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1 Introduction

Tokamak plasmas are inhomogeneous and magnetized. In tokamak plasmas, we
can have multi-scale sized fluctuations.
What are the scale sizes in plasmas?

Electron Debye radius
T 1/2
)\De =
4rn.e?

Electron gyroradius

€B0
MmeC

Ion gyroradius

m;c

Ion sound gyroradius

Cs
Ps = .
Wei
Ton sound speed
T.
Cs=—
m;
Electron skin depth
c
Ae =
Wpe
Ion skin depth
c
A =
Wopi

Electron plasma frequency

Ion plasma frequency

1/2
Amnge? /
Wy — .
p m

What are the characteristic time scales?
Inverse gyro periods

—1 —1
Wee » Wej -
Inverse plasma periods
—1 —1
Wpe > Wpi



What are the physical quantities to be measured?
Density fluctuations:

ni
o
Potential fluctuations:
ep
T,
Electric field fluctuations:
1 0A
E=-Vop— ——.
14 c Ot
Velocity fluctuations:
V/Cs, V/Va.

Magnetic fluctuations:

B/B,, where B=B, +2 B..

By
(4mngom;

B=V xA,and V4 =

Plasma beta

_Amng(Te +T;) _ 4mngT

N B B
Plasma kinetic energy

B

B Magnetic energy density

2 Electrostatic fluctuations

EQUILIBRIUM:
Steady state (0/0t =0).
MHD equilibrium

1
p(UQ . V)UO = EJO X BO - VPQ,

where p = m;n; is the ion mass density.
4
V x BO = —7TJ 0,
c
Po =noTo; To = Teo + Tio-
Modified Burnoulli equation for plasmas

By - VBy

P
§VU§ —pUg x (V x Up) = -

)1/2'

v (m

B3

81

)



Choose profiles of Uy, By, and Py, which satisfy the above equation. We thus
have a self consistent equilibrium.
ELECTROSTATIC FLUCTUATIONS:

E=-Vo(rt).

Low-frequency w < w.;, Long wavelength A > p,

We have two possibilities (1) flute modes kj = 0 and (2) non-flute modes
ky #0

(1) flute modes kj = 0, By =constant.

Convective cells/zonal flows

c 0
U. ~ —2x Vo+Up, —+ V1) Vi,
L BOZ ¢+ Up +B0wce (8t+’ue J_) L
Uil ~ —2xVp+Up; — 9 v\
il &~ By ¥ Di Bowe \ 0t KV 1P.
Electron and ion gyroviscosities are
e = 0.51 veep?
w; = 0.3 Vﬁpf
Electron and ion diamagnetic drifts
Upe = —— 2 x VP,; P, =noTe + niTeo
€bono
Up; = % x VP Py =noTy + n1Tho.
GBoTLO

Linearized electron and ion continuity equations are

One1 ¢ Ong Op cng 0 9 2
5t By 0z 0y | Bowes (8t FrVL ) Vie=0,
on;1 ¢ Ong Oy cno < 0

_——_—— e — —_— . 2 2 == .
9t By 0z 0y  Bows \ 0t +“Zvl> Vie=0

Note that V - (ngUp.) =0 and V - (ngUp;) = 0.

The Poisson equation is

Vigp = 4dme(ne1 — ni1).

From the above equation, we obtain for a dense plasma (wfn- > w?)

B
(& + uNi) Vie=o.



This equation describes the decay of the ion vorticity, defined as

— C

U=SV x (2x V) = —

sz
BO BOZ 19

¢ ox exp (—iwt + ik, - 1),

w(k) is the wave frequency (wave vector).

w= —ipk? = —il.

Decay rate (damping rate)

Life-time of convective cells )
I o ——.
Y
Thus long wavelength (k) p; < 1) would have longer life-time —Okuda-
Dawson (Phys. Fluids 1973).
In thermal equilibrium, convective cells (¢ ¢) have finite energy density. Ther-
mal ¢ ¢ can cause cross-field (across Bpz) transport, since the charged particles

random walk in the fluctuating electric fields of ¢ ¢

D, :/(U(t) Ut + 7)) dr,

D, x 1/Bgy, Bohm-like scaling.

2.1 Zonal flows

- radial symmetric perturbations having k, = k,
- ng ky or poloidal wave number k£, = 0, k, = 0. ¢ ¢ is then

w = —1i vik2p? (2.1.1)
¢ c¢/Zonal flows are nonlinearly excited by drift waves due to the Reynolds
stresses.

2.2 Drift waves in collisionless plasmas
w <L Wei, k}H # 0

cT,

% X Vs + 2U., | 2.2.1
eBonoz Nel + Z ( )



c cT; c
U;] ~—zZxV ' 72 x Vn; —
+ B()ZX S0—'—63071()ZX it Bowei
X 2+V- 2 \v4 + zU; (2.2.2)
815 z*ay 1¥ 1z - f L.

Insert the electron fluid velocity above into the linearized electron continuity
equation to obtain

Oney ¢ Ong Op N 0

7 Vez = U, 2.2.
ot By 0x Oy 82U 0 (2.2.3)

where the parallel component of the electron momentum equation is

8Uez e O Te Ne1
= —— - — 2.24
ot me Ox ( e ng ) ’ ( )
used Upe - VU, = — (V -IL.), /meno; I is the collisionless electron stress

tensor. From the above two equations, we can deduce the Boltzmann law

Nel _ €p
no Te ’

(2.2.5)

for 0%ne1/0t? < V20%n.1/02° and x,, = 0%p/0t0y < we.0%p/02%, where
X, = dlnng/dz is the inverse density gradient scale length. The Boltzmann
law dictates that the electrons rapidly thermalize along the external magnetic
field Boz in the ES perturbations where parallel (to Bpz) phase speed is much
smaller than the speed of light.

