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Abstract

There are important areas within which conventional electromagnetic the-
ory and its combination with quantum mechanics does not provide fully
adequate descriptions of physical reality. These difficulties are not removed
by and are not directly associated with quantum mechanics. Instead electro-
magnetic field theory is a far from completed area of research, and modified
forms of it have been elaborated by several investigators during the recent
decades. The investigation to be described here has the form of a Lorentz
and gauge invariant theory which is based on a nonzero electric field diver-
gence in the vacuum state. It aims beyond Maxwell’s equations and leads
to new solutions of a number of fundamental problems. The applications
include a model of the electron with its point-charge-like nature, the associ-
ated self-energy problem, the radial force balance, and a quantized minimum
of the elementary electronic charge. There are further applications on the
individual photon and on light beams, in respect to the angular momentum
(spin), the spatially limited geometry, the associated needle radiation, and
the particle-wave nature, such as in the photoelectric effect and in two-slit
experiments at low light intensities.

PACS numbers: 03.70+k, 11.10-z, 14.60.Cd, 14.70.Bh, 41.20-q
Key words: Electromagnetic field theory, vacuum state, quantum elec-
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1 Introduction

Maxwell’s equations in the vacuum state have served as guideline and ba-
sis in the development of quantum electrodynamics (QED) which has been
successful in many applications and has sometimes manifested itself in an
extremely good agreement with experiments. However, as pointed out by
Feynman [1], there nevertheless exist areas within which conventional elec-
tromagnetic theory and its combination with quantum mechanics does not
provide fully adequate descriptions of physical reality. These difficulties are
not removed by and are not directly associated with quantum mechanics.
Instead electromagnetic field theory is a far from completed area of research,
and QED will therefore also become subject to the topical shortcomings of
such a theory in its conventional form.

As a consequence, modified theories leading beyond Maxwell’s equations
have been elaborated by several investigators during the recent decades.
This advancement of research has been described in books, reviews, and
conference proceedings all of which cannot be mentioned here, but where
some of the more recent one has been listed in a survey by the author [2].

Among these new approaches there is one theory to be treated in this
paper which attaches main importance to conceptual features and leaves out
part of the detailed formal deductions which are reported elsewhere [2]–[9].
The theory will be shown to have a number of fundamental applications,
such as deduced models of the electron and photon.

2 Some Unsolved Problems in Conventional The-

ory

There are a number of important physical features which have so far not been
fully explained in terms of conventional theory. The first to be mentioned
here is the point-charge-like behaviour of the electron which appears to have
an extremely small radius. Second, the question arises why the electron
does not “explode” under the action of its self-charge. It has been assumed
that its internal force balance is due to some unknown nonelectromagnetic
cause [10]. Third, the point-charge-like character seems to end up with an
infinite self-energy. This problem has been solved in the renormalization
procedure by adding extra counter-terms to the Lagrangian, to obtain a
finite result from the difference between two infinities. Such a procedure is
not quite satisfactory from the physical point of view [11]. Fourth, there
is no explanation why the free electronic charge has a quantized minimum
value “e”, as first shown in the experiments by Millikan.

When further considering the individual photon, it is first noticed that
conventional theory does not explain that it has an angular momentum
(spin), and this is also the case of a light beam with limited cross-section
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[12]. Second, the question arises how a propagating photon can behave as an
object with limited spatial extensions, because conventional theory results
in divergent solutions and infinite integrals of the field energy when being
extended all over space. Third, it still has to be understood how the photon
can behave both as a particle and as a wave.

3 Basis of Present Revised Field Equations

To revise the conventional theory we now turn to recent knowledge of and
aspects on the vacuum state which is not merely an empty space. Due to
quantum mechanics, there is a nonzero level of its ground state, the zero-
point energy. Related electromagnetic vacuum fluctuations appear which
give rise to the Casimir effect [13] due to which two metal plates attract each
other when being brought sufficiently close together. The observed electron-
positron pair formation from an energetic photon further demonstrates that
electric charges can be created out of an electrically neutral state.

