\,T\simeq 10^{-6}\,T$$

Any BAU generated around the GUT scale gets erased by the very rapid sphaleron processes at $T\sim 10^{12}~GeV$

• Leptogenesis

The idea is that

Fukugita and T. Yanagida Phys. Lett. B 174 (1986)

- initially (*T_i* ≫ 100*GeV*) : {*B_i* = 0; *L_i* ≠ 0; *and* ∆(*B* − *L*)_{*i*} ≠ 0} This can happen for example due to the decay of a heavy right handed neutrino
- As the universe cools down to T_{EW} ~ 100 GeV, the (B L) asymmetry gets reprocessed into a baryon asymmetry thanks to the sphaleron interactions:

 $\eta_{B} = 0.35 \eta_{B-L}$ J. Harvey, M. Turner

Phys. Rev. D 42 (1990)

- ▶ requires the lightest RH neutrino mass $M_1 \ge 3 \times 10^9 \text{ GeV}$ Davidson and Ibarra **Phys. Lett. B 535 (2002)**
- Tension with Supergravity: T_{RH} < 3 × 10⁷ GeV
 Kohri, Moroi, Yotsuyanagi Phys. ReV. D 73 (2006)

many extensions of the standard model based on left-right symmetry (e.g $SU(4)_c \times SU(2)_L \times SU(2)_R$) or SO(10) GUT model, predict the existence of

• $\Delta B = 1$

• $\mathcal{L}_{\Delta B=1}^{NON-SUSY} \sim \frac{1}{\Lambda_6^2} \{QQQL; QQu_Re_R; QLu_Rd_R\}$ • $\mathcal{L}_{\Delta B=1}^{SUSY} \sim \frac{1}{\Lambda_5} \{(QQQL)_F; (U^C U^C D^C E^C)_F\}$ $\Rightarrow p \rightarrow l^+ + M^0, p \rightarrow \overline{\nu} + K^+$ $\tau_p > 10^{33} yrs \Rightarrow \Lambda_6 > 10^{15} GeV; \Lambda_5 > 10^{25} GeV$ • $\Delta L = 2$ • $\mathcal{L}_{\Delta L=2} \sim \frac{1}{\Lambda_N} (LH)^2$

$$\Rightarrow m_{\nu} \sim \frac{\langle H \rangle^2}{\Lambda_N} \\ max\{m_{\nu_2}, m_{\nu_3}\} \sim 10^{-1.5} \Rightarrow \Lambda_N \sim 10^{14} \text{ GeV}$$

Salah Nasri Unification of Dark matter and Baryogenesis

PROBE NEW PHYSICS AROUND TeV SCALE

 $n \leftrightarrow \overline{n} \ au_{n\overline{n}} > 10^8 \ s \Rightarrow \Lambda > 10^5 \ GeV$

•
$$\mathcal{L}^{SUSY}_{\Delta B=2} \sim \frac{1}{\Lambda_8^3} \left((QQ)(QQ)\overline{D^C D^C} \right)_D$$

•
$$\mathcal{L}_{\Delta B=2}^{SUSY} \sim \frac{1}{\Lambda_8^3} \left(Q Q \overline{U^C D^C D^C D^C} \right)_D$$

•
$$\mathcal{L}^{SUSY}_{\Delta B=2} \sim \frac{1}{\Lambda_7^3} \left(U^C D^C D^C U^C D^C D^C \right)_F$$

•
$$\mathcal{L}^{NON-SUSY}_{\Delta B=2} \sim \frac{1}{\Lambda_0^5} Q Q u_R d_R d_R d_R$$

