

1854-20

Workshop on Grand Unification and Proton Decay

22 - 26 July 2007

Low energy neutrino astronomy and proton decay with LENA

Teresa MARRODAN Technische Universitaet Muenchen Muenchen, Germany

Low energy neutrino astronomy and proton decay with LENA

Teresa Marrodán Undagoitia tmarroda@ph.tum.de

Institut E15 Physik-Department Technische Universität München

> GUT07 Trieste, 25.07.07

Introduction to LENA	LENA physics	Proton decay	LAGUNA European initiative	Summary
Outline				

- 1 Introduction to LENA
- 2 LENA physics
- 3 Proton decay
- 4 LAGUNA European initiative

Introduction to LENA	LENA physics	Proton decay	LAGUNA European initiative	Summary
Outline				

- 2 LENA physics
- 3 Proton decay
- 4 LAGUNA European initiative

Low Energy Neutrino Astronomy

Supernovae Neutrinos

Geoneutrinos

Diffuse Background of Supernovae Neutrinos

Solar Neutrinos

Neutrino Properties

Proton Decay

Liquid scintillator measurements at TUM

Why liquid scintillators?

- Good energy resolution
- Low energy threshold

Attenuation length $\lambda \sim$ 10 m

Scattering length $\lambda_s \sim$ 30 m

Light yield

- Number of pe/MeV
- Dependence on wavelength shifter concentration

Fluorescence time

Exponential time constants for different scintillators

Introduction to LENA	LENA physics	Proton decay	LAGUNA European initiative	Summary
Outline				
1 Introdu	iction to LENA	4		

- 2 LENA physics
- 3 Proton decay
- 4 LAGUNA European initiative

Proton Decay

Non supersymmetric Grand Unified Theories Dominant decay mode: $p \rightarrow e^+ \pi^0 \qquad \tau \sim 10^{36}$ y

Supersymmetry (SUSY) Dominant decay mode: $p \rightarrow K^+ \overline{\nu}$ $\tau \sim 10^{34}$ y

■ Superkamiokande: $\tau(p \to e^+\pi^0) \gtrsim 5.4 \cdot 10^{33}$ y (90% C.L.) $\tau(p \to K^+\overline{\nu}) \gtrsim 2.3 \cdot 10^{33}$ y (90 % C.L.)

Detection of Supernovae Neutrinos

- D = 10 kpc (center of our galaxy)
- 8 M_☉ ($\Delta E = 2.65 \cdot 10^{53}$ erg)

In LENA detector: \sim 20000 events

Possible reactions in liquid scintillator

$$\overline{\nu}_{e} + p \rightarrow n + e^{+}; \ n + p \rightarrow d + \gamma \qquad \sim 9000 \text{ events}$$

$$\overline{\nu}_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}; \ {}^{12}B \rightarrow {}^{12}C + e^{-} + \overline{\nu}_{e} \qquad \sim 500 \text{ events}$$

$$\nu_{e} + {}^{12}C \rightarrow e^{-} + {}^{12}N; \ {}^{12}N \rightarrow {}^{12}C + e^{+} + \nu_{e} \qquad \sim 90 \text{ events}$$

$$\nu_{X} + {}^{12}C \rightarrow {}^{12}C^{*} + \nu_{X}; \ {}^{12}C^{*} \rightarrow {}^{12}C + \gamma \qquad \sim 3000 \text{ events}$$

$$\nu_{X} + e^{-} \rightarrow \nu_{X} + e^{-} \quad \text{(elastic scattering)} \quad \sim 600 \text{ events}$$

$$\nu_{X} + p \rightarrow \nu_{X} + p \quad \text{(elastic scattering)} \quad \sim 7000 \text{ events}$$

Diffuse Background of Supernovae Neutrinos

 $\overline{\nu}_e$ -neutrino spectrum

In LENA detector: (44 kt f.v.)