To translate these vacuum properties into a quantitative form, we start
with the Lorentz invariant Proca-type field equation in four-space

�Aµ ≡
(

1

c2

∂2

∂t2
−∇2

)

Aµ = µ0Jµ µ = 1, 2, 3, 4 . (1)

Here
Aµ = (A, iφ/c) Jµ = (j, icρ̄) (2)

with A and φ standing for the magnetic vector potential and the electrosta-
tic potential, and j and ρ̄ representing the three-space current and charge
density parts of a general four-current density Jµ constituting the sources of
the electromagnetic field. Maxwell’s equations in the vacuum are recovered
when the four-current density vanishes.

Equations (1) and (2) are now given a new interpretation, where ρ̄ is a
nonzero charge density which can arise in the vacuum, and j then stands for
an associated current density. Physical experience supports the field equa-
tions to remain Lorentz invariant also with this interpretation. It implies
that Jµ still has to behave as a four-vector, its square thereby being invari-
ant when transformed from one inertial frame K to another such frame, K ′.
Thus

j 2 − c2ρ̄ 2 = j ′ 2 − c2ρ̄ ′ 2 = 0 (3)

if we further require that j should exist only when there is also a charge
density ρ̄. This merely becomes analogous to a choice of origin for the space
and time coordinates. The final form of the four-current thus becomes

Jµ = ρ̄(C, ic) C 2 = c2 (4)

where C is a velocity vector having a modulus equal to the velocity constant
c of light. In analogy with the direction to be specified for the current density

2



in conventional theory, the unit vector C/c depends on the specific geometry
to be considered. There is a connection between the current density (4) and
the electron theory by Dirac [5, 8].

The three-dimensional representation of the present revised and extended
field equations in the vacuum now becomes

curl B/µ0 = ε0(div E)C + ε0∂E/∂t (5)

curl E = −∂B/∂t (6)

B = curl A divB = 0 (7)

E = −∇φ − ∂A/∂t divE = ρ̄/ε0 (8)

for the electric and magnetic fields E and B. Here we also include the re-
lation divC=0. In these equations there is a dielectric constant ε0 and a
magnetic permeability µ0 of the conventional vacuum, because they apply to
a state which does not include electrically polarized and magnetized atoms
or molecules. The new feature of equations (5)–(8) is the appearance of the
electric field divergence terms. In principle, a nonzero electric field diver-
gence in the vacuum should not be less conceivable than the nonzero curl of
the magnetic field in the vacuum of Maxwell’s theory. A nonzero magnetic
field divergence is on the other hand not introduced here, but is with Dirac
[14] left as an open question as well as that of magnetic monopoles.

Equations (5) and (6) include the field strengths E and B only, and
are therefore invariant to a gauge transformation. This does not always
become the case for equations (1) and (2) when there are other forms of the
four-current Jµ.

Using well-known vector identities, equations (5)–(8) result in the local
momentum equation

div 2S = f +
∂

∂t
g (9)

with

f = ρ̄(E + C× B) (10)

g = ε0E × B =
1

c2
S . (11)

Here 2S is the electromagnetic stress tensor, f is the volume force density,
g can be interpreted as an electromagnetic momentum density, and S is the
Poynting vector. Likewise a local energy equation

−divS = ρ̄E ·C +
∂

∂t
wf (12)

is obtained where

wf =
1

2

(

ε0E
2 + B2/µ0

)

(13)
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represents the electromagnetic field energy density. An electromagnetic
source energy density

ws =
1

2
ρ̄ (φ + C ·A) (14)

can as well be deduced by recasting the form (13). The volume integrals of
wf and ws become equal for certain steady configurations which are limited
in space [2, 5]. In the cases where the volume force (10) can be neglected,
the angular momentum density is finally given by

s = r × S/c2 (15)

where r is the radius vector pointing in the direction from the origin.
It has to be remembered that relations (9) and (12) have merely been

obtained from a rearrangement of the basic equations. They therefore have
forms by which equivalent expressions are obtained for the momentum and
energy from the stress tensor.