•
$$\mathcal{L}^{NON-SUSY}_{\Delta B=2} \sim \frac{1}{\Lambda_9^5} QQd_R QQd_R$$

•
$$\mathcal{L}^{NON-SUSY}_{\Delta B=2} \sim \frac{1}{\Lambda_9^5} u_R d_R d_R u_R d_R d_R$$

$$\blacktriangleright \Delta B = 2$$

New Model

- Extend the MSSM with:
 - Two heavy ($\gg TeV$) and one light (< TeV) RH neutrinos
 - Pair of colored triplets (X, \overline{X})
- $\blacktriangleright W = \lambda_1^i N u_i^c X + \lambda_{ii}' d_i^c d_i^c \overline{X} + M_N \overline{N} N + M_X \overline{X} X$
- Can be obtained from GUT such as SU(5): $\rightarrow (X, \overline{X}) \in (\overline{10_H}, 10_H)$
 - \rightarrow Coupling unification not affected; $\delta \alpha_U / \alpha_U \sim 1$
- Assumptions:
 - $M_{X \overline{X}} \sim TeV$

 $\begin{cases} \widetilde{N_1}, \text{ is stable} \Rightarrow & \text{DM candidate;} \\ N_1 \text{ is unstable} \Rightarrow & \text{BAU.} \end{cases}$

► The Lagrangian including soft SUSY breaking terms:

$$\begin{aligned} \bullet & -\mathcal{L}_{\text{scalar}} &= |M_X|^2 (|X|^2 + |\overline{X}|^2) + m_X^2 |X|^2 + m_{\overline{X}}^2 |\overline{X}|^2 \\ &+ (B_X M_X X \overline{X} + h.c) + |M_N|^2 |\tilde{N}|^2 + m_{\tilde{N}}^2 |\tilde{N}|^2 \\ &+ (\frac{1}{2} B_N M_N \tilde{N} \tilde{N} + h.c.) \end{aligned}$$

• Two mass eigenstates X_1 and X_2 :

$$X = \cos \theta X_1 - \sin \theta e^{-i\phi} X_2;$$

$$\overline{X}^* = \sin \theta e^{i\phi} X_1 + \cos \theta X_2$$

. .

•
$$\tan 2\theta = rac{|2B_X M_X|}{|m_X^2 - m_{\overline{X}}^2|}; \ \phi = \operatorname{Arg}(B_X M_X)\operatorname{sgn}(m_X^2 - m_{\overline{X}}^2).$$

• The two mass eigenvalues are

$$M_{X_{1,2}}^2 = |M_X|^2 + \frac{m_X^2 + m_{\overline{X}}^2}{2} \pm \sqrt{\left(\frac{m_X^2 - m_{\overline{X}}^2}{2}\right)^2 + |B_X M_X|^2}$$

• The two *real* mass eigenstates from the \tilde{N} field :

$$M_{\tilde{N}_{1,2}}^2 = m_{\tilde{N}}^2 + |M_N|^2 \pm |B_N M_N|$$

Baryon Asymmetry

► Sakharov's 3rd condition :

► For

- $\sqrt{(\lambda^{\dagger}\lambda)\mathrm{Tr}[\lambda'^{\dagger}\lambda']} \sim 10^{-3}$
- $M_N \sim 100~GeV$
- $M_{X_1} \sim TeV$

 \Rightarrow N decays out of equilibrium at $T \sim M_N$

N decay to 3q's and 3q's due to interference between tree and one loop (Babu, Mohapatra, S.N ,Phys. Rev. Lett(2006))

Dark Matter

• For $\lambda_3 \sim 1/3$, $M_{\widetilde{N_1}} \sim 300~GeV$, $M_X \sim 500~GeV$ $\Rightarrow \Omega_{\widetilde{N_1}} h^2 \simeq 0.1$

•
$$\sigma_{\tilde{N}_1+p} \simeq \frac{|\lambda_1|^4 m_p^2}{4\pi M_X^4} \left(\frac{A+Z}{A}\right)^2$$

• For $\lambda_1 \sim 0.1$, $M_X \sim 500 \ GeV$ $\sigma_{\tilde{N}_1+p} \simeq 10^{-8} \ pb \Rightarrow$ within the reach of SuperCDMS

• Will lead to $n - \overline{n}$ oscillation via the s-content in neutron

• If the strange content is
$$\sim 1\%~ \Rightarrow au_{n\overline{n}} \sim 10^9~sec$$

