Workshop on Grand Unification and Proton Decay

$$
\text { 22-26 July } 2007
$$

Baryon number violation - how fast it could be?

Zurab BEREZHIANI
Georgian Academy of Sciences
Tblisi, Georgia

Baryon Number Violation - How Rapid It Could Be?

Neutron Oscillations

Zurab Berezhiani
Università di L'Aquila and LNGS, Italy

Standard Cosmological Paradigm

Precision data on BBN, CMB, LSS, etc. lead to Standard Paradigm:
The early Universe:

- multi-stage: Inflation \rightarrow (re)heating \rightarrow Friedmann epoch ...

■ Universe is flat and homogeneous ...

- Adiabatic perturbations with nearly flat spectrum ...

Todays Universe:

- multi-component: visible matter, dark matter, dark energy ...
- $\Omega_{\mathrm{tot}} \approx 1 \quad$ Universe is flat: $\rho_{\mathrm{tot}}=\rho_{c r} \ldots$
$\square \Omega_{\mathrm{B}} \simeq 0.04$ visible (Baryon) matter is a small fraction ...
■ $\Omega_{\mathrm{D}} \simeq 0.20$ dark matter: WIMPS? Axions?
■ $\Omega_{\Lambda} \simeq 0.75$ dark energy: Λ-term? 5th-essence?

Standard Cosmological Paradigm

Precision data on BBN, CMB, LSS, etc. lead to Standard Paradigm:

The early Universe:

- multi-stage: Inflation \rightarrow (re)heating \rightarrow Friedmann epoch ...

■ Universe is flat and homogeneous ...

- Adiabatic perturbations with nearly flat spectrum ...

Todays Universe:

- multi-component: visible matter, dark matter, dark energy ...
- $\Omega_{\mathrm{tot}} \approx 1 \quad$ Universe is flat: $\rho_{\mathrm{tot}}=\rho_{c r} \ldots$
$\square \Omega_{\mathrm{B}} \simeq 0.04$ visible (Baryon) matter is a small fraction ...
■ $\Omega_{\mathrm{D}} \simeq 0.20$ dark matter: WIMPS? Axions?
■ $\Omega_{\Lambda} \simeq 0.75$ dark energy: Λ-term? 5th-essence?
Some unified picture?
Well, not yet ... the origin and nature of DM and DE remain open !

Coincidence \& Fine Tuning Problems

A) Cosmic coincidence of matter $\Omega_{M}=\Omega_{\mathrm{D}}+\Omega_{\mathrm{B}}$ and dark energy Ω_{Λ} :
$\Omega_{\mathrm{M}} / \Omega_{\Lambda} \simeq 0.3: \quad \rho_{\Lambda} \sim$ Const. $\quad \rho_{\mathrm{M}} \sim a^{-3}$.
-Why $\rho_{\mathrm{M}} / \rho_{\Lambda} \sim 1$ - just Today?
Well, if not Today, then it would be Yesterday or Tomorrow ... Anthropic "Our world is just that one where someone can ask why ..." or Voltairian "Things go in best ways in our best of the worlds ..."

Coincidence \& Fine Tuning Problems

A) Cosmic coincidence of matter $\Omega_{M}=\Omega_{D}+\Omega_{B}$ and dark energy Ω_{Λ} :
$\Omega_{\mathrm{M}} / \Omega_{\Lambda} \simeq 0.3: \quad \rho_{\Lambda} \sim$ Const. $\quad \rho_{\mathrm{M}} \sim a^{-3}$.

- Why $\rho_{\mathrm{M}} / \rho_{\Lambda} \sim 1$ - just Today?

Well, if not Today, then it would be Yesterday or Tomorrow ... Anthropic "Our world is just that one where someone can ask why ..." or Voltairian "Things go in best ways in our best of the worlds ..."
B) Miracle Fine Tuning between visible Ω_{B} and dark Ω_{D} matter
$\Omega_{\mathrm{B}} / \Omega_{\mathrm{D}} \simeq 0.2: \quad \rho_{\mathrm{B}} \sim a^{-3}, \quad \rho_{\mathrm{D}} \sim a^{-3}$.

- Why then $\rho_{\mathrm{B}} / \rho_{\mathrm{D}} \sim 1$ - Yesterday, Today and Tomorrow?

Visible matter $-\rho_{\mathrm{B}}$ - from primordial Baryogenesis (GUT-B, Lepto-B, Spontaneous B, Affleck-Dine B, MSSM EW BB, ...)
Dark matter $-\rho_{\mathrm{D}}$ - emerges from quite a different mechanism (Wimp, Wimpino, Wimpone, Wimpzilla, axion, axino, gravitino ...)

Coincidence \& Fine Tuning Problems

A) Cosmic coincidence of matter $\Omega_{M}=\Omega_{D}+\Omega_{\mathrm{B}}$ and dark energy Ω_{Λ} :
$\Omega_{\mathrm{M}} / \Omega_{\Lambda} \simeq 0.3: \quad \rho_{\Lambda} \sim$ Const., $\quad \rho_{\mathrm{M}} \sim a^{-3}$.

- Why $\rho_{\mathrm{M}} / \rho_{\Lambda} \sim 1$ - just Today?

Well, if not Today, then it would be Yesterday or Tomorrow ... Anthropic "Our world is just that one where someone can ask why ..." or Voltairian "Things go in best ways in our best of the worlds ..."
B) Miracle Fine Tuning between visible Ω_{B} and dark Ω_{D} matter
$\Omega_{\mathrm{B}} / \Omega_{\mathrm{D}} \simeq 0.2: \quad \rho_{\mathrm{B}} \sim a^{-3}, \quad \rho_{\mathrm{D}} \sim a^{-3}$.

- Why then $\rho_{\mathrm{B}} / \rho_{\mathrm{D}} \sim 1$ - Yesterday, Today and Tomorrow?

Visible matter $-\rho_{\mathrm{B}}$ - from primordial Baryogenesis (GUT-B, Lepto-B, Spontaneous B, Affleck-Dine B, MSSM EW BB, ...)
Dark matter $-\rho_{\mathrm{D}}$ - emerges from quite a different mechanism (Wimp, Wimpino, Wimpone, Wimpzilla, axion, axino, gravitino ...)

- How Baryon Asymmetry knew about Dark Matter Nature? - Fine Tuning Conspiracies across the Particle Physics and Cosmology?

Visible \& dark matter

- Visible matter: $\quad \rho_{\mathrm{B}}=n_{\mathrm{B}} M_{N} \simeq 10^{-7} \mathrm{GeV} \mathrm{cm}^{-3}$, $M_{N} \simeq 1 \mathrm{GeV}$ - nucleon mass, $n_{B}=Y_{\mathrm{B}} \cdot s \simeq 10^{-7} \mathrm{~cm}^{-3}$: (today $s \simeq 3 n_{\gamma} \sim 10^{3} \mathrm{~cm}^{-3}$)
BBN, LSS \& CMB: the baryon number/entropy density ratio $Y_{\mathrm{B}}=n_{\mathrm{B}} / s \simeq 10^{-10} \quad(\sim$ Const. during Universe expansion)
(GUT, Lepto)-Baryogenesis: $\quad Y_{\mathrm{B}} \sim\left(\epsilon_{C P} / g_{*}\right) \times D(k)$, $\epsilon_{C P}-\mathrm{CP}$ violation parameter,
g_{*} - effective number of particle degrees of freedom at $T=T_{B}$, $k=\Gamma / H$ - out-of-equilibrium parameter at $T=T_{B}$