Furthermore, inserting the ion fluid velocity into the linearized ion continuity
equation, we have

on; ong 0 0 0
Rin € 9m0T2 o (2 y ) vy
ot BO ox 8y Bowci ot 8y
= —noUis, (2.2.6)
oU; e 0 T; nj
- _ =Y r 2.2.7
ot m; 0z ( - e no) ( )
In the parallel ion momentum equation, we use
Vv - 11;
Up; - VU;, = — :
m;no

IT; is the collisionless ion stress tensor. Using n.; = n;; = noep/T., we have

for wfn > w? (assumption for the quasi-neutrality-no need to use Poisson‘s

equation) and k% p? < 1
0 T. 0

0
&(1 - p?Vi)QO - Ve*a—ySO + ?&Uiz =0, (22'8)



8UZ e Ti 0
% = (1 - T) 55 (2.2.9)

Vew = (cTe/eBo) X, ps = Cs/wei- Assuming ¢ and U;, are proportional to
exp (—iwt + ik, - r+ik.z), we obtain from the above the dispersion relation

o Wwes KIVD
w’ — - == =0,
1+b 1+0b

(2.2.10)

for coupled drift and ion-sound waves in nonuniform magnetoplasmas. Here

Wes = —kyVes, b= kipi? V82 = Cf (1+T/Te).

Solutions of the quadratic equation above are

1 1
w=Zwp* 3 (wd +402,)"? (2.2.11)
respectively accelerated (4) and retarded (-) drift waves.
Wex 2 K2V
= —— = . 2.2.12
No density gradient
k. Vs
W=Wra = s, (2.2.13)
(1+0b)
dispersive ion-acoustic waves. For w?, < w?%, we have
Wex
= = 2.2.14
w=wp =1 ( )

- dispersive drift waves
- dispersion causes from the ion polarization drift or the perpendicular ion
inertia.

2.3 Drift wave instability in a collisional plasma

|0/0t| < ve; = electron ion collision frequency, w.; = eBy/m;c.

c cl,
U,  ~—z2xVp— 7z X Ve +2U,, | 2.3.1
n Bozx © eBonOZX Ne1 + Z ( )

2D ions

c cT; c 0 0
Uy, ~—z2xV ZXxVny — ——— | = +Viez= | Vip, (232
+ BOZ % S0+ €Bonoz % i1 Bowci <8t + y> L ( )

where V;,. = (cT;/eBy) 0lnng(x)/0x.

dp T, 0
e eiUez = €5 — — Net. 2.3.3
el e@z eng 8zn ! ( )




8]

T Bo=;Bo

Insert (2.3.1) and (2.3.3) in the linearized continuity equation and obtain

0 02 ¢ dng Op noe 0%p
= D= )ney — — 227 Sk ) 2.3.4
( ) ! By dx 0y  meve; 022 ( )

where D = Vth [Veiy, Vie = \/Te/me is the electron thermal speed. Substitute
(2.3.2) in the linearized continuity equation and obtain

oni1 ¢ dng Op cng (6 0 ) 0% B

Y T 5 A =+ Vi )| 55 =
ot By dx 0y  Bowe \ Ot + dy ) 0y?

0. (2.3.5)

Assuming that n.;, n;1, and ¢ are proportional to exp (—iwt + ik,y+ik,z), we
have from (2.3.4) and (2.3.5) after Fourier transformation

.\ Ne1 . [ kycdlnng ek?
DE?* — =i -= £ 2.3.6
( z zw) - Z(Bo e +meVei ¥, (2.3.6)
and
2
nii kyc dlnng N kyc(w — wix) 7 (23.7)
no wBy dx wBowe;

where wi, = kyVis.
Invoking the quasi-neutrality condition, i.e., n.; = n;;(holding for a dense
magnetized plasma with an‘ > w?, where w,; is the ion plasma frequency), we

obtain from (2.3.6) and (2.3.7)

. 2 k‘2
Dk? (ﬂ + 1) — w4 LT g (2.3.8)
wky I/eikiy
which is the desired dispersion relation. Here y,, = dlnng/dx and wpg =

VWeee; 1s the lower-hybrid resonance frequency. In deriving (2.3.8), we have



noted that in our quasi-neutral plasma the divergence of the electron and ion
fluxes involving the —cz x V /By particle drift are equal, and therefore they
cancel each other.
Two comments are in order. First, in the absence of the density inhomo-
geneity, we obtain from (2.3.8)
klwln
w= —j-2 "L (] 4 k252 2.3.9
L (14 k) 239)
which is a purely damped mode. Here p, = C/w,; is the ion sound gyroradius.
Second, letting w = wy, + iy, in (2.3.8), where v, < wyg, we obtain for the real
and imaginary parts of the frequency, respectively,

Wcankyp§
= AN Yrs 2.3.10
Wi 1+ ij ’ ( )
and ) 2
o Sken ol (2.3.11)

k2Vie (1+k3p2)

It turns out that wy is positive for x,, < 0. The growth rate v, is proportional
to k:yps, indicating that the finite ion polarization drift is essential for the dis-
sipative drift wave instability. Physically, instability arises because the plasma
density fluctuation cannot keep in phase with the drift wave potential due to a
non-Boltzmann electron density distribution arising from electron-neutral col-
lisions and the ion polarization drift that separates the charges. Thus, the
energy stored in the equilibrium density gradient is channelled to drift waves
via collisions.

The cross-field ion-flux in the presence of enhanced drift-like waves fluctua-
tions reported above can be obtained as

I'y =(naU, +c c), (2.3.12)

where the angular bracket denotes the ensemble average and c.c. stands for the
complex conjugate. We use

i1 ~ ﬂ’gzs ‘Z;O Or (2.3.13)
from (2.3.7), and U;, = —(¢/By) @ kyp,, to obtain from (2.3.12)
dn
Ly =-Di|—> (2.3.14)
where the ion diffusion coefficient is
- 2—27’“ AR (2.3.15)



By invoking the mixing length hypothesis, one obtains

2 B2\ w?
2
lop|® ~ < 2620) kfj. (2.3.16)
Hence )
™ Vi
D~ —) 2%, (2.3.17)
2 - k:f/

which is the Kadomtsev scaling for the diffusion coefficient.