- $\mathbf{D} \overline{\nu}_{e} + \mathbf{p} \rightarrow \mathbf{n} + \mathbf{e}^{+}$
- Event rate in 10 y:
 - LL: \sim 110 events
 - **TBP**: \sim 60 events

(discrimination power at > 2 σ) Phys. Rev. D75 023007 (2007) and astro-ph/0701305

Current limit: Super-Kamiokande

- Energy threshold of 19.3 MeV
- Limit for the Flux:
 1.2 cm⁻² s⁻¹

Information about Star Formation Rate for (0 < z < 1)

Solar Neutrinos

Spectrum deformation due to the MSW effect

Rates of solar neutrino events

In the LENA fiducial volume:

 $18\cdot 10^3\ m^3$

- \blacksquare ⁷Be ν 's: \sim 5400 d⁻¹
 - Small time fluctuations
- pep *v*'s: ~ 150 d⁻¹
 - Solar luminosity in v's: information about the pp-flux
- CNO *ν*'s: ~ 210 d⁻¹
 - Important for heavy stars
- **B** ⁸B ν 's: CC on ¹³C: \sim 360 y⁻¹

Geoneutrinos

- Unexplained source of heat flow on Earth
- Unknown contribution of natural radioactivity
- How are ²³⁸U, ²³²Th distributed in core, mantle and crust?

In liquid scintillator:

 $\mathbf{D} \overline{\nu}_{e} + \mathbf{p} \rightarrow \mathbf{n} + \mathbf{e}^{+}$

Astropart. Phys. 27 (2007) 21 and hep-ph/0509136

On-going work: LENA for Betabeams

HWHM (ns) vs. risetime (ns)

Scatter plot for muons and electrons of 1.2 GeV

- Electron/muon separation:
 - Pulse shape discrimination
 - Electron detection from the decay of the muon
- For energies between 0.2 and 1.2 GeV
 - Muon appearance: ~ 90 %
 - Electron background: \sim 0.5 %
- Good energy resolution
- Background due to π or kaon production

Introduction to LENA	A LENA physics	Proton decay	LAGUNA European initiative	Summary
Outline				
1 Intr	oduction to LEN	١A		

- 2 LENA physics
- 3 Proton decay
- 4 LAGUNA European initiative

Some of the possible decay channels

Why
$$p \rightarrow K^+ \overline{\nu}_i$$
?

- - Clear signature in liquid scintillator
 - Favoured by Supersymmetry

Simulation with Geant4

- Monte Carlo calculations
- Scintillation
- Light propagation
 - Absorption length
 - Scattering length
- Quenching factors
 - Birk's formula
- Photomultipliers:
 - **Time jitter:** $\sigma = 1$ ns
 - Efficiency: $\varepsilon = 0.17$

Free Proton Decay

Event Structure: $p \rightarrow K^+ \overline{\nu}$

 $T(K^+) = 105 \text{ MeV}$ $au(K^+) = 12.8 \text{ ns}$

•
$$K^+ \to \mu^+ \nu_\mu$$
 63.43%
• $T(\mu^+) = 152 \text{ MeV}$
• $\tau(\mu^+) = 2.2 \ \mu \text{s}$
• $\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$

Signals of Proton Decay in LENA

Kaon decay after 18 ns

Kaon decay after 5 ns

Background: Muon Production by Atmospheric ν_{μ}

$$\nu_{\mu} + N \rightarrow \mu^{-} + N'$$

Background rate from Superkamiokande $\Gamma = 4.8 \cdot 10^{-2}$ (*MeV*⁻¹*kt*⁻¹*y*⁻¹)

- Pulse shape analysis
 - Risetime

Background Rejection: Time Cut

Background: Hadron Production by Atmospheric ν_{μ}

Pion Production

•
$$\nu_{\mu} + p \rightarrow \mu^{-} + \pi^{+} + p'$$
• $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \quad \tau_{\pi^{+}} = 26 \text{ ns}$