Visible \& dark matter

- Visible matter: $\quad \rho_{\mathrm{B}}=n_{\mathrm{B}} M_{N} \simeq 10^{-7} \mathrm{GeV} \mathrm{cm}^{-3}$, $M_{N} \simeq 1 \mathrm{GeV}$ - nucleon mass, $\quad n_{B}=Y_{\mathrm{B}} \cdot s \simeq 10^{-7} \mathrm{~cm}^{-3}$: (today $s \simeq 3 n_{\gamma} \sim 10^{3} \mathrm{~cm}^{-3}$)
BBN, LSS \& CMB: the baryon number/entropy density ratio $Y_{\mathrm{B}}=n_{\mathrm{B}} / s \simeq 10^{-10} \quad$ (\sim Const. during Universe expansion)
(GUT, Lepto)-Baryogenesis: $\quad Y_{\mathrm{B}} \sim\left(\epsilon_{C P} / g_{*}\right) \times D(k)$, $\epsilon_{C P}-\mathrm{CP}$ violation parameter,
g_{*} - effective number of particle degrees of freedom at $T=T_{B}$, $k=\Gamma / H$ - out-of-equilibrium parameter at $T=T_{B}$
- Dark matter: $\rho_{\mathrm{D}}=n_{X} M_{X} \sim 5 \times n_{\mathrm{B}} M_{N}$, LSS \& CMB but $M_{X}=?, \quad n_{X}=? \quad-$ too wide spectrum ...

Axion: $\quad M_{X} \sim 10^{-5} \mathrm{eV}$;
LSP: $\quad M_{X} \sim 1 \mathrm{TeV}$,
Wimpzilla : $\quad M_{X} \sim 10^{14} \mathrm{GeV}$

B vs D

Cosmological evolution of Baryon and dark matter densities:

- Present Cosmology

 - Coincidence Problems - Visible \& dark matter -B vs D - Unification - Alice..- "Looking-Glass Universe" - Mirror World
- Mirror Particles
- BBN constraint
- Interactions
- See-Saw
- Diagrams
- Exact parity
- Neutron mixing
- Oscillation
- Oscillation
- Experiment
- Summary
- Summary

Unified origin of VM and DM?

- Present Cosmology - Coincidence Problems - Visible \& dark matter - B vs D
- Alice..
- "Looking-Glass Universe" - Mirror

World

- Mirror Particles
- BBN constraint
- Interactions
- See-Saw
- Diagrams
- Exact parity
- Neutron mixing
- Oscillation
- Oscillation
- Experiment
- Summary
- Summary

$$
\rho_{X} / \rho_{B}=M_{X} n_{X} / M_{N} n_{B} \sim 1 ?
$$

- DM properties are similar to VM properties: $M_{X} \sim M_{B}$
- both fractions are generated by same mechanism: $n_{X} \sim n_{B}$

"Through the Looking-Glass" Lewis Carroll

- Present Cosmology
- Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- "Looking-Glass Universe" - Mirror
- Mirror Particles
- BBN constraint
- Interactions
- See-Saw
- Diagrams
- Exact parity
- Neutron mixing
- Oscillation
- Oscillation
- Experiment
- Summary
- Summary
'Now, if you'll only attend, Kitty, and not talk so much, l'll tell you all my ideas about Looking-glass House. There's the room you can see through the glass - that's just the same as our drawing-room, only the things go the other way... the books are something like our books, only the words go the wrong way: I know that, because l've held up one of our books to the glass, and then they hold up one in the other room. I can see all of it - all but the bit just behind the fireplace. I do so wish I could see that bit! I want so to know whether they've a fire in the winter: you never can tell, you know, unless our fire smokes, and then smoke comes up in that room too - but that may be only pretence, just to make it look as if they had a fire... 'How would you like to leave in the Looking-glass House, Kitty? I wander if they'd give you milk in there? But perhaps Looking-glass milk isn't good to drink? Now we come to the passage: it's very like our passage as far as you can see, only you know it may be quite on beyond. Oh, how nice it would be if we could get through into Looking-glass House! Let's pretend there's a way of getting through into it, somehow ... Why, it's turning into a sort of mist now, I declare! It'll be easy enough to get through ...'
-Alice said this, and in another moment she was through the glass... she was quite pleased to find that there was a real fire in the fireplace... 'So I shall be as worm here as I was in my room,' thought Alice: 'warmer, in fact, there'll be no one here to scold me away from the fire'.

"Looking-Glass Universe" - Mirror World

- Present Cosmology - Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification

Imagine a parallel "Mirror" sector of particles,
Lee \& Yang '56 a hidden duplicate of ordinary sector, Kobzarev, Okun, Pomeranchuk '66 coupled to us by gravity and so candidate of DM Blinnikov, Khlopov '83

"Looking-Glass Universe" - Mirror World

Imagine a parallel "Mirror" sector of particles, Lee \& Yang '56 a hidden duplicate of ordinary sector, Kobzarev, Okun, Pomeranchuk '66 coupled to us by gravity and so candidate of DM Blinnikov, Khlopov '83

Two identical gauge factors, $G \times G^{\prime}$, with the identical field contents and Lagrangians: $\mathcal{L}_{\text {tot }}=\mathcal{L}+\mathcal{L}^{\prime}+\mathcal{L}_{\text {mix }} \quad$ (exact parity under $G \leftrightarrow G^{\prime}$) $S U(3) \times S U(2) \times U(1) \times S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}, \quad$ Foot, Lew, Volkas '91 or better GUT $\times \mathrm{GUT}^{\prime}: \quad S U(5) \times S U(5)^{\prime}, \quad S O(10) \times S O(10)^{\prime}$, etc.

- Can naturally emerge in string theory context:

O \& M matter fields are localized on two parallel branes (or on brane \& antibrane) while gravity propagates in bulk ($E_{8} \times E_{8}$ etc.)

- Exact parity $G \leftrightarrow G^{\prime}$: Mirror matter is dark for us, but we know exactly know its particle physics - no unknown parameters!

"Looking-Glass Universe" - Mirror World

- Present Cosmology

Imagine a parallel "Mirror" sector of particles, Lee \& Yang '56 a hidden duplicate of ordinary sector, Kobzarev, Okun, Pomeranchuk '66 coupled to us by gravity and so candidate of DM Blinnikov, Khlopov '83

Two identical gauge factors, $G \times G^{\prime}$, with the identical field contents and Lagrangians: $\mathcal{L}_{\text {tot }}=\mathcal{L}+\mathcal{L}^{\prime}+\mathcal{L}_{\text {mix }} \quad$ (exact parity under $G \leftrightarrow G^{\prime}$) $S U(3) \times S U(2) \times U(1) \times S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}, \quad$ Foot, Lew, Volkas '91 or better GUT $\times \mathrm{GUT}^{\prime}: \quad S U(5) \times S U(5)^{\prime}, \quad S O(10) \times S O(10)^{\prime}$, etc.

- Can naturally emerge in string theory context:

O \& M matter fields are localized on two parallel branes (or on brane \& antibrane) while gravity propagates in bulk ($E_{8} \times E_{8}$ etc.)