This section is ended in summarizing the characteristic features of the
present revised field equations:

• The theory is based on the pure radiation field in the vacuum state.

• The theory is both Lorentz and gauge invariant.

• The nonzero electric field divergence introduces an additional degree
of freedom which changes the character of the field equations substan-
tially, and leads to new physical phenomena.

• The velocity of light is no longer a scalar c but a vector C which has
the modulus c.

4 The Present Form of QED

As shown by Heitler [15] quantization of the electromagnetic field equations,
also with included source terms, ends up with the same equations in which
the electromagnetic potentials are replaced by their expectation values. In
the present approach, which is based on the pure radiation field, a rather
good approximation should therefore be obtained in a simplified procedure
where relevant quantum conditions are applied afterwards on the general
solutions of the field equations. This could be conceived as a way to the
most probable state of the quantized solutions.

In the original and current presentation of conventional QED, Maxwell’s
equations for a vanishing electric field divergence form the basis of the theory
[15, 16]. This becomes a further justification for the present theory to use
its field equations as a basis for a revised quantum electrodynamic theory.
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A special but important question concerns the momentum of the pure
radiation field. In conventional QED this momentum is derived from a plane-
wave representation and the Poynting vector [15, 16]. In the present theory
the Poynting vector and the momentum density (11) have an analogous rôle,
in cases where the volume force (10) vanishes or can be neglected.

Here it has also to be noticed that there are nonrelativistic forms in
conventional quantum mechanics, such as the Schrödinger equation, in which
the quantized momentum has been successfully represented by the operator

p = −i~∇ (16)

for a massive particle. However, this concept leads to some inconsistencies
when being applied to a photon model, as discussed later in this context
and elsewhere [6].

Thus there are additional points of view which also characterize the
present theory:

• Being based on the pure radiation field, the theory includes no ad hoc
assumption of particle mass at its outset.

• A possibly arising mass and particle behaviour comes out of “bound”
states which result from a type of vortex-like “self-confinement” of the
radiation.

• The wave nature results from the “free” states of propagating wave
phenomena.

• These “bound” and “free” states can become integrating parts of the
same system.

5 Steady Axisymmetric States

Steady electromagnetic field configurations are of special interest, in partic-
ular with respect to particles such as the leptons. In contrast to conventional
theory, the basic equations (5)–(8) provide a class of steady solutions in the
vacuum state. These equations combine to

c2curl curlA = −C
(

∇2φ
)

= (−ρ̄/ε0) C . (17)

Here we limit ourselves to particle-shaped states in which the configu-
ration becomes bounded in all spatial directions. In a further restriction to
axisymmetry, a spherical frame (r, θ, ϕ) is introduced in which all quanti-
ties are independent of ϕ. With C=(0, 0, C), C = ± c, j= (0, 0, Cρ̄), and
A= (0, 0, A), equations (17) reduce to

(r0ρ)2ρ̄

ε0
= Dφ =

[

D + (sin θ)−2
]

(CA) (18)
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where ρ= r/r0 is a dimensionless radial coordinate, r0 a characteristic radial
dimension, D = Dρ + Dθ and

Dρ = − ∂

∂ρ

(

ρ2 ∂

∂ρ

)

Dθ = − ∂2

∂θ2
− cos θ

sin θ

∂

∂θ
. (19)

5.1 The Generating Function

A solution of equation (18) can be obtained in terms of a generating function

F (r, θ) = CA − φ = G0 · G(ρ, θ) (20)

where G0 stands for its characteristic amplitude and G for a normalized
dimensionless part. This yields the general solution

CA = −(sin θ)2DF φ = −
[

1 + (sin θ)2D
]

F (21)

ρ̄ = −
(

ε0

r2
0ρ

2

)

D
[

1 + (sin2 θ)D
]

F . (22)