Kaon Production

•
$$\Delta S = 1 \text{ CC}:$$

 $\nu_{\mu} + \rho \rightarrow \mu^{-} + K^{+} + \rho$
• $\Delta S = 0 \text{ CC}:$
 $\nu_{\mu} + n \rightarrow \mu^{-} + K^{+} + \Lambda^{0}$
• $\Lambda^{0} \rightarrow \rho + \pi^{-} \quad \tau_{\Lambda^{0}} = 0.26 \text{ ns}$
• $\Lambda^{0} \rightarrow n + \pi^{0}$

Calculated background rate: 0.064 y^{-1}

Protons from ¹²C: Nuclear Effects

Binding energy

- S-state: ~ 37 MeV
- P-state: ~ 16 MeV

Fermi Motion

LENA

Proton Decay Sensitivity

- Activity of proton decay: $A = \varepsilon N_p t_m / \tau$
- Total efficiency: $\varepsilon = \varepsilon_E \cdot \varepsilon_T = 0.65$
- Protons in the detector: $N_p = 1.4 \cdot 10^{34}$
- Measuring time: $t_m = 10 \text{ y}$

Potential of LENA

- For Superkamiokande current limit: $\tau = 2.3 \cdot 10^{33}$ y
 - 40 events in LENA
 - $\blacksquare \lesssim$ 1 background
- No signal in LENA:

■ $\tau > 4 \cdot 10^{34}$ y 90% (C.L.)

Phys. Rev. D72 075014 (2005) and hep-ph/0511230

Introduction to LENA	LENA physics	Proton decay	LAGUNA European initiative	Summary
Proton deca	IV			
	- /			
$\blacksquare \ \mathbf{\rho} ightarrow \mathbf{e}^+ \pi^0$		${oldsymbol ho} o \mu^+ \pi^0$	$\blacksquare \ p ightarrow K^+ \overline{ u}_i$	
$lacksquare$ $ ho ightarrow e^+ K^0$		${oldsymbol ho} o \mu^+ {oldsymbol K}^0$		
$\blacksquare \ \mathbf{\rho} ightarrow \mathbf{e}^+ \eta$		${oldsymbol ho} o \mu^+ \eta$	$\bullet \ \boldsymbol{\rho} \to \rho^+ \overline{\nu}_i$	
$\blacksquare \ \mathbf{p} \to \mathbf{e}^+ \rho$		${oldsymbol ho} ightarrow \mu^+ ho$		
$\blacksquare \ {\it p} ightarrow {\it e}^+ \omega$		$oldsymbol{ ho} ightarrow \mu^+ \omega$	and other	ers

Event Structure: $p \rightarrow e^+ \pi^0$

 $T(e^+) = 459 \text{ MeV} \ T(\pi^0) = 344 \text{ MeV}$

- Background rejection:
 - Narrow energy cut (938 MeV) \rightarrow Efficiency: $\varepsilon_E = 0.33$
 - Atmospheric neutrinos \rightarrow Background rate: $B \lesssim 1 \text{ y}^{-1}$
- Protons from Carbon
 - Energy cut can be performed as total energy is ~938 MeV
 - 60 % of the π^0 interact with the nucleus

Further background rejection:

- Background event: through-going charge lepton
- Proton decay: Two particles in opposite directions

Direction reconstruction:

- Photon distribution
- Arrival time of the photons

LENA

LENA would be sensitive to all these channels

Sensitivities have to be calculated

Introduction to LENA	LENA physics	Proton decay	LAGUNA European initiative	Summary
Outline				

- 1 Introduction to LENA
- 2 LENA physics
- 3 Proton decay
- 4 LAGUNA European initiative

LAGUNA

Large Apparatus for Grand Unification and Neutrino Astrophysics

- APC, Paris, France
- CEA, Saclay, France
- CPPM, IN2P3-CBRS, Marseille, France
- CUPP, Pyhäsalmi, Finland
- ETHZ, Zürich, Switzerland
- Institute for Nuclear Research, Moscow, Russia
- IPNO, Orsay, France
- LAL, IN2P3-CNRS, Orsay, France
- LPNHE, IN2P3-CNRS, Paris, France
- Max Planck f
 ür Kernphysik, Heidelberg, Germany