- Exact parity $G \leftrightarrow G^{\prime}$: Mirror matter is dark for us, but we know exactly know its particle physics - no unknown parameters!
- Spontaneously broken $G \leftrightarrow G^{\prime}: \quad \zeta=M_{W}^{\prime} / M_{W} \neq 1$ shadow DM with spectrum rescaled by ζ Z.B. \& Mohapatra '95 Z.B., Dolgov \& Mohapatra '96

Mirror Particles and Mirror Parity

$$
\begin{array}{cc}
S U(3) \times S U(2) \times U(1) & \times \quad S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime} \\
\text { gauge }(g, W, Z, \gamma) & \text { gauge }\left(g^{\prime}, W^{\prime}, Z^{\prime}, \gamma^{\prime}\right) \\
\text { \& Higgs }(\phi) \text { fields } & \& \text { Higgs }\left(\phi^{\prime}\right) \text { fields }
\end{array}
$$

quarks ($B=1 / 3$)	leptons (L=1)	quarks ($\mathrm{B}^{\prime}=1 / 3$)	leptons ($\mathrm{L}^{\prime}=1$)
$\begin{gathered} q_{L}=(u, d)_{L}^{t} \\ u_{R} d_{R} \end{gathered}$	$\begin{gathered} l_{L}=(\nu, e)_{L}^{t} \\ e_{R} \end{gathered}$	$\begin{gathered} q_{L}^{\prime}=\left(u^{\prime}, d^{\prime}\right)_{L}^{t} \\ u_{R}^{\prime} d_{R}^{\prime} \end{gathered}$	$\begin{gathered} l_{L}^{\prime}=\left(\nu^{\prime}, e^{\prime}\right)_{L}^{t} \\ e_{R}^{\prime} \end{gathered}$
$\text { quarks }(B=-1 / 3)$	$\widetilde{\text { leptons }}(L=-1)$	$\widetilde{\text { quarks }}\left(B^{\prime}=-1 / 3\right)$	$\widetilde{\text { leptons }}\left(L^{\prime}=-1\right)$
$\begin{gathered} \tilde{q}_{R}=(\tilde{u}, \tilde{d})_{R}^{t} \\ \tilde{u}_{L} \quad \tilde{d}_{L} \end{gathered}$	$\begin{gathered} \tilde{l}_{R}=(\tilde{\nu}, \tilde{e})_{R}^{t} \\ \tilde{e}_{L} \end{gathered}$	$\begin{gathered} \tilde{q}_{R}^{\prime}=\left(\tilde{u}^{\prime}, \tilde{d}^{\prime}\right)_{R}^{t} \\ \tilde{u}_{L}^{\prime} \tilde{d}_{L}^{\prime} \end{gathered}$	$\begin{gathered} \tilde{l}_{R}^{\prime}=\left(\tilde{\nu}^{\prime}, \tilde{e}^{\prime}\right)_{R}^{t} \\ \tilde{e}_{L}^{\prime} \end{gathered}$

- $\mathcal{L}_{\text {Yuk }}=f_{L} Y \tilde{f}_{L} \phi+\tilde{f}_{R} Y^{*} f_{R} \tilde{\phi} \quad \mid \quad \mathcal{L}_{\text {Yuk }}^{\prime}=f_{L}^{\prime} Y^{\prime} \tilde{f}_{L}^{\prime} \phi^{\prime}+\tilde{f}_{R}^{\prime} Y^{\prime *} f_{R}^{\prime} \tilde{\phi}^{\prime}$

Mirror Particles and Mirror Parity

$$
\begin{array}{cc}
S U(3) \times S U(2) \times U(1) & \times \quad S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime} \\
\text { gauge }(g, W, Z, \gamma) & \text { gauge }\left(g^{\prime}, W^{\prime}, Z^{\prime}, \gamma^{\prime}\right) \\
\text { \& Higgs }(\phi) \text { fields } & \& \text { Higgs }\left(\phi^{\prime}\right) \text { fields }
\end{array}
$$

quarks ($B=1 / 3$)	leptons (L=1)	quarks ($\mathrm{B}^{\prime}=1 / 3$)	leptons ($\mathrm{L}^{\prime}=1$)
$\begin{gathered} q_{L}=(u, d)_{L}^{t} \\ u_{R} d_{R} \end{gathered}$	$\begin{gathered} l_{L}=(\nu, e)_{L}^{t} \\ e_{R} \end{gathered}$	$\begin{gathered} q_{L}^{\prime}=\left(u^{\prime}, d^{\prime}\right)_{L}^{t} \\ u_{R}^{\prime} d_{R}^{\prime} \end{gathered}$	$\begin{gathered} l_{L}^{\prime}=\left(\nu^{\prime}, e^{\prime}\right)_{L}^{t} \\ e_{R}^{\prime} \end{gathered}$
$\widetilde{\text { quarks }}(B=-1 / 3)$	$\widetilde{\text { leptons }}(L=-1)$	$\widetilde{\text { quarks }}\left(B^{\prime}=-1 / 3\right)$	$\widetilde{\text { leptons }}\left(L^{\prime}=-1\right)$
$\begin{gathered} \tilde{q}_{R}=(\tilde{u}, \tilde{d})_{R}^{t} \\ \tilde{u}_{L} \quad \tilde{d}_{L} \end{gathered}$	$\begin{gathered} \tilde{l}_{R}=(\tilde{\nu}, \tilde{e})_{R}^{t} \\ \tilde{e}_{L} \end{gathered}$	$\begin{gathered} \tilde{q}_{R}^{\prime}=\left(\tilde{u}^{\prime}, \tilde{d}^{\prime}\right)_{R}^{t} \\ \tilde{u}_{L}^{\prime} \tilde{d}_{L}^{\prime} \end{gathered}$	$\begin{gathered} \tilde{l}_{R}^{\prime}=\left(\tilde{\nu}^{\prime}, \tilde{e}^{\prime}\right)_{R}^{t} \\ \tilde{e}_{L}^{\prime} \end{gathered}$

$$
\bullet \mathcal{L}_{\text {Yuk }}=f_{L} Y \tilde{f}_{L} \phi+\tilde{f}_{R} Y^{*} f_{R} \tilde{\phi} \quad \mid \quad \mathcal{L}_{\text {Yuk }}^{\prime}=f_{L}^{\prime} Y^{\prime} \tilde{f}_{L}^{\prime} \phi^{\prime}+\tilde{f}_{R}^{\prime} Y^{\prime *} f_{R}^{\prime} \tilde{\phi}^{\prime}
$$

- D-parity: $L \leftrightarrow L^{\prime}, R \leftrightarrow R^{\prime}, \phi \leftrightarrow \phi^{\prime}-\quad \bullet Y^{\prime}=Y \bullet$

Mirror Particles and Mirror Parity

$$
\begin{array}{lc}
S U(3) \times S U(2) \times U(1) & \times \quad S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime} \\
\text { gauge }(g, W, Z, \gamma) & \text { gauge }\left(g^{\prime}, W^{\prime}, Z^{\prime}, \gamma^{\prime}\right) \\
\text { \& Higgs }(\phi) \text { fields } & \& \text { Higgs }\left(\phi^{\prime}\right) \text { fields }
\end{array}
$$

quarks ($B=1 / 3$)	leptons (L=1)	quarks ($\mathrm{B}^{\prime}=1 / 3$)	leptons ($\mathrm{L}^{\prime}=1$)
$\begin{gathered} q_{L}=(u, d)_{L}^{t} \\ u_{R} d_{R} \end{gathered}$	$\begin{gathered} l_{L}=(\nu, e)_{L}^{t} \\ e_{R} \end{gathered}$	$\begin{gathered} q_{L}^{\prime}=\left(u^{\prime}, d^{\prime}\right)_{L}^{t} \\ u_{R}^{\prime} d_{R}^{\prime} \end{gathered}$	$\begin{gathered} l_{L}^{\prime}=\left(\nu^{\prime}, e^{\prime}\right)_{L}^{t} \\ e_{R}^{\prime} \end{gathered}$
$\widetilde{\text { quarks }}(B=-1 / 3)$	$\widetilde{\text { leptons }}(L=-1)$	$\widetilde{\text { quarks }}\left(B^{\prime}=-1 / 3\right)$	$\widetilde{\text { leptons }}\left(L^{\prime}=-1\right)$
$\begin{gathered} \tilde{q}_{R}=(\tilde{u}, \tilde{d})_{R}^{t} \\ \tilde{u}_{L} \quad \tilde{d}_{L} \end{gathered}$	$\begin{gathered} \tilde{l}_{R}=(\tilde{\nu}, \tilde{e})_{R}^{t} \\ \tilde{e}_{L} \end{gathered}$	$\begin{gathered} \tilde{q}_{R}^{\prime}=\left(\tilde{u}^{\prime}, \tilde{d}^{\prime}\right)_{R}^{t} \\ \tilde{u}_{L}^{\prime} \tilde{d}_{L}^{\prime} \end{gathered}$	$\begin{gathered} \tilde{l}_{R}^{\prime}=\left(\tilde{\nu}^{\prime}, \tilde{e}^{\prime}\right)_{R}^{t} \\ \tilde{e}_{L}^{\prime} \end{gathered}$