With the definitions

f(ρ, θ) = −(sin θ)D
[

1 + (sin θ)2D
]

G (23)

g(ρ, θ) = −
[

1 + 2(sin θ)2D
]

G (24)

the integrated (total) electric charge q0, magnetic moment M0, mass m0,
and angular momentum (spin) s0 then become

q0 = 2πε0r0G0Jq Iq = f (25)

M0 = πε0Cr2
0G0JM IM = ρ (sin θ)f (26)

m0 = π(ε0/c
2)r0G

2
0Jm Im = fg (27)

s0 = π(ε0C/c2)r2
0G

2
0Js Is = ρ (sin θ)fg (28)

where

Jk =

∫ ∞

ρk

∫ π

0
Ik dρdθ k = q,M,m, s . (29)

In equation (29) ρk 6= 0 are small radii of circles being centered around the
origin ρ= 0 when G is divergent there, and ρk = 0 when G is convergent at
ρ= 0. The implication of ρk 6= 0 will be given later.

A further step is taken by imposing the restriction of a separable gener-
ating function

G(ρ, θ) = R(ρ) · T (θ) . (30)

This restriction is useful when treating configurations where the sources ρ̄
and j and the corresponding energy density are mainly localized near the
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origin ρ= 0, such as for a particle of limited spatial extent [2]. The integrands
of the form (29) then become

Iq = τ0R + τ1(DρR) + τ2Dρ(DρR) (31)

IM = ρ (sin θ)Iq (32)

Im = τ0τ3R
2 + (τ0τ4 + τ1τ3)R(DρR) + τ1τ4(DρR)2 +

+ τ2τ3RDρ(DρR) + τ2τ4(DρR) [Dρ(DρR)] (33)

Is = ρ (sin θ)Im (34)

where

τ0 = −(sin θ)(DθT ) − (sin θ)Dθ

[

(sin2 θ)(DθT )
]

(35)

τ1 = −(sin θ)T− (sin θ)Dθ

[

(sin2 θ)T
]

− sin3 θ(DθT ) (36)

τ2 = −(sin3 θ)T (37)

τ3 = −T − 2(sin2 θ)(DθT ) (38)

τ4 = −2(sin2 θ)T . (39)

5.2 Features of the Generating Function

Among the possible forms to be adopted of the generating function, we will
here consider radial parts R which can become convergent or divergent at
ρ= 0, but which always decrease strongly towards zero when ρ→∞. The
polar part T and its derivatives are always finite. It can be symmetric or
antisymmetric with respect to the “equatorial plane” (midplane) defined by
θ = π/2.

For a radial part R which is convergent at the origin and where ρk = 0,
partial integration yields Jq = JqρJqθ and JM = JMρJMθ for the integrals (29)
where

Jqρ =

∫ ∞

0
R dρ JMρ =

∫ ∞

0
ρR dρ (40)

Jqθ =

{

(sin θ)
d

dθ

[

(sin θ)2(DθT )
]

+ (sin θ)
dT

dθ

}π

0

= 0 (41)

JMθ =

{

(sin θ)3
d

dθ
[(sin θ)(DθT − 2T )]

}π

0

= 0 . (42)

Thus both q0 and M0 vanish in this case.
Concerning the polar part T , the integrals (29) with respect to θ become

nonzero for symmetric integrands Ik but vanish for antisymmetric ones. The
symmetry or antisymmetry of T further leads to a corresponding symmetry
or antisymmetry of DθT , Dθ

[

(sin θ)2T
]

, and Dθ

[

(sin θ)2(DθT )
]

. As a result
the integrated mass m0 and angular momentum s0 always become nonzero,
whereas the charge q0 and magnetic moment M0 have the following features:

7



• A neutral state of vanishing q0 and M0 is obtained for a radial part R
which is convergent at ρ= 0, and regardless of the symmetry properties
of the polar function T . This leads to models of the neutrino, not to
be treated here in detail but being described elsewhere [2, 6, 8].