2.4 Generation of drift waves by sheared flows

Let us now suppose that a magnetized plasma contains an equilibrium magnetic
field-aligned ion velocity gradient dUq/dx. The latter is created by accelerating
a group of ions along the external magnetic field direction ByZz by the electric
field. We focus on the low-frequency (<K we;) electrostatic waves E = —V .
The electrons obey the Boltzmann electron density distribution, given by (2.2.5).
The ion density perturbation in the presence of the equilibrium parallel ion drift
Uo(x) Z is obtained from (c.f. Eq. (2.2.6) )

0 0 ¢ dng agp
(375 +U08 )n“ By dz oy

cno 0 0 0 9 0
= ix — ng=—U;,, 241
Bow.i (875 + UO(’? +Vi 3y> Vie=no 82U ( )

where the parallel component of the ion fluid velocity perturbation is now ob-
tained from (c.f. Eq. (2.2.7) )

0 0 C dU() 8@ e 0 Tz M1
(3t+U03 >UZZ_ By dx dy T m; 0z (SO—’—zng)' (242)

We replace n;; by ne1 = noep/Te in (2.4.1) and (2.4.2) to obtain

0 0 0 9 0 0 T. 0
ex A ¥ ci | 5, = _ 1z — 2.4.
( + Vo5 )90+L 8y('0 psw (8t+bo ) Vip+—= zU =0, (2.4.3)

ot 0z 0z e 0
and 9 0 0 0
e
where Vo, = —(cT./eBy) X,,, 7 = Ti/T., S = Up/wei, Uy = dUy/dz, and

p?V? < 1 has been assumed.
Supposing that ¢ and U,, are proportional to exp (—iwt + ik,y+ik,z), we
Fourier transform (2.4.3) and (2.4.4) to obtain

T,
Q1+ k:y,os) + Wes] 0 — ?k’zUiz =0, (2.4.5)



and B
QU;, = — [(1+ 1)k, — Sky|l ¢ =0, (2.4.6)

my;

where = w — ik, Uy and we, = —kyVe,. Eliminating U;, from (2.4.5) by using

(2.4.6), we obtain the dispersion relation

k2C? k
2yl s (14 gl 2.4,
T s 1+bs< T Skz) 0 (247)
which has the solutions
Q, 1 k,\ 12

where Q. = we./ (1 +bs)1/2, bs = k2p2, Qra = k.Cy/ (1 +bs)1/2. Equation

(2.4.8) reveals an oscillatory instability if

ky Q2+4Q%, (1+71)
SE > 102, . (2.4.9)

In the absence of the density gradient, we have from (2.4.7)

b\ /2
w=FkUs+Qra <1+T—Sk—y) , (2.4.10)

which also exhibits an oscillatory instability if

L (2.4.11)
k-
The present instability is known as the parallel ion velocity shear (PIVS) insta-
bility.

From the figure, we observe that for large k, the drift wave turns into the
ion acoustic wave. Clearly, ion parallel motion is neglected when k,Cs = wes. =
—kyVes (if kyp, < 1). For typical JET parameters, we have Cs ~ 10® cm/s
and |V..| =~ 10° cm/s, i.e., we have to require k, < k, x 1072 in order to
neglect the parallel ion dynamics. The Boltzmann electron distribution is valid
if k.Vie > kyVes, which means k. > 0.25 x 10_4ky for JET.

Quasilinear diffusion

Let us consider the particle transport across the magnetic field direction
in the presence of non-thermal low frequency fluctuations. We compare the
continuity and diffusion equations, which read, respectively,

on
g + V(TLU) = 0,

and

10



[wa)
L
1+kjr‘:’f ~
o
e
- — — k}?.ps
e e
g
kZC.S

on
— =V.(D
oy V.(DVn),

where the flux I' = nU, according to Fick’s low, is

I'=-DVn.
Here D is diffusion coefficient. In a nonuniform plasma a harmonic wave will
obtain a superimposed slow space variation of the amplitude due to the plasma
inhomogeneity, i.e.
v = p(x) exp(—iwt + ik - r) + c.c.

The flux in the x-direction over the harmonic variation is
(Ta) =D nexlUf + c.c.
k

According for a departure from the Boltzmann low, say due to collisions, or
wave-electron interactions, we write

. .€
Ne1k = No(1 — i0) ;fk

Since the leading order particle drift velocity is Uy, = —i (¢/Bo) kyp;,, we have

2

onocT,
'k k0.

EPL
FELE -
(Lea) = — B

T.

k

11



Hence, the diffusion coefficient is

2cT,
Dem =
T 2

where x = —dlnng/dzx. We observe that the diffusion is due to the imaginary
part of the electron density fluctuations. For drift waves, we can write

2
T kyo,

Wex €P
Wk Te ’

in the region for wy, > k| Cy and k3 p2 < 1. The ion flux is

N1k = No

(Ty) = ocle 5 e TSy
e eBy - T, Y g o
Letting wy = w, + i7,, we have
_ 2n cT Py 2
The cross field ion diffusion coefficient is then
oy 2

2cT, kv, Cs
D, = ZkypsL

eBy wi—i—vi Te

2.5 The influence of magnetic shear on drift waves

Let us suppose that the external magnetic field is of the form

B(z) = By (z + Liy> , (2.5.1)

where L is the characteristic scale length of the magnetic field variation. This
is a kind of magnetic shear. We see that the effect of the transverse variation of
the magnetic field is regarded to as magnetic shear is to twist the magnetic field.
A toroidal eigenmode will also be twisted according to its poloidal and toroidal
mode numbers. At a certain value of r it has the same degree of twisting as the
magnetic field and k, = 0 at the mode rational surface defined by k- B = 0.
At large r the poloidal field will have a projection on z. In Cartesian system of
coordinate, its variation is accounted for by writing

k, = Lik:y‘ (2.5.2)

In order to study the properties of drift waves in plasmas with magnetic shear,
we have to solve a differential equation for the field variation in x, and the solu-
tion for the mode frequency becomes an eigenvalue problem. Thus, perturbation
are of the form