$$
\bullet \mathcal{L}_{\text {Yuk }}=f_{L} Y \tilde{f}_{L} \phi+\tilde{f}_{R} Y^{*} f_{R} \tilde{\phi} \quad \mid \quad \mathcal{L}_{\text {Yuk }}^{\prime}=f_{L}^{\prime} Y^{\prime} \tilde{f}_{L}^{\prime} \phi^{\prime}+\tilde{f}_{R}^{\prime} Y^{\prime *} f_{R}^{\prime} \tilde{\phi}^{\prime}
$$

- D-parity: $L \leftrightarrow L^{\prime}, R \leftrightarrow R^{\prime}, \phi \leftrightarrow \phi^{\prime}-\quad \bullet Y^{\prime}=Y \bullet$
- M-parity: $L \leftrightarrow R^{\prime}, R \leftrightarrow L^{\prime}, \quad \phi \leftrightarrow \tilde{\phi}^{\prime}-\bullet Y^{\prime}=Y^{\dagger}$

BBN constraint

- At the BBN epoch, $T \sim 1 \mathrm{MeV}, \quad g_{*}=g_{*}^{S M}=10.75$ (as contributed by the $\gamma, e^{ \pm}$and 3ν species)
- Present Cosmology - Coincidence Problems - Visible \& dark matter - B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror World - Mirror Particles
- Interactions
- See-Saw
- Diagrams
- Exact parity
- Neutron mixing
- Oscillation
- Oscillation
- Experiment
- Experiment
- Experiment
- Experiment
- Experiment
- Summary
- Summary

BBN constraint

- Present Cosmology - Coincidence Problems
- At the BBN epoch, $T \sim 1 \mathrm{MeV}, \quad g_{*}=g_{*}^{S M}=10.75$ (as contributed by the $\gamma, e^{ \pm}$and 3ν species)
- Mirror world with $T^{\prime}=T$ would give the same contribution: $g_{*}=2 \times g_{*}^{S M}=21.5$ - equivalent to $\Delta N_{\nu}=6.14$

BBN constraint

- At the BBN epoch, $T \sim 1 \mathrm{MeV}, \quad g_{*}=g_{*}^{S M}=10.75$ (as contributed by the $\gamma, e^{ \pm}$and 3ν species)
- Mirror world with $T^{\prime}=T$ would give the same contribution: $g_{*}=2 \times g_{*}^{S M}=21.5$ - equivalent to $\Delta N_{\nu}=6.14$
■ If $T^{\prime}<T, g_{*} \approx g_{*}^{S M}\left(1+x^{4}\right)$, equivalent to $\Delta N_{\nu}=6.14 \cdot x^{4}$ $x=T^{\prime} / T$:
E.g. $\Delta N_{\nu}<0.4$ requires $x<0.5$; for $x=0.3 \quad \Delta N_{\nu}<0.05$.

BBN constraint

- At the BBN epoch, $T \sim 1 \mathrm{MeV}, \quad g_{*}=g_{*}^{S M}=10.75$ (as contributed by the $\gamma, e^{ \pm}$and 3ν species)
- Mirror world with $T^{\prime}=T$ would give the same contribution: $g_{*}=2 \times g_{*}^{S M}=21.5$ - equivalent to $\Delta N_{\nu}=6.14$
■ If $T^{\prime}<T, g_{*} \approx g_{*}^{S M}\left(1+x^{4}\right)$, equivalent to $\Delta N_{\nu}=6.14 \cdot x^{4}$ $x=T^{\prime} / T$:
E.g. $\Delta N_{\nu}<0.4$ requires $x<0.5$; for $x=0.3 \quad \Delta N_{\nu}<0.05$.
- A paradigm:
- After inflation O and M worlds are (re)heated in non-symmetric way, $T^{\prime}<T$
- The processes between O and M particles are slow enough and are out-of-equilibrium
- both sectors evolve adiabatically, without significant entropy production, and $x=T^{\prime} / T$ remains nearly constant at later epochs

O \& M interactions besides gravity

- Higgs-Higgs' quartic: $\quad \lambda\left(\phi^{\dagger} \phi\right)\left(\phi^{\prime \dagger} \phi^{\prime}\right) ; \quad \mathrm{BBN}: \lambda<10^{-8}$
- Present Cosmology
- Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror

World

- Mirror Particles
- BBN constraint O Interactions
- See-Saw
- Diagrams
- Exact parity
- Neutron mixing
- Oscillation
- Oscillation
- Experiment
- Experiment
- Experiment
- Experiment - Experiment
- Experiment - Experiment
- Summary
- Summary
... safe in SUSY : $\quad W=\frac{1}{M}\left(\phi_{u} \phi_{d}\right)\left(\phi_{u}^{\prime} \phi_{d}^{\prime}\right)$

O \& M interactions besides gravity

- Present Cosmology - Coincidence Problems - Visible \& dark matter
- "Looking-Glass Universe" - Mirror
- Higgs-Higgs' quartic: $\quad \lambda\left(\phi^{\dagger} \phi\right)\left(\phi^{\dagger} \phi^{\prime}\right) ; \quad \mathrm{BBN}: ~ \lambda<10^{-8}$
... safe in SUSY: $\quad W=\frac{1}{M}\left(\phi_{u} \phi_{d}\right)\left(\phi_{u}^{\prime} \phi_{d}^{\prime}\right)$
- Photon-photon' kinetic mixing: $\varepsilon F^{\mu \nu} F_{\mu \nu}^{\prime} ; \quad \mathrm{BBN}: ~ \varepsilon<3 \cdot 10^{-8}$

Glashow '87
... safe in GUT: $\quad \mathcal{L} \sim \frac{\alpha_{G} \subseteq \Sigma^{\prime}}{4 \pi M^{2}} G^{\mu \nu} G_{\mu \nu}^{\prime}$

- Higgs-Higgs' quartic: $\quad \lambda\left(\phi^{\dagger} \phi\right)\left(\phi^{\dagger} \phi^{\prime}\right) ; \quad \mathrm{BBN}: \lambda<10^{-8}$
- Present Cosmology
- Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror

World

- Mirror Particles
- bBN constraint
... safe in SUSY : $\quad W=\frac{1}{M}\left(\phi_{u} \phi_{d}\right)\left(\phi_{u}^{\prime} \phi_{d}^{\prime}\right)$
■ Photon-photon' kinetic mixing: $\varepsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$;
BBN: $\varepsilon<3 \cdot 10^{-8}$
Glashow '87
... safe in GUT : $\quad \mathcal{L} \sim \frac{\alpha_{G} \Sigma \Sigma^{\prime}}{4 \pi M^{2}} G^{\mu \nu} G_{\mu \nu}^{\prime}$
■ neutrino-neutrino' mixing: $\quad \frac{A}{M} l l \phi \phi+\frac{A^{\prime}}{M} l^{\prime} l^{\prime} \phi^{\prime} \phi^{\prime}+\frac{D}{M} l l^{\prime} \phi \phi^{\prime}$ Z.B. \& Mohapatra ' 95 active-sterile mixing $\left(\begin{array}{cc}\hat{m}_{\nu} & \hat{m}_{\nu \nu^{\prime}} \\ \hat{m}_{\nu \nu^{\prime}}^{t} & \hat{m}_{\nu^{\prime}}\end{array}\right)=\frac{1}{M}\left(\begin{array}{cc}A v^{2} & D v v^{\prime} \\ D^{t} v v^{\prime} & A^{\prime} v v^{\prime}\end{array}\right)$,
- $v^{\prime}=v: \quad m_{\nu^{\prime}}=m_{\nu}$ and maximal mixing $\theta_{\nu \nu^{\prime}}=45^{\circ} \quad$ Foot \& Volkas '95
- $v^{\prime}>v: \quad m_{\nu^{\prime}} \sim\left(v^{\prime} / v\right)^{2} m_{\nu}$ and $\theta_{\nu \nu^{\prime}} \sim v / v^{\prime} ; \quad$ e.g. $\quad v^{\prime} / v \sim 10^{2}$:
$\sim \mathrm{keV}$ sterile neutrinos as WDM
Z.B., Dolgov, Mohapatra '96
- $A, A^{\prime}=0\left(L-L^{\prime}\right.$ conserved) light Dirac neutrinos Z.B. \& Bento '05

See-saw: heavy singlet neutrinos as messengers

- Present Cosmology - Coincidence Problems
- Introduce heavy gauge singlet fermions $N_{a}, \quad a=1,2,3, \ldots$ with large Majorana mass terms $M_{a b}=g_{a b} M$, They can equally talk with both O and M leptons

$$
y_{i a} \phi l_{i} N_{a}+y_{i a}^{\prime} \phi^{\prime} l_{i}^{\prime} N_{a}+\frac{1}{2} M g_{a b} N_{a} N_{b}+\text { h.c. ; }
$$

See-saw: heavy singlet neutrinos as messengers

- Introduce heavy gauge singlet fermions $N_{a}, \quad a=1,2,3, \ldots$ with large Majorana mass terms $M_{a b}=g_{a b} M$, They can equally talk with both O and M leptons

$$
y_{i a} \phi l_{i} N_{a}+y_{i a}^{\prime} \phi^{\prime} l_{i}^{\prime} N_{a}+\frac{1}{2} M g_{a b} N_{a} N_{b}+\text { h.c. ; }
$$

■ Integrating out heavy neutrinos, effective operators emerge that induce O (active) and M (sterile) neutrino masses \& mixings

- $\frac{A}{M} l l \phi \phi+\frac{A^{\prime}}{M} l^{\prime} l^{\prime} \phi^{\prime} \phi^{\prime}+\frac{D}{M} l l^{\prime} \phi \phi^{\prime}$;
$A=y g^{-1} y^{t}, \quad A^{\prime}=y^{\prime} g^{-1} y^{\prime t}, \quad D=y g^{-1} y^{\prime t}$
$\left(\mathrm{M}: \quad y^{\prime}=y^{\dagger}, \quad \rightarrow \quad A^{\prime}=A^{*}, \quad D=D^{\dagger}\right)$

See-saw: heavy singlet neutrinos as messengers

- Introduce heavy gauge singlet fermions $N_{a}, \quad a=1,2,3, \ldots$ with large Majorana mass terms $M_{a b}=g_{a b} M$, They can equally talk with both O and M leptons

$$
y_{i a} \phi l_{i} N_{a}+y_{i a}^{\prime} \phi^{\prime} l_{i}^{\prime} N_{a}+\frac{1}{2} M g_{a b} N_{a} N_{b}+\text { h.c. ; }
$$

■ Integrating out heavy neutrinos, effective operators emerge that induce O (active) and M (sterile) neutrino masses \& mixings

- $\frac{A}{M} l l \phi \phi+\frac{A^{\prime}}{M} l^{\prime} l^{\prime} \phi^{\prime} \phi^{\prime}+\frac{D}{M} l l^{\prime} \phi \phi^{\prime}$;
$A=y g^{-1} y^{t}, \quad A^{\prime}=y^{\prime} g^{-1} y^{\prime t}, \quad D=y g^{-1} y^{\prime t}$

$$
\left(\mathrm{M}: \quad y^{\prime}=y^{\dagger}, \quad \rightarrow \quad A^{\prime}=A^{*}, \quad D=D^{\dagger}\right)
$$

- They generate also processes like $l \phi \rightarrow \tilde{l}^{\prime} \tilde{\prime}^{\prime}\left(l^{\prime} \phi^{\prime}\right)(\Delta L=1)$ and $l \phi \rightarrow \tilde{l} \tilde{\phi}(\Delta L=2)$ satisfying baryogenesis conditions
A. violate $B-L$
B. violate CP
C. should be out-of-equilibrium
and thus generate $B-L \neq 0(\rightarrow B \neq 0$ by sphalerons) Z.B. and Bento '01

See-saw: heavy singlet neutrinos as messengers

- Introduce heavy gauge singlet fermions $N_{a}, \quad a=1,2,3, \ldots$ with large Majorana mass terms $M_{a b}=g_{a b} M$, They can equally talk with both O and M leptons

$$
y_{i a} \phi l_{i} N_{a}+y_{i a}^{\prime} \phi^{\prime} l_{i}^{\prime} N_{a}+\frac{1}{2} M g_{a b} N_{a} N_{b}+\text { h.c. ; }
$$

■ Integrating out heavy neutrinos, effective operators emerge that induce O (active) and M (sterile) neutrino masses \& mixings

- $\frac{A}{M} l l \phi \phi+\frac{A^{\prime}}{M} l^{\prime} l^{\prime} \phi^{\prime} \phi^{\prime}+\frac{D}{M} l l^{\prime} \phi \phi^{\prime}$;
$A=y g^{-1} y^{t}, \quad A^{\prime}=y^{\prime} g^{-1} y^{\prime t}, \quad D=y g^{-1} y^{\prime t}$

$$
\left(\mathrm{M}: \quad y^{\prime}=y^{\dagger}, \quad \rightarrow \quad A^{\prime}=A^{*}, \quad D=D^{\dagger}\right)
$$

- They generate also processes like $l \phi \rightarrow \tilde{l}^{\prime} \tilde{\prime}^{\prime}\left(l^{\prime} \phi^{\prime}\right)(\Delta L=1)$ and $l \phi \rightarrow \tilde{l} \tilde{\phi}(\Delta L=2)$ satisfying baryogenesis conditions
A. violate $B-L$
B. violate CP
C. should be out-of-equilibrium
and thus generate $B-L \neq 0(\rightarrow B \neq 0$ by sphalerons) Z.B. and Bento '01

See-saw: heavy singlet neutrinos as messengers

- Introduce heavy gauge singlet fermions $N_{a}, \quad a=1,2,3, \ldots$ with large Majorana mass terms $M_{a b}=g_{a b} M$, They can equally talk with both O and M leptons

$$
y_{i a} \phi l_{i} N_{a}+y_{i a}^{\prime} \phi^{\prime} l_{i}^{\prime} N_{a}+\frac{1}{2} M g_{a b} N_{a} N_{b}+\text { h.c. ; }
$$

■ Integrating out heavy neutrinos, effective operators emerge that induce O (active) and M (sterile) neutrino masses \& mixings