• An electrically charged state of nonzero q0 and M0 requires a radial
part R which is divergent at ρ= 0, and a polar part T being symmetric
with respect to the equatorial plane. At a first glance this appears to
lead to divergent final solutions which become physically unacceptable.
However, the analysis of the electron model in the following Section
6 demonstrates a way out of this difficulty. It is based on arbitrarily
small limits ρk 6= 0 in equation (29).

5.3 Quantum Conditions of Particle-shaped States

The nonzero electric field divergence provides the field equations with a
certain degree of freedom, here manifesting itself in the partly arbitrary
form of the generating function. To close the system, relevant quantum
conditions have to be imposed, as well as conditions on the force balance
which is treated later.

The angular momentum (spin) condition on models of the electron as a
fermion, or of the neutrino, is combined with expression (28) to result in

s0 = π
(

ε0C/c2
)

r2
0G

2
0Js = ±h/4π . (43)

This condition is compatible with the two signs of C = ±c due to relation
(4). In particular for a charged particle, equations (25) and (43) combine to
a dimensionless charge

q∗ ≡ |q0/e| =
(

f0J
2
q /2Js

)1/2
f0 = 2ε0ch/e2 (44)

being normalized with respect to the experimentally determined elementary
charge “e”, and where f0

∼=137.036 is the inverted value of the fine-structure
constant.

According to Dirac [17], Schwinger [18] and Feynman [19] the quantum
condition on the magnetic moment of a charged particle such as the electron
is determined by

M0m0/q0s0 = 1 + δM δM = 1/2πf0 (45)

which shows excellent agreement with experiments.
Conditions (43) and (45) can also be made plausible by elementary phys-

ical arguments based on the present picture of a particle-shaped state of
“self-confined” radiation [2, 8].

In a charged particle-shaped state with nonzero magnetic moment, the
electric current distribution generates a total magnetic flux Γtot. The quan-
tized value of the angular momentum s0 further depends on the type of
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configuration to be considered. It becomes h/4π for a fermion, but h/2π
for a boson. Here the electron is conceived to be a system also having a
quantized charge q0. The magnetic flux should then become quantized as
well, and be given by the two concepts s0 and q0, in a relation having the
dimension of magnetic flux. This leads to the flux quantum condition [5, 9]

Γtot = |s0/q0| . (46)

6 A Model of the Electron

In this section a model of the electron will be elaborated which in principle
also applies to the muon, tauon, and to the corresponding antiparticles.

6.1 The Form of the Generating Function

In accordance with the discussion of Section 5.2, a generating function is
now chosen having the parts

R = ρ−γe−ρ γ > 0 (47)

T = 1 +

n
∑

ν=1

{a2ν−1 sin [(2ν − 1)θ] + a2ν cos(2νθ)} . (48)

Here the radial part R diverges at ρ= 0 as required, but the form (47)
may at first glance appear to be somewhat special and artificial. Generally
one could thus have introduced a negative power series of ρ instead of the
single term ρ−γ . However, due to the analysis which follows, such a series
has to be replaced by one single term only, with a locked special value. The
exponential factor in expression (47) has further been included to secure
convergence of any moment with R at large distances from the origin.

The polar part T represents a general form of geometry having top-
bottom symmetry with respect to the equatorial plane.

6.2 Integrated Field Quantities at a Shrinking Characteristic

Radius

Since the radial part R is divergent at the origin, its divergence must be
outbalanced. This can be done by introducing the concept of a shrink-
ing characteristic radius r0 to obtain finite integrated field quantities. We
therefore define

r0 = c0ε 0 < ε ≪ 1 (49)

where c0 is a positive constant of the dimension length and ε is a dimension-
less smallness parameter. Insertion of the forms (47) and (48) into equations
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(25)–(39) yields after some deductions the result

q0 = 2πε0c0G0 [Jqθ/(γ − 1)] (ε/ργ−1
q ) (50)

