

1854-21

Workshop on Grand Unification and Proton Decay

22 - 26 July 2007

Family Unification with SO(10)

Kaladi BABU Oklahoma State University Stillwater, OK, USA

K.S. Babu Oklahoma State University

Work with S. Barr and I. Gogoladze

Workshop on Grand Unification and Proton Decay ICTP, Trieste July 22-26, 2007

Matter Unification in 16 of SO(10)

u_1	:	$ \uparrow\downarrow\uparrow\uparrow\downarrow>$
u_2	:	$ \uparrow\downarrow\uparrow\downarrow\uparrow>$
u_{3}	:	$ \uparrow\downarrow\downarrow\uparrow\uparrow>$
d_1	:	$ \downarrow\uparrow\uparrow\uparrow\downarrow>$
d_2	:	$ \downarrow\uparrow\uparrow\downarrow\uparrow>$
d_3	:	$ \downarrow\uparrow\downarrow\uparrow\uparrow>$
u_1^c	:	$ \downarrow\downarrow\uparrow\downarrow\downarrow>$
u_2^c	:	$ \downarrow\downarrow\downarrow\uparrow\uparrow\downarrow>$
u^c_3	:	$ \downarrow\downarrow\downarrow\downarrow\downarrow\uparrow>$
d_1^c	:	$ \uparrow\uparrow\uparrow\downarrow\downarrow>$
d_2^c	:	$ \uparrow\uparrow\downarrow\uparrow\downarrow>$
d^c_3	:	$ \uparrow\uparrow\downarrow\downarrow\uparrow>$
u	:	$ \uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$
e	:	$ \downarrow\uparrow\downarrow\downarrow\downarrow\downarrow>$
e^{c}	:	$ \downarrow\downarrow\uparrow\uparrow\uparrow>$
$ u^c$:	

u_1	:	$ \uparrow\downarrow\uparrow\uparrow\downarrow>$		c_1 :	$ \uparrow\downarrow\uparrow\uparrow\downarrow>$		t_1 :
u_2	:	$ \uparrow\downarrow\uparrow\downarrow\uparrow>$		c_2 :	$ \uparrow\downarrow\uparrow\downarrow\uparrow>$		t_2 :
u_{3}	:	$ \uparrow\downarrow\downarrow\uparrow\uparrow>$		<i>c</i> ₃ :	$ \uparrow\downarrow\downarrow\uparrow\uparrow>$		t ₃ :
d_1	:	$ \downarrow\uparrow\uparrow\uparrow\downarrow\rangle>$		s_1 :	$ \downarrow\uparrow\uparrow\uparrow\downarrow>$		b_1 :
d_2	:	$ \downarrow\uparrow\uparrow\downarrow\uparrow>$		<i>s</i> ₂ :	$ \downarrow\uparrow\uparrow\downarrow\uparrow>$		<i>b</i> ₂ :
d_{3}	:	$ \downarrow\uparrow\downarrow\uparrow\uparrow>$		<i>s</i> ₃ :	$ \downarrow\uparrow\downarrow\uparrow\uparrow>$		<i>b</i> ₃ :
u_1^c	:	$ \downarrow\downarrow\uparrow\downarrow\downarrow>$		c_1^c :	$ \downarrow\downarrow\uparrow\downarrow\downarrow>$		t_1^c :
u_2^c	:	$ \downarrow\downarrow\downarrow\uparrow\downarrow>$		c_2^c :	$ \downarrow\downarrow\downarrow\uparrow\downarrow>$		t_2^c :
u^c_3	:	$ \downarrow\downarrow\downarrow\downarrow\downarrow\uparrow>$	+	c_3^c :	$ \downarrow\downarrow\downarrow\downarrow\downarrow\uparrow>$	+	t_{3}^{c} :
d_1^c	:	$ \uparrow\uparrow\uparrow\downarrow\downarrow\downarrow>$		s_1^c :	$ \uparrow\uparrow\uparrow\downarrow\downarrow>$		b_{1}^{c} :
d_2^c	:	$ \uparrow\uparrow\downarrow\uparrow\downarrow>$		s_2^c :	$ \uparrow\uparrow\downarrow\uparrow\downarrow>$		b_2^c :
d_3^c	:	$ \uparrow\uparrow\downarrow\downarrow\uparrow>$		s_3^c :	$ \uparrow\uparrow\downarrow\downarrow\downarrow\uparrow>$		b_{3}^{c} :
$ u_e$:	$ \uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$		$ u_{\mu}$:	$ \uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$		$ u_{ au}$:
e	:	$ \downarrow\uparrow\downarrow\downarrow\downarrow\downarrow>$		μ :	$ \downarrow\uparrow\downarrow\downarrow\downarrow\downarrow>$		au :
e^{c}	:	$ \downarrow\downarrow\uparrow\uparrow\uparrow>$		μ^c :	$ \downarrow\downarrow\uparrow\uparrow\uparrow>$		$ au^c$:
$ u_e^c$:	$ \uparrow\uparrow\uparrow\uparrow\uparrow>$		$ u_{\mu}^{c}$:	$ \uparrow\uparrow\uparrow\uparrow\uparrow>$		$ u_{ au}^{c}$:
			l				