- $\frac{A}{M} l l \phi \phi+\frac{A^{\prime}}{M} l^{\prime} l^{\prime} \phi^{\prime} \phi^{\prime}+\frac{D}{M} l l^{\prime} \phi \phi^{\prime}$;
$A=y g^{-1} y^{t}, \quad A^{\prime}=y^{\prime} g^{-1} y^{\prime t}, \quad D=y g^{-1} y^{\prime t}$

$$
\left(\mathrm{M}: \quad y^{\prime}=y^{\dagger}, \quad \rightarrow \quad A^{\prime}=A^{*}, \quad D=D^{\dagger}\right)
$$

- They generate also processes like $l \phi \rightarrow \tilde{l}^{\prime} \tilde{\prime}^{\prime}\left(l^{\prime} \phi^{\prime}\right)(\Delta L=1)$ and $l \phi \rightarrow \tilde{l} \tilde{\phi}(\Delta L=2)$ satisfying baryogenesis conditions
A. violate $B-L$
B. violate CP
C. should be out-of-equilibrium
and thus generate $B-L \neq 0(\rightarrow B \neq 0$ by sphalerons) Z.B. and Bento '01

$C P$ violation in $\Delta L=1$ and $\Delta L=2$ processes

- Present Cosmology

 - Coincidence Problems
- Visible \& dark matter

- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror

World
Mirror Particles

- BBN constraint
- Interactions
- See-Saw

- Diagrams

- Exact parity
- Neutron mixing
- Oscillation
- Oscillation
- Experiment
- Experiment
- Experiment
- Experiment
- Experiment
- Experiment

Z.B. and L. Bento '01

$M_{N}^{\prime}=M_{N} \ldots$ but $\quad \Omega_{B}^{\prime} \geq \Omega_{B}$

$$
Y_{B L}=D(k) \cdot Y_{B L}^{(0)} ; \quad Y_{B L}^{\prime}=D\left(k x^{3}\right) \cdot Y_{B L}^{(0)} ;
$$

- Present Cosmology
- Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror
- Mirror Particles
- BBN constraint
- Interactions
- See-Saw
- Diagrams
- Oscillation
- Oscillation
- Experiment
- Summary
- Summary

$\frac{\Omega_{B}}{\Omega_{B}^{\prime}}=D(k) \simeq 0.1-1: \quad k \leq 3-$ from $\Delta N_{\nu} \simeq 14 k / g_{*}$

Neutron - Mirror neutron mixing

- Present Cosmology - Coincidence Problems - Visible \& dark matter - B vs D - Unification - Alice..
- "Looking-Glass Universe" - Mirror
- Mirror Particles
- BBN constraint
- Interactions
- See-Saw

Baryogenesis via L- or via B-breaking

$\frac{1}{\mathcal{M}^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)+\frac{1}{\mathcal{M}^{5}}(q q d)\left(q^{\prime} q^{\prime} d^{\prime}\right)+$ h.c. $\quad \rightarrow \quad \delta m\left(\bar{n} n^{\prime}+\bar{n}^{\prime} n\right)$
$\delta m \sim\left(\frac{10 \mathrm{TeV}}{\mathcal{M}}\right)^{5} \times 10^{-15} \mathrm{eV} \quad!!\tau_{\mathrm{osc}} \sim 1 \mathrm{sec}!!-$ but $\tau_{\mathrm{dec}} \simeq 10^{3} \mathrm{sec}$
?? $P(t)=e^{-t / \tau_{\mathrm{dec}}} \quad \rightarrow \quad P(t)=\cos ^{2}\left(t / \tau_{\mathrm{osc}}\right) \cdot e^{-t / \tau_{\mathrm{dec}}} \simeq \frac{1}{2} e^{-t / \tau_{\mathrm{dec}}}$??

Neutron - Mirror neutron oscillation

- Present Cosmology
- Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror

Effective (non-relativistic) Hamiltonian for $n-n^{\prime}$ oscillation

$$
H=\left(\begin{array}{cc}
m-i \Gamma / 2+V+\mu(\boldsymbol{\sigma} \cdot \boldsymbol{B}) & \delta m \\
\delta m & m^{\prime}-i \Gamma^{\prime} / 2+V^{\prime}
\end{array}\right)
$$

- Exact mirror parity: masses $m^{\prime}=m$ and widths $\Gamma^{\prime}=\Gamma$
-- (but $m^{\prime} \neq m, \ldots$ if mirror parity is spont. broken!)
- Grav. potentials are the same: $V^{\prime}=V$, but $\mu=-1.91 \mu_{N}$:
$\simeq 6 \cdot 10^{-12} \mathrm{eV} / \mathrm{G} \quad$ (Earth magnetic field $B \simeq 0.5 \mathrm{G}$)
Take $\boldsymbol{B}=(0,0, B)$ across z-axis, $\quad(\boldsymbol{\sigma} \boldsymbol{B})=B \sigma_{z}=\operatorname{diag}(B,-B)$
$H=\left(\begin{array}{cc}m \mp 2 \omega_{B} & \delta m \\ \delta m & m\end{array}\right) \quad$ in the basis $\left(\psi_{+}, \psi_{-}, \psi_{+}^{\prime}, \psi_{-}^{\prime}\right)$
- Energy gap $2 \omega_{B}=|\mu B| \simeq B[\mathrm{G}] \times 6 \cdot 10^{-12} \mathrm{eV}$

Oscillation probability $P_{n n^{\prime}}(t)=\sin ^{2} 2 \theta_{B} \sin ^{2}\left(t / \tau_{B}\right) \cdot e^{-t / \tau_{\text {dec }}}$
$\sin 2 \theta_{B}=\frac{\delta m}{\sqrt{\delta m^{2}+\omega_{B}^{2}}}, \quad \tau_{B}=\frac{1}{\sqrt{\delta m^{2}+\omega_{B}^{2}}}=\tau_{0} \sin 2 \theta_{B}, \quad \tau_{0}=\delta m^{-1}$

$n-n^{\prime}$ oscillation - degenerate case

Oscillation probability in magnetic field B

- Present Cosmology
- Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror
$P_{n n^{\prime}}(t)=\frac{\delta m^{2}}{\delta m^{2}+\omega_{B}^{2}} \sin ^{2}\left(t \sqrt{\delta m^{2}+\omega_{B}^{2}}\right) e^{-t / \tau_{\text {dec }}}, \quad\left(\omega_{B}=\frac{1}{2}|\mu B|\right)$
In vacuum $(B=0)$: $\quad P_{n n^{\prime}}(t)=\sin ^{2}\left(t / \tau_{0}\right) \cdot e^{-t / \tau_{\text {dec }}}$
$\left(\tau_{\text {osc }}=\tau_{0}=\delta m^{-1}, \quad \theta_{\text {mix }}=45^{\circ}\right)$
for short times $\left(t \ll \tau_{0}\right)$: $\quad P_{n n^{\prime}}(t)=\left(t / \tau_{0}\right)^{2}$
for longer times $\left(t \gg \tau_{0}\right)$: $\quad P_{n n^{\prime}}(t)=\frac{1}{2} e^{-t / \tau_{\text {dec }}}$
In medium ($B \neq 0$):
for short times $\left(t \ll \tau_{B}\right)$: $\quad P_{n n^{\prime}}(t)=\left(t / \tau_{0}\right)^{2}$
for long times $\left(t \gg \tau_{B}\right): \quad P_{n n^{\prime}}(t)=\bar{P}_{B}=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\omega_{B}^{2}}$
Similar to neutron - antineutron oscillation
Kuzmin '70, Glashow '79
Marshak \& Mohapatra '80
But $\tau_{n \bar{n}}>10 \mathrm{yr}$, while $\tau_{n n^{\prime}}<10 \mathrm{~min}$ is possible with several physical effects Z.B. \& Bento; Mohapatra,Nasri, Nussinov; Pokotilovsky