M0m0 = π2(ε2
0C/c2)c3

0G
3
0 [JMθJmθ/(γ − 2)(2γ − 1)] · (ε3/ργ−2

M ρ2γ−1
m ) (51)

s0 = π(ε0C/c2)c2
0G

2
0 [Jsθ/2(γ − 1)] (ε/ργ−1

s )2 (52)

where

Jkθ =

∫ π

0
Ikθ dθ k = q,M,m, s (53)

is determined from the quantities (35)–(39) and will later be given in its
final form. The reason for introducing the compound quantity M0m0 in
expression (51) is that this quantity appears as a single entity in all finally
obtained results of the present theory. A separation of M0 and m0 is in itself
an important problem which has so far not been considered.

The integrated quantities (50)–(52) are now required to become finite
for all values of the parameter ε and of the radii ρk, and to scale in such a
way that the field geometry becomes independent of ε and ρk in the range
of small ε. Such a uniform scaling becomes possible when

ρq = ρM = ρm = ρs = ε (54)

and when the radial parameter γ approaches the value 2 from above, as
given by

γ(γ − 1) = 2 + δ 0 ≤ δ ≪ 1 γ ≈ 2 + δ/3 . (55)

From the earlier results (41) and (42) and with relation (55), the integrands
Ikθ of equation (53) then reduce to

Iqθ = −2τ1 + 4τ2 (56)

IMθ/δ = (sin θ)(−τ1 + 4τ2) (57)

Imθ = τ0τ3 − 2(τ0τ4 + τ1τ3) + 4(τ1τ4 + τ2τ3) − 8τ2τ4 (58)

Isθ = (sin θ)Imθ . (59)

This leads to the finite integrated field quantities

q0 = 2πε0c0G0Aq (60)

M0m0 = π2(ε2
0C/c2)c3

0G
3
0AMAm (61)

s0 = (1/2)π(ε0C/c2)c2
0G

2
0As (62)

where
Aq ≡ Jqθ AM ≡ JMθ/δ Am ≡ Jmθ As ≡ Jsθ (63)

as obtained from equations (53), (55) and (56)–(59).

10



6.3 The Magnetic Flux

Using equations (21), (19), (47), (49) and (55) the magnetic flux function
becomes

Γ = 2π (c0G0/C) sin3 θ
[

(2 + 2ρ + ρ2)T − DθT
]

(ε/ρ) . (64)

It increases strongly as ρ decreases towards small values, such as for a point-
charge-like behaviour. To obtain a nonzero and finite flux, one has to choose
a corresponding dimensionless lower radius limit ρ= ρΓ = ε, in analogy with
relations (49) and (54). There is a main part of the flux the magnetic field
lines of which intersect the equatorial plane. This flux is counted from the
sphere ρΓ = ε and outwards, and is given by

Γ0 = −Γ(ρ = ε, θ = π/2) = 2π(c0G0/C)AΓ (65)

where
AΓ = [DθT − 2T ]θ=π/2 . (66)

The flux (65) ca be regarded as to be generated by a set of thin current
loops which are localized to a spherical surface of radius ρ= ε.

It has to be observed that the flux (65) is not necessarily the total flux
generated by the current system as a whole. In the present case it is found
that one magnetic island is formed above and one below the equatorial plane,
and where each island possesses an isolated flux which does not intersect the
same plane [2, 9]. The total flux Γtot thus consists of the main flux −Γ0 plus
an extra island flux Γi which can be deduced from the function (64).