 $|\uparrow\downarrow\uparrow\uparrow\downarrow>$

 $|\uparrow\downarrow\uparrow\downarrow\uparrow>$

 $|\uparrow\downarrow\downarrow\uparrow\uparrow>$

 $|\downarrow\uparrow\uparrow\uparrow\downarrow\rangle>$

 $|\downarrow\uparrow\uparrow\downarrow\uparrow>$

 $|\downarrow\uparrow\downarrow\uparrow\uparrow>$

 $|\downarrow\downarrow\uparrow\downarrow\downarrow>$

 $|\downarrow\downarrow\downarrow\uparrow\downarrow>$

 $|\downarrow\downarrow\downarrow\downarrow\downarrow\uparrow>$

 $|\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow>$

 $|\uparrow\uparrow\downarrow\downarrow\uparrow\downarrow>$

 $|\uparrow\uparrow\downarrow\downarrow\uparrow>$

 $|\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$

 $|\downarrow\uparrow\downarrow\downarrow\downarrow\downarrow>$

 $|\downarrow\downarrow\uparrow\uparrow\uparrow>$

 $|\uparrow\uparrow\uparrow\uparrow\uparrow>$

	u_1 :	$ \uparrow\downarrow\uparrow\uparrow\downarrow>$		c_1 :	$ \uparrow\downarrow\uparrow\uparrow\downarrow>$		t_1 :	$ \uparrow\downarrow\uparrow\uparrow\downarrow>$
	u_2 :	$ \uparrow\downarrow\uparrow\downarrow\uparrow>$		<i>c</i> ₂ :	$ \uparrow\downarrow\uparrow\downarrow\uparrow>$		t_2 :	$ \uparrow\downarrow\uparrow\downarrow\uparrow>$
	u_3 :	$ \uparrow\downarrow\downarrow\uparrow\uparrow>$		<i>c</i> ₃ :	$ \uparrow\downarrow\downarrow\uparrow\uparrow>$		t_3 :	$ \uparrow\downarrow\downarrow\uparrow\uparrow>$
	d_1 :	$ \downarrow\uparrow\uparrow\uparrow\downarrow>$		s_1 :	$ \downarrow\uparrow\uparrow\uparrow\downarrow>$		b_1 :	$ \downarrow\uparrow\uparrow\uparrow\downarrow>$
	d_2 :	$ \downarrow\uparrow\uparrow\downarrow\uparrow>$		s_2 :	$ \downarrow\uparrow\uparrow\downarrow\uparrow>$		<i>b</i> ₂ :	$ \downarrow\uparrow\uparrow\downarrow\uparrow>$
	<i>d</i> ₃ :	$ \downarrow\uparrow\downarrow\uparrow\uparrow>$		<i>s</i> ₃ :	$ \downarrow\uparrow\downarrow\uparrow\uparrow>$		<i>b</i> ₃ :	$ \downarrow\uparrow\downarrow\uparrow\uparrow>$
	u_1^c :	$ \downarrow\downarrow\uparrow\downarrow\downarrow>$		c_1^c :	$ \downarrow\downarrow\uparrow\downarrow\downarrow>$		t_1^c :	$ \downarrow\downarrow\uparrow\downarrow\downarrow>$