12



o = p(x) exp(ikyy + ik, z — iwt) + c.c. (2.5.3)
Accordingly, we have from Egs. () and ()

(W — Wex)p — wp? 8—2—k2 ey vl — o (2.5.4)
ex )P Ps 6.’L’2 y 2 e zUViz — Yy cJe
and
e
wU, mi( + 1)k, (2.5.5)

From the above two equations, we obtain

9%
2 2 2
P gar — (1 + K

ox k2V2
“’w )gp—i— 275 5= 0. (2.5.6)

w2

On using (2.5.2), we can write (2.5.6) as

0%  kpwi(147) Wex
2 Y N R < o 1-— kripi) =0, (2.5.7)

where k, = p; . We have approximated w by we. in the term proportional to

x?, since this term is assumed to be small. Possible solutions of (2.5.7) are

© = H, (i€) exp(£i€?/2), (2.5.8)

where H,, is a Hermit polynomial of order n and § = (kywe;i(1 + 7')/<,u€*LS)1/2 .

Substituting (2.5.8) into (2.5.7), we obtain the condition

‘/e*wci(l + T)Ls (we*
C? w

S

- k§p§> — +i(2n + 1), (2.5.9)

which determines the eigenvalue w. The + sign in (2.5.8) and (2.5.9) is related
to the direction of the wave propagation. Assuming the presence of absorbing
boundaries the group velocity must be outward. Since this corresponds to an
inward phase velocity we have to choose the minus sign in Eq. (2.5.9). This
leads to convective damping for drift waves with outgoing group velocity. For
n = 0 mode, we have for 7 < 1

Ly,
w A wei (1 = Kk p3) (1 — iL—> : (2.5.10)

which corresponds to

© = ®exp(—it?/2), (2.5.11)

where ® is a constant.

13



2.6 Ion temperature gradient instability

The electrostatic ion-temperature gradient (ITG) mode in the slab geometry oc-
cur due to the coupling between the ion sound waves and an ion drift mode that
depends on the ion temperature gradient. The ion temperature perturbation
thus plays a crucial role. In the ITG mode, the electron density distribution is
the Boltzmann, viz.
_ ¥

Ne1 = TLOTe, (261)
valid for w/k, < Vi.. In the absence of the density gradient, the ion motion is
governed by

0 0
) e 0 Ting T;
U, = ———=— - , 2.6.
ot miaz(¢+eno+ e) (26:3)
30 3 c dTio 8(,0 8Uw
Sty Pl LR T — 0. 6.
20t™"! 2 By dx 8y+ 0792 0 (2:64)
Assuming n;; = ne1, we have from (2.6.1)-(2.6.4)
0 T, 0
a@ + ?&Uzz = 0, (265)
and
52 e 5?2 ¢ 9Ty D¢
—U,=——(1 — , 2.6.6
ot? m; (L+0) 8z8t¢ m; By Ox 0z0y ( )

where |9%/0%| > V20?/6? has been assumed is deriving (2.6.6). We have
denoted o = T;/T,. Eliminating U,, from (2.6.5) by using (2.6.6), we obtain

83

2 T. dTy, 0?
- o9 ¢ 0 90 (2.6.7)

FEFTA eBom; dx 0220y
Supposing that ¢ is proportional to exp(—iwt+ik,y+ik.z), we Fourier transform
(2.6.7) to obtain the dispersion relation

C’g(l—l-a)

w? — wk2C%(1 + o) + K2C2Q, = 0, (2.6.8)

where Q, = k, Vi, and Vi, = (cTio/eBo) (dInTio/dx).
For w > k.C,(1 + o)'/?, we obtain from (2.6.8)

w? = —k2C2(1 4+ 0)Q% = 0, (2.6.9)

which has an unstable solution,

w= (1 + z?) (2v20,)"? (2.6.10)

14



where V, = Cy(1 +0)'/2 .
The growth rate of the mode is

V3
2
for €2, > 0 . Physically, instability occurs due to the linear coupling between
the ion sound waves the mode w = §2,. The energy to drive instability comes
from the ion temperature gradient, which creates an adverse phase lag between
the ion temperature perturbation and the potential /density perturbation.

v =2 (K220, (2.6.11)

2.7 Nonlinear generation of convective cells/zonal flows
by drift waves

Large scale (long wavelength) convective cells/zonal flows (also regarded to as
sheared flows) can be generated by drift large amplitude electrostatic waves due
to parametric instabilities. The perpendicular components of the electron and
ion fluid velocities in the presence of nonlinearly coupled low-frequency (< we;)
drift waves and zonal flows (ZF's) are, respectively,

cT,

U, ~ Biz X Vi — 2 X Ve, (2.7.1)
0

€B()’I”LO

T; c 0
U ~ S €l 5 i — Y Lyl w2
Pl Boszng—eBonOsznl Bowci<8t+ il — Vi) Vip
2
c . R
~ Bos (2x Ve -V)V v+ (2ZxVyY-V)V ¢], (2.7.2)
oWcei

for the drift waves (denoted by the superscript d), and
: ~ Bioz x V1, (2.7.3)

and

z C . C 3 2 C ~
o pax o 2 (8-t Vi o (@x Ve V) Vg
(2.74)

For the zonal flows (denoted by the superscript z). Here ¢ and 1 are the
electrostatic potentials of the drift waves and zonal flows, respectively. The
angular brackets denote averaging over one period of the drift waves. Inserting
(2.7.2 ) into the linearized continuity equation and using the quasi-neutrality
condition n;; = ngep/T,, we obtain the equation for the drift waves

9 2

0 c .
S (1= PV + Vesg o gt x V-V (1-pVi)e=0, (27.5)

By

where the drift wave frequency is assumed to be much larger than v;;k? p?.