LAGUNA scientific paper, arXiv: 0705.0116 [hep-ph]

- Max Planck f
 ür Physik, M
 ünchen, Germany
- Technische Universität München, Germany
- Universidad de Granada, Spain
- Universität Hamburg, Germany
- University of Bern, Switzerland
- University of Helsinki, Finland
- University of Jyväskylä, Finland
- University of Oulu, Finland
- University of Padova, Italy
- University of Silesia, Katowice, Poland
- University of Sheffield, UK

Physics of LAGUNA: Particle Physics

Proton decay

- Neutrino Properties
 - Atmospheric neutrinos:
 - Improve the measurement of $D_{23} \equiv \sin^2 \theta_{23} 1/2$

Reactor:

- Precise measurement on $\Delta^2 m_{12}$ and $\sin^2 \theta_{12}$
- **Detectors for accelerator experiments:** θ_{13} and δ_{CP}
 - Beta beams
 - Super beams
 - Neutrino factories

Physics of LAGUNA: Low Energy Neutrino Astrophysics

Supernovae explosion

- High statistics in the energy spectrum of different ν -flavours
- Time evolution of the neutrino emission
- Neutrino properties: oscillation parameters
- Diffuse background of supernova neutrinos
 - Understanding of the explosion mechanism of a SN
- Solar neutrinos
 - High statistics measurements
- and Geophysics
 - Measuring radioactivity of the Earth with geoneutrinos

MEMPHYS - MEgaton Mass PHYSics

Detector scheme

- Size of each shaft
 - 80 m heigth
 - 65 m Ø
- Water Cherenkov
 Effect
 - ~ 500 kton pure water
- Photomultipliers
 - 81 000 units per shaft
 - 30% coverage

GLACIER - Giant Liquid Argon Charge Imaging ExpeRiment

Detector scheme

Size

- 20 m heigth
- 70 m Ø
- Liquid Argon TPC
 - \sim 100 kton liquid argon
- Readout system
 - e⁻ drift: amplification with LEMs in the gas phase
 - Cherenkov Light: 27 000 PMTs 20% coverage
 - Scintillation Light: 1 000 PMTs

Possible locations

- New facilities or extensions are required!
- Criteria:
 - Depth, distance to reactors, distance to accelerators ...

Candidate laboratories:

- Underground Science in Boulby mine (UK)
- Underground Science in Pyhäsalmi mine (Finland)
- Polkowice-Sieroszowice mine (Poland)
- Laboratoire Souterrain de Modane (France)
- Laboratorio Subterráneo de Canfranc (Spain)

LAGUNA working activities: \sim 60 scientists

- A scientific case document written (arXiv:0705.0116)
- An European proposal for a Design Study is submitted
- Since April 2006 regularly meetings coordinate LAGUNA
- Working groups:
 - WP1: Underground infrastructure
 - WP2: Underground tanks
 - WP3: Tank instrumentation
 - **WP4**: Pure liquid procurement
 - WP5: Safety and environment
 - WP6: Underground science optimization and outreach
 - WP7: Management and coordination

Introduction to LENA	LENA physics	Proton decay	LAGUNA European initiative	Summary
Outline				

- Introduction to LENA
- 2 LENA physics
- Proton decay
- 4 LAGUNA European initiative

LENA

- Good sensivitivy for proton decay via $\rho \rightarrow K^+ + \overline{\nu}$
- On-going activities in further proton decay channels
- Detection of solar and supernova neutrinos
- High statistics on geoneutrinos
- Feasibility studies for LENA as beta beam detector
- Technical feasibility studies
- LAGUNA
 - The physics motivation of this comunity has been presented
 - Three detector approaches are proposed