The Hamiltonian of the neutron-antineutron system is

$$\widehat{H} = \begin{pmatrix} E_n - i\frac{\Gamma_n}{2} & \delta m \\ \delta m & E_{\overline{n}} - i\frac{\Gamma_{\overline{n}}}{2} \end{pmatrix}$$

where E_n and $E_{\overline{n}}$ are the neutron and antineutron energies:

$$E_{n} \simeq m_{n} + \frac{p^{2}}{2m_{n}} + V_{n}$$
$$E_{\overline{n}} \simeq m_{\overline{n}} + \frac{p^{2}}{2m_{\overline{n}}} + V_{\overline{n}}$$

CPT invariance $\Rightarrow m_n = m_{\overline{n}} = m$ and $\Gamma_n = \Gamma_{\overline{n}} = \Gamma$ V_n and $V_{\overline{n}}$ are the potential felt by V_n and $V_{\overline{n}}$ respectively.

In practice V_n − V_n ≠ 0 Long time ago (1979) Glashow pointed out that due to earth magnetic field

 $B_{earth} \simeq 0.5 Gauss$

$$V_n = -V_{\overline{n}} \equiv V = \mu_n . B_{earth} \neq 0$$

$$\mu_n \simeq -2(rac{e}{2m_n}) \simeq -6 \times 10^{-12} \ eV/Gauss$$

Salah Nasri Unification of Dark matter and Baryogenesis

 $\Rightarrow V \simeq 3 \times 10^{-12} eV$

Hence the effective Hamiltonian reads

$$\widehat{H} \simeq \left(egin{array}{cc} m+V & \delta m \ \delta m & m-V \end{array}
ight)$$

The eigenstates are

$$|n_1 > = \cos \theta |n > + \sin \theta |\overline{n} >$$

 $|n_2 > = -\sin \theta |n > + \cos \theta |\overline{n} >$

where

$$\sin^2 2\theta = \frac{\delta m^2}{\delta m^2 + V^2}$$
$$m_{\pm} = m \pm \sqrt{\delta m^2 + V^2}$$

$$\Rightarrow P_{n \to \overline{n}}(t) = \frac{\delta m^2}{\delta m^2 + V^2} \sin^2 \omega t$$

where

$$\omega = \frac{\sqrt{\delta m^2 + V^2}}{\hbar}$$

Salah Nasri Unification of Dark matter and Baryogenesis

If *wt* ≪1, neutrons will behave essentially like free neutrons. This is called the quasi-free neutron condition. In this case

$$P_{n \to \overline{n}}(t) \simeq rac{\delta m^2}{\hbar^2} t^2 = (rac{t}{ au_{n\overline{n}}})^2$$

Experiments that search for $n \leftrightarrow \overline{n}$ using free neutrons must satisfy

- Good screening against external fields in order to satisfy the quasi-free cond
- Very large neutron flux
- Long flight time , at the same time satisfying the quasi-free neutron condition.

The principle of such a measurement is simple:

- A beam of cold , quasi-free neutrons from reactor passes along a path L and then meets a target (eg. Carbon foil).
- The anti-neutrons formed during the flight time t annihilate in the target creating pions which are detected in the detector. The neutrons pass through the foil largely unhindered.
- A typical \overline{n} signal consists of 5 $\pi's$ with a total energy $\simeq 1.8 \ GeV$ and a vanishing total momentum.
- The detector must be shielded against cosmic rays.
- Degaussing the earth magnetic field (factor $\sim 10^{-4}$)

In this case:

$$\frac{\overline{N}}{\overline{N}} = \left(\frac{t}{\tau_{n\overline{n}}}\right)^2$$
$$\tau_{n\overline{n}} = \sqrt{\frac{I.T}{\overline{N}}} \frac{L}{v_n}$$

- *I* : the intensity of the neutron beam,
- *T* : the running time of the experiment
- v_n : the neutron velocity
- *L* : the neutron drift length
- $n \leftrightarrow \overline{n}$ were searched for at the Institut Laue Langevin" (ILL), in Grenoble, using cold neutrons, from $P = 58 \ MW$ reactor with kinetic energy $K_n \simeq 2 \times 10^{-3} \ eV(v_n \simeq 600 \ m/s)$, $L = 76 \ m \ (\Rightarrow t_{OF} \simeq 0.11 \ s)$ and intensity $I \simeq 10^{11} \ n/s$.