15



The equation for azimuthally symmetric zonal flows is obtained by inserting
(2.7.3) and (2.7.4) into the linearized electron and ion continuity equations and
combine them with the Poisson equation. The result is

0 c .
(& - mv‘j) V3 + B (2 x V- VVip)=0. (2.7.6)

The last term in the left-hand side of (2.7.6) represents the Reynold stress (or the
ponderomotive force) since its origin is rooted in the nonlinear ion polarization
drift or the ion advection in the presence of the drift wave potential. Equations
(2.7.5) and (2.7.6) are the desired equations for studying the excitation of zonal
flows by large amplitude drift waves.

The nonlinear interactions between a finite amplitude drift pump wave (wo, ko)
and zonal flows (w, k) excite upper and lower drift sidebands (w, k). Thus,
we decompose the drift wave potential as

© = poerp (—iwgt + iko - T)+p_exp (iwot — iko - r)—i—z prexp (—iwyst +iky - 1),
+,—

(2.7.7)
where wy = w +wy and k4 = k +k( are the frequency and wave vectors of the
sidebands and the subscript 0 (£) stands for the pump (sideband). Inserting
(2.7.7) into (2.7.5) and Fourier transforming, we obtain

c

Dipy = Hig—— (2 xk) ko (1+kiop}) Po+ Vs (2.7.8)
where Dy = wi — West, West = —ky+Vey, and ax = 1 + kiipg. In deriving
(2.7.8), we have introduced

Y = 1 exp(—iwt + ik - r), (2.7.9)

and matched the phasors in order to satisfy the frequency and wave vector
selection rules.

Furthermore, inserting (2.7.7) and (2.7.9) into (2.7.6) and Fourier transform-
ing, we have

. A . c (Zx ko -k
(w+il,) 9 zzgﬁo% (K2 oo — Kiog_0.), (2.7.10)
where I', = p;k3 and K3 = k3 . — k2.

Combining Egs. (2.7.8) and (2.7.10), we readily obtain the nonlinear disper-
sion relation

2 lpol? 12 x ko - k| K2
T, = — 0 1+ k2,02 + 2.7.11
w+1 Bg ki ( + J_Ops) ; axDy’ ( )
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Figure 1: RT instability

where |p|* = ©os Po_- For |w] > T, and k¢ >k, , we obtain from (2.7.11)

¢ ol |2 x ko - k|
B =]

w? ~ -2 ko -k, (2.7.12)
which depicts a purely growing (w = i7,) instability. For kg-k; > 0, the growth
rate obtained from (2.7.12), for the azimuthally symmetric zonal flow excitation
is

5 x ko - k
v = yzelel ko K| B e (2.7.13)
By ki

The expression (2.7.13) predicts that the growth rate is proportional to the
pump wave electric field kg || -

2.8 Interchange instability

The interchange instability also referred to as the Rayleigh-Taylor (RT) in-
stability, arises in plasmas containing nonuniform density and magnetic field
inhomogeneities. The interchange instability has similarity with the RT insta-
bility in which a heavy fluid resting on light fluid, falls vertically downward and
intermixes, generating flute-like k£, = 0 unstable perturbations.

Thus, there is a density gradient which opposes the force due to gravity. The
latter represents a center-field force caused by the magnetic field curvature. In
plasmas, inhomogeneous magnetic fields having curvature gradients a centrifugal
force, due to the thermal motion of charged particles along the field lines, which
is directed in a direction opposite to the density gradient. The interchange
modes cause a convective transport because they interchange magnetic flux
tubes of different pressure.
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Figure 2: The mechanism of instability

The source of instability is the difference in gravity (curvature) drifts of
electrons and ions, which in a combination with a density perturbation leads to
a charge separation and associated electric field E, as shown in the figure.

In a nonuniform magnetoplasma, at equilibrium, we have

a% (no(m)Tg + Bé;”) =0, (2.8.1)

where Ty = T,y + T;o is the sum of the electron and ion temperatures. In the
presence of the low-frequency (< w,;) electrostatic perturbations the appropri-
ate electron and ion fluid velocities are

cT,

c
UGLN—GHXVQO—

&/ X Ve, 2.8.2
BO €B()’I”LoeH ftel ( )

c cT; c 0 0
U, ~ — \Y Vn — Vis Vip, (2.8.3
= B e” % v + GBonOeH x il B()wci <8t + 6y> L ( )

where & = By/By is the unit vector representing the curvature effect.
Inserting (2.8.2) and (2.8.3) into the linearized electron and ion continuity
equations, we obtain respectively

0
(8t +Upge - V> Ne1 + cV- (B—e| X V(,O) =0, (284)
and
0 cno 0 0 9
(8t Ugpg; - V) n;1 +cV- <B—e|| X Vg&) Bow.r (& + ‘/Z*a_y> VJ_QD =0,
(2.8.5)
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where UBe,Bi = (CT&i/eBo) é” X [VIDBO + (éH . V) éH} is the magnetic drift
velocity the V By and the convective effects.

Subtracting (2.8.5) from (2.8.4) and using the quasi-neutrality condition
Ni1 = Ne1 = N1, We obtain

0 0 2 Bowci

_ e — Uspg- =0, 2.8.

<8t+v ay)VLQO—f— g UP Vn; =0 (2.8.6)

where Ugp = U, + Up; = [C (Te + Tz) /eBo] é” X [VIHBO + é” . VéM .
Equation (2.8.4) gives

0 noC
— 4+ Upg -V kne k e) Vo= s 2.8.
<8t B ) " By ( Be) p=0 (2.8.7)

where k,,. = éH X Vlnno(:v) and kg, = éH X [VIHBO + é” . Véu} .