	u_2^c :	$ \downarrow\downarrow\downarrow\uparrow\uparrow\downarrow>$		c_{2}^{c} :	$ \downarrow\downarrow\downarrow\uparrow\uparrow>$		t_{2}^{c} :	$ \downarrow\downarrow\downarrow\uparrow\uparrow>$
	u^c_3 :	$ \downarrow\downarrow\downarrow\downarrow\uparrow>$	+	c_3^c :	$ \downarrow\downarrow\downarrow\downarrow\downarrow\uparrow>$	+	t_3^c :	$ \downarrow\downarrow\downarrow\downarrow\downarrow\uparrow>$
	d_1^c :	$ \uparrow\uparrow\uparrow\downarrow\downarrow\rangle>$		s_1^c :	$ \uparrow\uparrow\uparrow\downarrow\downarrow>$		b_1^c :	$ \uparrow\uparrow\uparrow\downarrow\downarrow>$
	d_2^c :	$ \uparrow\uparrow\downarrow\downarrow\uparrow\downarrow>$		s_2^c :	$ \uparrow\uparrow\downarrow\uparrow\downarrow>$		b_2^c :	$ \uparrow\uparrow\downarrow\uparrow\downarrow>$
	d_3^c :	$ \uparrow\uparrow\downarrow\downarrow\downarrow\uparrow>$		s_3^c :	$ \uparrow\uparrow\downarrow\downarrow\downarrow\uparrow>$		b_3^c :	$ \uparrow\uparrow\downarrow\downarrow\downarrow\uparrow>$
	$ u_e$:	$ \uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$		$ u_{\mu}$:	$ \uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$		$ u_{ au}$:	$ \uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$
\mathbf{N}	e :	$ \downarrow\uparrow\downarrow\downarrow\downarrow\downarrow\rangle$		μ :	$ \downarrow\uparrow\downarrow\downarrow\downarrow\downarrow>$		au :	$ \downarrow\uparrow\downarrow\downarrow\downarrow\downarrow>$
\mathbf{X}	e^c :	↓↓↑↑↑>		μ^c :	$ \downarrow\downarrow\uparrow\uparrow\uparrow>$		$ au^c$:	$ \downarrow\downarrow\uparrow\uparrow\uparrow>$
	$ u_e^c$:			$ u_{\mu}^{c}$:	$ \uparrow\uparrow\uparrow\uparrow\uparrow>$		$ u_{ au}^c$:	
	Ŭ,	• • • • • •		<i>'</i>				

Family Unification

 $G = SO(10) \times SO(10) \times SO(10) \times \mathcal{F}$

\bullet \mathcal{F} : Family Parity

 ♦G: Maximally symmetric unification group with 3 families – with no exotics

For one family, SO(10) is the maximally symmetric unification group

Anomaly free Chiral

Can realistic models with three family unification be constructed?