The earth magnetic field was reduced (using shielding) from

$$0.5 \ Gauss \longrightarrow 10^{-4} \ Gauss$$

 $\Rightarrow \delta E < 10^{-15} eV$

after one year of running the Grenoble experiment achieved

 $\tau_{n\overline{n}} > 8.6 \times 10^7 s$ Baldoceolin et al Zeit. fur. Phys. C 63 (1994)

There are proposals to improve this bound by two orders of magnitude at Deep Underground Science and Engineering Laboratory in South Dakota (DUSEL).

When a bound neutron in the nucleus changes into an n the latter annihilates with another nucleon in the same nucleus:

$$(A,Z)
ightarrow (A-1,Z,\overline{n})
ightarrow (A-2,Z) + \pi's$$

Thus the $n - \overline{n}$ annihilation may be detected via the reactions

$$\overline{n} + n \rightarrow \pi' s \rightarrow \mu' s$$

 $\overline{n} + p \rightarrow \pi' s \rightarrow \mu' s$

Experiments such as:

Kamiokande: Water Cerncov detector Soudan II : Iron detector

► The difficulty with such a method is the fact the (potential) energy difference △E is very large due to nuclear potential:

 $\Delta E \simeq (100-500) \; MeV$

Salah Nasri Unification of Dark matter and Baryogenesis

⇒ the oscillations are strongly suppressed for example for $\delta m \sim 10^{-22} eV$ (which corresponds to $\tau_{n\overline{n}} \sim 10^6 s$), the amplitude of the oscillations is

$$A_{n\overline{n}} = \frac{\delta m}{\sqrt{\delta m^2 + \Delta E^2}} \sim \frac{\delta m}{\Delta E} \sim 10^{-19}$$

For $\Delta Et \gg 1$, the average probability of finding \overline{n} is

$$P_{n\overline{n}} = \frac{1}{2} (\frac{\delta m}{\Delta E})^2$$

which gives an annihilation rate which is constant in time

$$T_{n\overline{n}}^{-1} \sim \delta m^2$$

$$\Rightarrow \tau_{n\overline{n}} = \sqrt{T_R T_{n\overline{n}}}$$

 T_R : typical period in nuclear physics ($\sim 10^{-23} s$) \Rightarrow the measurement of nuclear stability makes it in principle possible to determine $\tau_{n\overline{n}}$ However there are uncertainties that arise from the fact that T_R must be determined by nuclear structure calculations. e.g:

$$T_R(^{16}O) = (1.7 - 2.6) \times 10^{-23} s$$

 $T_R(^{56}Fe) = (2.2 - 3.4) \times 10^{-23} s$

No annihilation event have been detected:

 Kamiokande Collaboration gives T_{nn}(¹⁶O) > 4.3 × 10³¹ yrs M. Takita et al
 Phys. ReV. D 34 (1986)

$$ightarrow (au_{m{n}ar{m{n}}})_{m{KM}} > (0.7-0.8) imes 10^8~{
m s}$$

 Frejus Collaboration gives T_{nn}(⁵⁶Fe) > 7 × 10³¹ yrs Ch. Berger et al Phys. Lett. B 240 (1990)

$$ightarrow (au_{n\overline{n}})_{Soudan} > (0.8-1) imes 10^8~s$$

Signature at LHC

• Monojet + missing energy signals from X production in *pp* collision:

Conclusion

A simple extension of the MSSM that gives a unified TeV picture of DM and BAU

Less fine tuned than the MSSM

Collider (e.g LHC) different from the MSSM

Neutron-antineutron transition time in the observable range