Supposing that ¢ and n; are proportional to exp(—iwt—+ik -r ) and Fourier
transform (2.8.6) and (2.8.7) and combine the resultant equations to obtain the
dispersion relation

k- (kne - kBe)
k1

(w — QBe) (w — wi*) — wciQB = 0, (288)

where Qp. = k-Up = 2kycT'/eBoR., R, is the radius of curvature, w;, = k, Vi,
and Qp =k - Up. = 2k,cT./eByR..
Possible solutions of (2.8.8) are

1 1 5 o ]1/2
W = 5 (QBe + wi*) + = [(QBe + Wz'*) + 4 (Qchik : (kne - kBe) /kL)}

2
(2.8.9)
Equation (2.8.9) depicts an oscillatory instability for k,. < 0, kge > 0 and

weis [Kne + Kpe| > (Qpe + wix)® /4 (2.8.10)

The growth rate of the interchange instability, obtained from (2.8.9) above

threshold is
v = Vweis [k - (Kne + kpe)|*? (2.8.11)

3 Electromagnetic waves

3.1 Hall-MHD waves

We discuss the properties of electromagnetic waves in a uniform collisionless
plasma within the framework of the Hall-MHD equations. The latter consist of
the ion continuity equation

8711'
ot

the ion momentum equation
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p; (% + UZ-.V) u =18 _gp (3.1.2)

Ampere’s law

4
VxB=-J (3.1.3)
c
and Faraday’s law
B
—%t =—cVXxE
B
=V x KUZ'—CV>< )XB}, (3.1.4)
4meng

where P = (T, + T;)n, ne = n; = n, and p; = n;m;. The V x B term in the
right-hand side of (3.1.4) represents the Hall velocity.

Letting n; = ng +n;, and B = Bpz + By, where n; < ng and B; < By, we
obtain from (3.1.1)-(3.1.4), the linear dispersion relation in the usual manner

2

(w? = k2V3) Dy = :’—2@2 — R2V2)R2KEVE, (3.1.5)

where Dy,s = w — w?k?(V2 +V3) — k2k*V2V3 with Vi = By/v/4mnoms, Vs =
V(Te + T;)/me. Equation (3.1.5) shows that the Alfven and magnetoacoustic

waves are coupled due to the effect of finite w/w,;. Equation (3.1.5) also contains
the low-frequency (w < w;) kinetic Alfven wave (KAW)

w=k,Va(l+k2p)'/?, (3.1.6)

in the limit w < kVj, Vi < Vy, as well as long wavelength (in comparison with
the electron skin depth A. = ¢/w,.) electron whistlers. The latter usually have
VWeeWe; K w <K ke < Wpe.-
The dynamics of nonlinear whistler is governed by the electron-MHD equa-

tion

DB

D7 B.VU =0, (3.1.7)
where B = B — \2V°B, D/Dt = (9/0t) + U.V and U = —cV x B/4ren is the
electron fluid velocity. In the whistler dynamics, the ions do not participate since
|D/Dt| > wpi,wei. In the linear limit Eq. (3.1.7) admits obliquely propagating
whistlers whose frequency is

2 2
w:kzcwcecosﬁ (3.1.8)

2 2.2
wpe + k2c

where cos@ = k,/k. In the long wavelength limit, namely k¢ < wy., we have
from (3.1.8)
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— BT Tee 3.1.9
T (3.1.9)
which reduces to
k2 2 ce
w= 2 e (3.1.10)
Wae

when the perpendicular component of the wavevector k, is zero (N.B. k =
V2 +k2).

Introduction of the ion dynamics in the description of whistlers gives rise
to the modification of the index of refraction N = k2¢? /w?. We have for w <
Wee COSH

w? w?

Nald—P P . 3.1.11
WWee 080 w(w F we;) cosl ( )

For # = 0, we have from (3.1.11)

2.2 2 2
kzc ~ + wpe _ wpi

W2 T e ww Fwe)’

(3.1.12)

where w?_ /wwee > 1. Here 4 (-) refers to the right-(left)-hand circular polarized
electromagnetic waves represented by

E =E| (% +i§) exp(—iwt + ik, 2), (3.1.13)

where X and y are the unit vectors along the x and y axes, respectively. In the
low-frequency limit (i.e. w < w¢;), we have from (3.1.12)

k. V.

w~ k,Va (1 + A) : (3.1.14)
QLUCZ'

which is the dispersive Alfven wave. The dispersion comes from the finite w/w;

effect.

3.2 Drift Alfven waves

Drift Alfven waves (DAWSs) arise in a nonuniform plasma containing the equi-
librium density gradient dng/dxz . The properties of the DAWSs are determined
either from the dispersion relation that is deduced by using the two-fluid or a
kinetic description. In the two-fluid model of the low-frequency (< wg;) elec-
tromagnetic waves we express the electromagnetic fields as,

10A,
E=-Vp—--——= 2.1
SO c at ) (3 )
and
B=VA,xz=B, (3.2.2)
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Figure 4: Convective density perturbation caused by the E x Bg drift
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where A, is the z-component of the vector potential. In the low-3(< 1) approxi-
mation, we neglect the compressional magnetic field perturbation (viz. A = 0).
The perpendicular components of the electron and ion fluid velocities will be
here.

U, ~ Biz X Vi — 3 X Ve, (3.2.3)

0 eBong

c cT; c 0 0
Uil ~ =2 Z i1— 5 i . 24
1 zZx Vop+ B zZ x Vng Boo <8t+v 8y>VMO (3.2.4)

The parallel component of the Ampere’s law gives

V3 A, (3.2.5)

C
Uez ~ Uzz + 4
TENQ

where the parallel component of the ion fluid velocity U, is determined from

8Ulz e 0 ( Enll) € 8AZ
— + = —

ot~ m; 0z m;c Ot

3.2.6
P (3.2.6)

The parallel component of the inertialess electron momentum equation gives
0 0 0 Te neq

Ve A, +c— - — =0. 3.2.7

(8t * 8y> P (90 ) (3:2.7)

Now inserting (3.2.3) and (3.2.4) into the linearized electron and ion continuity
equations, we have

ONer ¢ dng Oy 0
ot By dx 0y +n0% Uiz ¥

Vi A > = 0. (3.2.8)

47Ten0

ot BO dx 8y Bowci

On;1 ¢ dng g cno (8 0

2 Vg )V2<p+n0 9. 0. (3.2.9)

0z

Subtracting (3.2.9) from (3.2.8) and using n;; = n.; = ni, we obtain
0 0 V20 _,
i — — A, =0. 3.2.10
(875 +V; 5 ) V3o + P A\ ( )

Equations (3.2.6), (3.2.7), (3.2.8) and (3.2.10) are the desired governing equa-
tions for the deriving the linear dispersion relation for the DAWSs in the lo-
cal approximation. Assuming that ni, ¢, U;, and A, are proportional to
exp (—iwt +1i k) -ry +ik.z), we Fourier transform the governing equations
above, and combine the resultant equations to obtain

(W (W — wWes) — B2V2[w (w — wix) — K2VE] = k2 p2k2VE (0 — wix)w, (3.2.11)

where V, = (C? + V;2)1/2.
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The dispersion relation (3.2.11) has four branches, as shown in above figure.