Earlier Work

Gell-Mann, Ramond, Slansky, 1979; Wilczek, Zee, 1982 SO(4n + 2) groups have complex spinors dimension of spinor $d = 2^{(2n)}$

$$n = 2: SO(10) \Rightarrow d = 16$$
$$n = 3: SO(14) \Rightarrow d = 64$$
$$n = 4: SO(18) \Rightarrow d = 256$$

 $SO(14) \rightarrow SO(10) \times SO(4)$: $64 \rightarrow (16, 2_+) + (\overline{16}, 2_-)$ \Rightarrow 2 families and 2 antifamilies SO(18) Unification

 $SO(18) \rightarrow SO(10) \times SO(8)$: 256 \rightarrow (16, 8₊) + ($\overline{16}$, 8₋)

 \Rightarrow 8 families and 8 antifamilies

Can 8 antifamilies and 5 families be removed from low energy spectrum?

$$SO(8) \rightarrow SO(5):$$

 $8_+ \rightarrow 5 + 1 + 1 + 1$
 $8_- \rightarrow 4 + 4$

◆If SO(5) is somehow confining, 8 antifamilies and 5 families will acquire large mass Leaves 3 unconfined 16-plets

- Confinement mechanism for SO(5) has not been realized
- In higher dimensions, upon compactification unwanted matter can be projected out (K.B, Barr, Kyae, 2002)
- Here wish to stay in 4 d
- Focus on the 3 family maximal symmetry group

 $G = SO(10) \times SO(10) \times SO(10) \times \mathcal{F}$

Fermion content

 $\{(16, 1, 1) + (1, 16, 1) + (1, 1, 16)\}$

With Family Parity \mathcal{F} all 48 components of fermions are indistinguishible

• How does G break down to SM?

Can realistic fermion masses and mixings arise?What predictions?

Symmetry Breaking

Assume supersymmetry

Majorana neutrino mass generation and R parity conservation motivates use of a bispinor Higgs:

 $\Delta : \{ (16, 16, 1) + (1, 16, 16) + (16, 1, 16) \}$ $\overline{\Delta} : \{ (\overline{16}, \overline{16}, 1) + (1, \overline{16}, \overline{16}) + (\overline{16}, 1, \overline{16}) \}$

 $\left< \Delta \right> + \left< \overline{\Delta} \right>$ break

 $SO(10)^3 \times \mathcal{F} \rightarrow SU(5)^3 \times \mathcal{F}$

 $SO(10)^3 \times \mathcal{F} \rightarrow SU(4)_c \times SU(2)_L \times SU(2)_R$

Bifundamental Higgs:

 $\Omega_i = \{(10, 10, 1) + (1, 10, 10) + (10, 1, 10)\}$

Combined effect:

 $SO(10)^3 \times \mathcal{F} \rightarrow SU(3)_c \times SU(2) \times U(1)_Y$

Two Ω fields needed for ${\mathcal F}$ breaking and natural doublet-triplet splitting

Fundamental Higgs:

 $H = \{(10, 1, 1) + (1, 10, 1) + (1, 10)\}$

for electroweak symmetry breaking

Superpotential for Symmetry Breaking

$W = W(\Delta) + W(\Omega) + W(\Delta, \Omega)$

$$W(\Delta) = \lambda_1 [S_1(\Delta_{12}\overline{\Delta}_{12} - M^2) + S_2(\Delta_{23}\overline{\Delta}_{23} - M^2) + S_3(\Delta_{31}\overline{\Delta}_{31} - M^2)]$$

$$W(\Omega) = \mu(\Omega_{12}^2 + \Omega_{23}^2 + \Omega_{31}^2) + \mu'((\Omega_{12}')^2 + (\Omega_{23}')^2 + (\Omega_{31}')^2) + \lambda_2 \Omega_{12} \Omega_{23} \Omega_{31} + \lambda_3 \Omega_{12} \Omega_{23}' \Omega_{31}' + \lambda_4 \Omega_{12}' \Omega_{23} \Omega_{31}' + \lambda_5 \Omega_{12}' \Omega_{23}' \Omega_{31}$$

 $W(\Delta, \Omega) = \lambda_6 \Delta \Delta \Omega + \lambda_7 \overline{\Delta \Delta} \Omega$

The mixed terms do not affect minimzation, but give masses to all would-be Goldston bososn