Experimental limits

- Present Cosmology - Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror

World

- Mirror Particles
- BBN constraint
- Interactions
- See-Saw
- Diagrams
- Exact parity

Experimental limits \& and future search
ILL Grenoble experiment for neutron - antineutron oscillation search: $100 \mathrm{~m} \mu$-metal vessel, $B<10^{-4} \mathrm{G}, \quad t \simeq 0.1 \mathrm{~s} \quad$ Baldo Ceolin et al. '94

- $n-\tilde{n}$: no \tilde{n} event found, $\tau_{n \tilde{n}}>10^{8} \mathrm{~s} \quad$ (or $>3 \mathrm{yr}$)
- $n-n^{\prime}$: about 5\% neutron deficit was observed, so taking
$P_{n n^{\prime}}(t) \simeq(t / \tau)^{2}<10^{-2}, \quad \tau_{n n^{\prime}}>1 \mathrm{~s} \rightarrow \delta m<10^{-15} \mathrm{eV}$
- $n-n^{\prime}$: anomalous UCN Ioses, $\eta<2 \cdot 10^{-6} \rightarrow \delta m<3 \cdot 10^{-15} \mathrm{eV}$

!!! Attention - Nuclear Stability !!!

- $n-\tilde{n}$ destabilizes nuclei: $(A, Z) \rightarrow(A-1, Z, \tilde{n}) \rightarrow(A-2, Z)+\pi$'s $\tau_{n \tilde{n}}>10$ yr orso ...
- $n-n^{\prime}$ does not: $(A, Z) \rightarrow(A-1, Z)+n^{\prime}$ not allowed!

Recent Experimental search:

- $\tau>2.5$ S, Munich, Schmidt et al, Feb. 2007 (unpubl.), Dubbers, Priv. com.
- $\tau>103 \mathrm{~s}$,

ILL Grenoble, Ban et al. May 2007, axXiv:0705.2336 [nucl-ex]

- $\tau>413$ S, ILL Grenoble, Serebrov et al. June 2007, axXiv:0706.3600 [nucl-ex]

Search for $n-n^{\prime}$ with the UCN storage

- Present Cosmology
- Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror

World

- Mirror Particles
- BBN constraint
- Interactions
- See-Saw
- Diagrams
- Exact parity

Counting of the UCN (ultra cold neutrons, velocities $v<4-5 \mathrm{~m} / \mathrm{s}$,) after a storage time t_{s} in a neutron trap, comparing the results for $B=0$ and $B \neq 0$.
$n\left(t_{s}\right)=n(t=0) \times \exp \left[-\left(\Gamma+\eta \nu+P_{n n^{\prime}}\left(t_{f}\right) \nu\right) t_{s}\right]$
t_{f} is a mean flight time between collisions ($\sim 0.05-0.1 \mathrm{~s}$), $\nu=1 / t_{f}$ is a collision frequency, and η is anomalous lose per collision by "natural" reasons (i.e. independent of magnetic field).

- For $B \neq 0: \quad P_{n n^{\prime}}\left(t_{f}\right)=\bar{P}_{B} \approx \frac{1}{2} \frac{\delta m^{2}}{\omega_{B}^{2}}=\frac{1}{2}\left(\frac{\tau_{B}}{\tau_{0}}\right)^{2}$
(Magnetic field is taken enough large to satisfy $t_{f} \gg \tau_{B} \approx \omega_{B}^{-1}$)
- For $B=0: \quad P_{n n^{\prime}}\left(t_{f}\right)=\left(\frac{t_{f}}{\tau_{0}}\right)^{2} \gg \bar{P}_{B}$

So signal is: $\frac{n\left(B=0, t_{s}\right)}{n\left(B, t_{s}\right)}=\exp \left[-a t_{s}\right]<1$, i.e. a should be positive
Fitting $a=\frac{1}{t_{f}}\left(\frac{t_{f}}{\tau_{0}}\right)^{2}$ from the measurements, one finds $\tau_{0}=\sqrt{t_{f} / a}$.

Experiment Ban et al. May 2007

- Present Cosmology - Coincidence Problems

The UCN storage trap with volume 21 I, neutron velocities $v<4 \mathrm{~m} / \mathrm{s}$, wall collision frequency $\nu=20 \mathrm{~s}^{-1}$, average flight time $t_{f}=0.05 \mathrm{~s}$ "zero" magnetic field $-B_{0}=(2-3) \cdot 10^{-5} \mathrm{G}$, changing magnetic fields "up" and "down", $\quad B_{\uparrow}=B_{\downarrow}=0.06 \mathrm{G}$ storage times $t_{s}=50,100,175 \mathrm{~s}$, effective times $t^{*}=t_{s}+23 \mathrm{~s}$

- Expectation: $\frac{n\left(B=0, t^{*}\right)}{n\left(B_{\left.\uparrow \downarrow, t^{*}\right)}=\exp \left[-a t^{*}\right]<1 \text {, i.e. } a>0\right.}$
- Fit of measurements: $\quad a=-(5.4 \pm 5.8) \cdot 10^{-6} \mathrm{~s}^{-1} \rightarrow \tau_{0}>103 \mathrm{~s}$

$t^{*}[\mathrm{~s}]$	$73(a)$	$73(b)$	123	198	
$n\left(B_{\uparrow}\right)$	44197 ± 53	44443 ± 53	28671 ± 30	17047 ± 31	
$n(B=0)$	$\\| 44317 \pm 40$	44363 ± 53	28635 ± 21	17015 ± 22	
$n\left(B_{\downarrow}\right)$	$\\|$	44128 ± 53	44316 ± 46	28596 ± 30	16974 ± 31

Up-Down Asymmetry

- Present Cosmology - Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice.
- "Looking-Glass Universe" - Mirror

World

- Mirror Particles
- BBN constraint
- Interactions
- See-Saw
- Diagrams
- Exact parity

$t^{*}[\mathrm{~s}]$	$n(B=0) / n\left(B_{\uparrow \downarrow}\right)$	$n\left(B_{\uparrow}\right) / n\left(B_{\downarrow}\right)$
$73(a)$	1.0035 ± 0.0013	1.0016 ± 0.0017
$73(b)$	0.9998 ± 0.0015	1.0028 ± 0.0016
$73(a+b)$	1.0019 ± 0.0010	1.0022 ± 0.0012
123	1.0001 ± 0.0011	1.0026 ± 0.0015
198	1.0002 ± 0.0018	1.0043 ± 0.0026

- Fit of $\frac{n\left(B=0, t^{*}\right)}{n\left(B_{\uparrow \downarrow}, t^{*}\right)}=e^{\beta\left(t^{*} / t_{f}\right)} \approx 1+\beta\left(\frac{t^{*}}{t_{f}}\right)$

$$
\beta=(2.92 \pm 2.90) \times 10^{-7}(68.27 \% C L)
$$

- Fit of $\frac{n\left(B_{\uparrow}, t^{*}\right)}{n\left(B_{\downarrow}, t^{*}\right)}=1+\gamma\left(\frac{t^{*}}{t_{f}}\right)$
$\gamma=(1.22 \pm 0.40) \times 10^{-6}(68.27 \% C L)$