From the above figure we notice that for V4 > Vj, the two branches with
k. # 0 do not intersect, instead they obtain a region of strong coupling (shown
by a circle) in the figure. In the latter, the drift and Alfven waves thus coupled.
Such a coupling occurs in a plasma with 5 > m,/m;, since w/k, < Vi, requires
that V4 < Vi.. Equation (3.2.11) admits unstable solutions due to the linear
coupling between the drift and Alfven waves.

3.3 The magnetic drift mode

The two-dimensional magnetic drift mode (MDM) occurs in an electron-ion
plasma with fixed ion background. The MDM involves the electron motion
along Bpz and perturbs the magnetic field to produce B, = V| A, x zZ. The
dynamics of inertial electrons is governed by the parallel electron momentum
equation

ou, e (0 0
- | = e— | AL 3.1
ot mc ((9t+v 8y> ’ (33.1)
where U, is given by
c
U = 14, 3.3.2
4reng Vi ( )

we note that the electric field of the 2D MDM is
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104,

= 3.3.3
c Ot ( )
and there are no density and potential fluctuation with the mode .
From (3.3.1) and (3.3.2), we obtain
0 29 0
— (1 =X A, + Ve —A, = 3.4
ot ( evl) + ay 0 (3 )

Supposing that A, is proportional exp(—iwt 4+ i k, - r), we Fourier transform
(3.3.4) to obtain

Wex
w=——7,
1+ k202

which is the frequency of the 2D dispersive magnetic drift mode. The dispersion
arises from the parallel electron inertial force .

(3.3.5)

3.4 Pseudo-three-dimensional convective cells

For low frequency (in comparison with the ion gyrofrequency) electrostatic
pseudo 3D convective cells, we have the Boltzmann law

Nel | €p

3.4.1
w ST (3.4.1)

which is valid for low-parallel (to Byz)phase speed (in comparison with ion
electron thermal speed) disturbances. The ion density perturbation n;; is de-
termined from

815 Bowci

on; 0

where the ion motion is assumed two-dimensional in a plane perpendicular to

Z.
Replacing n;; by ngep/T. in the quasi-neutrality approximation, we have

0

50 (1= IV )0 = 0.3viip}piV e = 0. (3.4.3)
Assuming that ¢ is proportional to exp(—iwt + ik, - r), we obtain from (3.4.3)
after Fourier transformation

_03vak pips

= —3 3.4.4
1+ kipg “Ip> ( )

w =

which yields the damping rate «y, of the pseudo-3D convective cells/ zonal flows.
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3.5 Nonlinear excitation of zonal flows by kinetic Alfven
waves

The dispersive kinetic Alfven waves (DKAWSs) are the low-frequency (< we;)
electromagnetic waves, which have the parallel electric field as well as the per-
pendicular (to Bpz) components of the electric and magnetic fields. Thus, the
electromagnetic fields are denoted by

10A,
E=— - 5.1
and
B=-VA, xz=B,, (3.5.2)

where @ is the scalar potential and A, is the parallel (to Z) component of the
vector potential. The DKAWSs are accompanied with finite density perturbation

c

V32 o, (3.5.3)

ny =no
Bowe;

associated with the ion polarization drift. Since the parallel phase speed of the
DKAWs is much smaller than the electron thermal speed Vi, = (Tb/m.)"/?,
they appear in a plasma with an intermediate plasma f3, viz.

e 4 Te Tz

1 5.4
o 57 <1, (3.5.4)

values. In view of the low- approximation, the compressional magnetic field
perturbation can be neglected in the DKAW dynamics. The DKAW frequency
is

w =k, Va(l+Ek*p?), (3.5.5)

where p = (p? + Sp?)l/ 2 is the effective ion gyroradius and p, is the ion thermal

gyroradius. In the following, we consider the dynamics of the DKAW in the
presence of the zonal flows in plasma. The electron and ion fluid velocities for
our purposes are

c . cl, .
Uk ~ B_OZ x Vi — EZ x Vnq, (3.5.6)
and
0 c
U]?A ~ i'\ _ ¢ — in . 2 — (7 .
+Bi(z x V- V)Vup} : (3.5.7)
0

where ¢ and v are the potentials of the KAWs (denoted by the superscript KA),
and zonal flows, respectively, and T, > T; has been assumed.
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The approximate electron and ion fluid velocities in zonal flows in the pres-
ence of the DKAWSs are, respectively,

U..B
U~ S x vy 4 UeeBL)

—_— 3.5.8

and

9
Uil ~ 2 V- K— + Vin +uiv'j) Viv+ = ((2x Ve V)V.ig)|,
0

0 Bowci ot
(3.5.9)
where the parallel component of the electron fluid velocity in the DKAWSs is
UkA ~ S V2 4, 3.5.10
ez 47’(’672,0 1 ) ( )

which is obtained from the parallel component of Ampere’s law with B; =

VA, x z. In Eq. (3.5.10), we have neglected the parallel ion motion, as we are

isolating the ion-acoustic waves in our intermediate S plasma. The last term in

the right-hand side of Egs. (3.5.8) and (3.5.9) are the nonlinear Lorentz force

and the Reynolds stresses of the DKAWSs, which reinforce 2D zonal flows.
Substituting (3.5.8) and (3.5.7) into

V-J=engV - (UM - UM 1 UF3) =0, (3.5.11)
we have
a 2 Vj 8 2 c . 2 c . 2 _
EVJ_SD + T&VLAZ + B_O(Z x Vi - V)Viep+ B—O(Z x V- V)Vip =0,