VEV Structure

(2)

$$\langle \Delta_{12} \rangle = \langle \Delta_{23} \rangle = \langle \Delta_{31} \rangle = M$$

 $\Rightarrow SO(10)^3 \times \mathcal{F} \rightarrow SU(5)^3 \times \mathcal{F}$

(1)
$$\langle \Omega_{ij} \rangle = (a, a, a, 0, 0) \\ \langle \Omega'_{ij} \rangle = (0, 0, 0, , b, b)$$

OR

$$\langle \Omega_{ij} \rangle = (a, a, a, b, b) + (a, a, a, 0, 0) + (a, a, a, 0, 0)$$

$$\langle \Omega'_{ij} \rangle = (b', b', b', 0, 0) + (b', b', b', c, c) + (b', b', b', c, c)$$

Doublet-Triplet Splitting

 $W_{DT} = \alpha [H_1 H_2 \Omega_{12} + H_2 H_3 \Omega_{23} + H_3 H_1 \Omega_{31}]$

Doublet Mass Matrix:

$$M_D = \begin{pmatrix} 0 & \alpha b & 0 \\ \alpha b & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

A pair of doublets from H_3 remain light

Other doublets are heavy

Triplet Mass Matrix: $M_T = \begin{pmatrix} 0 & \alpha a & \alpha a \\ \alpha a & 0 & \alpha a \\ \alpha a & \alpha a & 0 \end{pmatrix}$

All triplets are heavy

Fermion Masses

$$W_{Y} = Y[\psi_{1}\psi_{1}H_{1} + \psi_{2}\psi_{2}H_{2} + \psi_{3}\psi_{3}H_{3}] + F(\psi_{1}\psi_{2}\overline{\Delta}_{12} + \psi_{2}\psi_{3}\overline{\Delta}_{23} + \psi_{3}\psi_{1}\overline{\Delta}_{31})$$

 H_3 has light doublets, $H_{1,2}$ do not \Rightarrow First two family masses = 0 Third family mass $\neq 0$

Right handed neutrino Majorana Mass Matrix:

$$M_R = M_0 \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Eigenvalues: $M_0 \times \{-1, -1, 2\}$

 \Rightarrow Resonant Leptogenesis!

Light Fermion Masses

Arise from higher dimensional operators

 $W'_Y = Y_2(\psi_2\psi_2H_3\Omega_{23}+..)+Y_1(\psi_1\psi_1H_3\Omega_{13}+..)$

⇒ First two family masses $\neq 0$ Since Ω does not break Pati-Salam symmetry, these couplings preserve $m_s = m_\mu$, $m_d = m_e$

$$W = \Delta_{13} \Delta_{23} \overline{\Delta}_{12} H_3$$

⇒ Light Higgs has small component in Δ This coupling does not upset doublet mass Down quarks and charged lepton matrices get corrections proprtional to M_R Georgi-Jarlskog factor not realized yet Either SU(5) or $SU(4)_c$ are unbroken

$$W = \psi_2 \psi_3 \Delta_{23} \Omega_{23}$$

m_b	2	$m_{ au}$
m_{μ}	\neq	m_s
$Det[M_d]$	\simeq	$Det[M_l]$

Quark mixings nonzero

Other Predictions

There is no SUSY flavor problem

All scalar fields have same mass-squared Gaugino mass is universal

Proton lifetime

Threshold corections need to be computed Best estimate for d = 6 proton lifetime: $\tau_p \sim 10^{34}$ years Neutrino oscillation data seems consistent tan β is large ~ 40

Conclusions

- A new class of family unification is proposed based on $SO(10)^3 \times \mathcal{F}$
- 3rd family emerges to be different dynamically
- Realistic fermion masses can be generated
- Best estimate for d = 6 proton lifetime: $\tau_p \sim 10^{34}$ years
- There is no SUSY flavor problem
- There is no D term problem
- Many aspects need to be worked out

Thank You!