$n-n^{\prime}$ in non-degenerate case

- Present Cosmology - Coincidence Problems
- "Looking-Glass Universe" - Mirror
$H=\left(\begin{array}{cc}m-i \Gamma / 2+V+\mu(\boldsymbol{\sigma} \cdot \boldsymbol{B}) & \delta m \\ \delta m & m^{\prime}-i \Gamma^{\prime} / 2+V^{\prime}\end{array}\right)$
Consider $2 \Delta E=\left(m^{\prime}-m\right)+\left(V^{\prime}-V\right) \neq 0$ - but small $\quad\left(\sim 10^{-12} \mathrm{eV}\right)$
$H_{+}=\left(\begin{array}{cc}m+V-2 \omega_{B} & \delta m \\ \delta m & m+V+2 \Delta E\end{array}\right)$ for $\psi_{+}, \psi_{+}^{\prime}$ states ,
$H_{-}=\left(\begin{array}{cc}m+V+2 \omega_{B} & \delta m \\ \delta m & m+V+2 \Delta E\end{array}\right) \quad$ for $\psi_{-}, \psi_{-}^{\prime}$ states
Now (+) and (-) polarization states oscillate at different rates in magnetic medium, A being neutron polarization asymmetry:
$\bar{P}_{ \pm}(t)=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\left(\Delta E \pm \omega_{B}\right)^{2}}, \quad \bar{P}_{0}=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\Delta E^{2}}, \quad\left(\omega_{B}=\frac{1}{2}|\mu B|\right)$
- $\frac{n(B=0)}{n\left(B_{\uparrow \downarrow}\right)}$ asymmetry $\beta=\left(\frac{\delta m}{\Delta E}\right)^{2} \frac{\omega_{B}^{2}\left(3 \Delta E^{2}-\omega_{B}^{2}\right)}{2\left(\Delta E^{2}-\omega_{B}^{2}\right)^{2}}>0$ if $\Delta E>0.6 \omega_{B}$
- $\frac{n\left(B_{\dagger}\right)}{n\left(B_{\downarrow}\right)}$ asymmetry $\gamma=A \times\left(\frac{\delta m}{\Delta E}\right)^{2} \frac{2 \omega_{B} \Delta E^{3}}{\left(\Delta E^{2}-\omega_{B}^{2}\right)^{2}}$ requires, $A>30 \%$

$n-n^{\prime}$ in non-degenerate case

Consider now the case but small ($\sim 10^{-12} \mathrm{eV}$)

- Present Cosmology - Coincidence Problems
- Visible \& dark matter
- B vs D
- Unification
- Alice..
- "Looking-Glass Universe" - Mirror

World

- Mirror Particles
- BBN constraint
- Interactions
- See-Saw
- Diagrams
- Exact parity
$H_{+}=\left(\begin{array}{cc}m+V-2 \omega_{B} & \delta m \\ \delta m & m+V+2 \Delta E\end{array}\right)$ for $\psi_{+}, \psi_{+}^{\prime}$ states ,
$H_{-}=\left(\begin{array}{cc}m+V+2 \omega_{B} & \delta m \\ \delta m & m+V-2 \Delta E\end{array}\right) \quad$ for $\psi_{-}, \psi_{-}^{\prime}$ states
Now (+) and (-) polarization states oscillate at the same rates in magnetic medium, results do not depend on neutron polarization:
$\bar{P}_{ \pm}(t)=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\left(\Delta E+\omega_{B}\right)^{2}}, \quad \bar{P}_{0}=\frac{1}{2} \frac{\delta m^{2}}{\delta m^{2}+\Delta E^{2}}, \quad\left(\omega_{B}=\frac{1}{2}|\mu B|\right)$
- $\frac{n(B=0)}{n\left(B_{\uparrow \downarrow}\right)}$ asymmetry $\beta=\left(\frac{\delta m}{\Delta E}\right)^{2} \frac{\omega_{B}^{2}\left(3 \Delta E^{2}-\omega_{B}^{2}\right)}{2\left(\Delta E^{2}-\omega_{B}^{2}\right)^{2}}>0$ if $\Delta E>0.6 \omega_{B}$
- $\frac{n\left(B_{\dagger}\right)}{n\left(B_{\downarrow}\right)}$ asymmetry $\gamma=\left(\frac{\delta m}{\Delta E}\right)^{2} \frac{2 \omega_{B} \Delta E^{3}}{\left(\Delta E^{2}-\omega_{B}^{2}\right)^{2}}$
one can fit both data for $\Delta E \sim 10^{-12} \mathrm{eV}$

Experimental limits \& and future search

Imagine there exists a light spin 0 field ϕ having both the scalar and pseudoscalar couplings with the nucleons of both sectors:
$g_{s} \phi\left(\bar{N} N+\overline{N^{\prime}} N^{\prime}\right)+i g_{p} \phi\left(\bar{N} \gamma^{5} N-\overline{N^{\prime}} \gamma^{5} N^{\prime}\right)$
Moody \& Wilczek '84
Two Fermion potentials between two bodies:
(monopole) $)^{2}: \quad V_{m m}(r)=-\frac{g_{8}^{(1)} g_{s}^{(2)}}{4 \pi r} e^{-m_{\phi} r}$
monopole-dipole : $\quad V_{m d}(r)= \pm \frac{g_{3}^{(1)} g_{\nu}^{(2)}\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{n}\right)}{8 \pi m_{2}}\left[\frac{m_{\phi}}{r}+\frac{1}{r^{2}}\right] e^{-m_{\phi} r}$
where $n=r / r$

Mirror Physics: Summary

- Present Cosmology - Coincidence Problems
- String Theory: parallel D-branes or brane-antibrane
- restoring Parity: $L \leftrightarrow R$ - can remain exact (models of exact mirror parity) or spontaneously broken Z.B., Dolgov \& Mohapatra 96
- Common gauge forces between two sectors: e.g. $U(1)_{B-L}$, or (anomaly free) gauge flavour symmetry $S U(3)_{H}$ between fermion families: helps for SUSY flavour changing problem (D-terms) Z.B., 98
- Higgs sector stability: Higgs as pseudoGoldstone in SUSY accidental global $U(4)$ symmetry Z.B., 05; Falkowski, Pokorski \& Schmalz 06
- Photon-photon' kynetic mixing (invisible 0-Ps decay) Holdom, Glashow neutrino-neutrino' (active - sterile) mixing Foot \& Volkas; ZB \& Mohapatra neutron - neutron' mixing (hydrogen - hydrogen') mixing ZB \& Bento pion - pion' mixing (DAMA vs. CDMS) ZB, Panci \& Rossi Kaon - Kaon' mixing (new features in CP-violation ?) etc. etc.
- Strong CP-problem: new models for axion avoiding mass-coupling correlation $m_{a} \sim f_{\pi} m_{p i} / f_{a}$
Z.B., Gianfagna, Gianotti 2000

Mirror Cosmology \& Astrophysics: Summary

- Mirror sector should be cooler than ours: $T^{\prime} / T<0.5$ or so (BBN)
- Present Cosmology
- Dark matter of the Universe:
self-interacting dissipative (for exact parity): requires $T^{\prime} / T<0.2$ or WDM, or almost CDM (for broken parity)
- Baryogenesis \& dark matter genesis:

Understanding why $\Omega_{D} \sim \Omega_{B}$

- Microlensing (MACHOs) Z.B., Dolgov \& Mohaparra 96, Blinikov 98
- Gamma- Ray Bursts and Supernove

Blinnikov, Z.B. \& Drago 99

- Super high energy neutrinos

Berezinsky \& Vilenkin, 2000
Z.B. \& Bento 05

- Quasars \& supermassive black holes ZB, Comelli \& Villante 2000
- Possible dark matter detection (DAMA vs. others)
- Invisible planets and meteorits (Tunguska)

Thermal imprints of mirror matter