(3.5.12)
where we have assumed that |9p/dt| > (vin + 1;V3)e. Equation (3.5.11)
assumes the quasineutrality condition n.; = n;; = nq, which holds in a dense
plasma with wp; > we;.
From the parallel component of the inertialess electron equation of motion,
we obtain

0A, 0 Tong c . B
5 + Co (go - > + B_()Z x V- VA, =0. (3.5.13)

On the other hand, the ion continuity equation, together with (3.5.7), yields

0 c c
—+ —2x V-V - Vie ) =0. 3.5.14

(at Tt VY ) ("1 Bowe: ”’) (3:5.14)
Equations (3.5.12)-(3.5.14) are the desired equations for the DKAWSs in the
presence of zonal flows. The equation for 2D zonal flows is obtained by inserting
(3.5.8) and (3.5.9) into the electron and ion continuity equations, respectively,
substituting the resultant equations into the Poisson equation

vjaa_‘f — drr (aggl . 8;;1) , (3.5.15)
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we obtain

0
(55 +vn + 0303t V2 ) Vo4 2 (3 x V- ) V)
0

ot
vz o
= 71“ ((2x VA, - V)ViA.), (3.5.16)
where to lowest order, we must use
0A, c Op
——=0 3.5.17
ot V2ot ’ ( )

into the last term of Eq. (3.5.16) to eliminate A, in terms of ¢.

Let us now derive a general dispersion relation for the modulational insta-
bility of a constant amplitude DAW pump against zonal flow perturbation. For
this purpose, we decompose the high frequency potentials into those of the pump
and two sidebands, viz.

© = Py exp(—iwot+iko-T)+po_ exp(iwot—iko-r)+z @y exp(—iwst+iky 1),
+,—
(3.5.18)

A, = Ao+ exp(—iwot+ikor)+A.0— exp(iwot—iko-r)+z A1 exp(—iwyt+iky -

i-

(3.5.19)
wt = N+ wg and ky = K+ kg are the frequency and wave vector of the upper
and lower DAW sidebands. The subscripts 0+ and 4 represent the pump and
sidebands, respectively. Furthermore, we assume that

U = pexp(—iQt +iK - r), (3.5.20)

where €2 and K are the frequency and wave vector of zonal flows. We now
inserts Eqgs. (3.5.18)-(3.5.20) into Eq. (3.5.12)-(3.5.14) and Fourier transform
them and combine the resultant equations to obtain

ic . kg, — K3
Dipy =+—(2xko)K(wo+ws—=5—=]0ps (3.5.21)
By kg
where
Dy =wi —kZVA(L+k14p7) = £200(2 - K1 - V1 F9),
with

wo = kaoVa(l+ kg p2)Y2, Vi = koup2k2) V3 Jwo, and § = k2\VAK? p? /2wp.

On the other hand, inserting Eqgs. (3.5.18)-(3.5.20) into Eq. (3.5.16) and Fourier
transforming the resultant equation, we have

. 2C(iXk0)K w(z)
(Q+ile)p =ip 2 ( N
x (K200 — K3py_0,) (3.5.22)
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where
T, =vip +03v;K%p? and K3 = k1, — ki = KT +2ky- K.

Equation (3.5.22) reveals that the coupling constant on the right hand side re-
mains finite only if wg # kg,Va. Thus, dispersion to Alfven waves is required
in order for the parametric coupling between the DKAWs and Zonal flows to
remain intact. By using Eq. (3.5.21), we can eliminate ¢, from (3.5.22), ob-
taining the nonlinear dispersion relation

. 2wolpo® |2 x ko - K |? 5 o Kizh
Q+il, = 7 i ko P2 (3.5.23)

where :zczjE =K i + koK. We see that the coupling constant in the right hand
of (3.5.23) proportional to k7, p2, which is a feature of the DKAWs. For long
wavelength zonal flows with |K | | < |ko1|. Eq. (3.5.23) reduces to

|EoL |?
B

(Q+il,) [(Q—K -V, ) — 6% = —2K2¢% k2, p (K| koo )(2xko-K)|?

(3.5.24)

where [Eoy |> = k2, || and K| and ko, are the unit vectors.
We analyze Eq. (3.5.24) in two limiting cases. First, welet @ = K-V +iv,,
in Eq. (3.5.24) and obtain for v,,,I", < |K | - V|, the growth rate

1/2
(K koo )(Z x ko - K)|? — 62 (3.5.25)

N = {ZKiCQk&p?MEMP
" K. Vg| Bj

The expression (3.5.25) shows that the modulation instability sets in if

B3|K, -V
|EoL |2 > 00K Vorl (3.5.26)
2K 2, (K. ko) (2 ko - K)?
Second for @ > T',, K, - V1, d, we obtain from (3.5.24)
3 2 2 |EOL|2 2 2
W~ 2K c6——5—ky, 05, (3.5.27)
By
which admits a reactive instability whose growth rate is
e (0983 a2 (E20) (3.5.28)
0

we observe from Eq. (3.5.28) that the growth rate is proportional to two-third
power of ko) p, and the DKAW pump electric field strength |Eq |-
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4 Discussion

In this talk, we have presented properties of thermal and nonthermal fluctuations
in magnetized plasmas existing tokamaks and space environments. We focused
on the linear properties of electrostatic 2D convective cells (two-dimensional
zonal flows), pseudo 3D drift waves, as well as the Hall MHD waves and Alfven
waves. We also presented several mechanisms that are responsible for generating
long and short scale fluctuations. The mechanisms include the linear excitations
by the free energy sources contained in equilibrium plasma inhomogeneities (e.g.
velocity shear, density, temperature and magnetic field gradients), and the non-
linear excitation involving the parametric pressures. Nonthermal fluctuations
are shown to produce cross-field transports of the plasma particles and heat.
The results are relevant for understanding the properties of multiscale fluctua-
tions and associated anomalous particle and heat transports in fusion plasmas.
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