We now introduce the normalized flux function

Ψ ≡ Γ(ρ = ε, θ)/2π(c0G0/C) = sin3 θ(DθT − 2T ) (67)

in the upper half-plane if the sphere ρ= ε. The radial magnetic field com-
ponent vanishes at the angles θ = θ1 and θ = θ2 in the range 0≤ θ≤π/2.
When θ increases from θ = 0 at the axis of symmetry, the flux Ψ first in-
creases to a maximum at the angle θ = θ1. Then there follows an interval
θ1 ≤ θ≤ θ2 of decreasing flux, down to a minimum at θ = θ2. Finally, in the
range θ2 ≤ θ≤π/2 there is again an increasing flux, up to the total main
flux value

Ψ0 = Ψ(π/2) = AΓ . (68)

This behaviour is due to a magnetic island having dipole-like field geometry
with current centra at the angles θ1 and θ2 on the spherical surface. We also
define the resulting outward island flux

Ψi = Ψ(θ1) − Ψ(θ2) (69)

of one magnetic island. The total flux which includes the main flux (68) and
that from two magnetic islands then becomes

Ψtot = fΓfΨ0 fΓf = 1 + 2(Ψi/Ψ0) > 1 (70)
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where fΓf is a resulting flux factor due to the magnetic flied geometry and
its magnetic islands.

6.4 The Quantum Conditions

Relevant quantum conditions can now be imposed on the system. For the
angular momentum (43) the associated normalized charge (44) becomes

q∗ = (f0A
2
q/As)

1/2 . (71)

The magnetic moment relation (45) further reduces to

AMAm/AqAs = 1 + δM . (72)

Finally the magnetic flux quantization due to condition (46) and expressions
(68), (60), (62) and (63) obtains the form

8πfΓqAΓAq = As (73)

where fΓq is the flux factor being required by the quantization. Only when
one arrives at a self-consistent solution will the flux factors of equations (70)
and (73) become equal to a common factor

fΓ = fΓf = fΓq . (74)

6.5 Variational Analysis on the Integrated Charge

The elementary electronic charge has so far been considered as an inde-
pendent and fundamental physical constant of nature, determined through
measurements only. Since it appears to represent the smallest quantum of
free electronic charge, however, the question can be raised whether there is
a more profound reason for such a minimum charge to exist.

In the present theoretical approach, standard variational analysis was
first applied to the normalized charge (71), including Lagrange multipliers
when treating relations (72) and (73) as subsidiary conditions, and having
the amplitudes a2ν−1 and a2ν of the expansion (48) as independent variables.
This attempt failed, because there was no well-defined extremum point in
amplitude space but instead a clearly expressed plateau behaviour. The
analysis then proceeded by successively including an increasing number of
amplitudes which are “swept” (scanned) across their entire range of variation
[9]. The results were as follows:

• In the case of four amplitudes (a1, a2, a3, a4) the normalized charge q∗

was found to behave as shown in Fig. 1. Here conditions (72) and
(73) have been imposed with a3 and a4 being left as variables for the
scanning. There is a steep barrier of large q∗ for values of a3 and a4
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Figure 1: The normalized electron charge q∗ ≡ |q0/e| as a function of the
two amplitudes a3 and a4, for solutions satisfying the subsidiary quantum
conditions for a fixed flux factor fΓ = fΓq = 1.82, and being based on a polar
function T having four amplitudes (a1, a2, a3, a4). The deviations of this pro-
file from that obtained for the self-consistent solutions which obey condition
(74) are hardly visible on the scale of the figure.

near the origin, and a very flat “plateau” close to the experimental
value q∗ = 1 in the ranges of large |a3| and a4 > 0. This plateau is
slightly “warped”, having values which vary along its perimeter from
q∗ =0.969 with fΓ = 1.81 to q∗ = 1.03 with fΓ = 1.69.

• At an increasing number of amplitudes beyond four, there is a similar
but slightly changed and somewhat higher plateau. This can be un-
derstood in the way that the contributions in the expansion (48) from
higher order multipoles should have a limited effect on the integrated
profiles of the polar function T . Moreover, an increase of the minimum
level of q∗ at the inclusion of an extra variable is not in conflict with
the variational principle, because any function can have minima when
some of its included variables vanish. Thus the four-amplitude case
appears to be that which ends up with the lowest value of q∗.
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6.6 The Radial Force Balance

The outcome of the variational analysis with its plateau behaviour still in-
cludes some remaining degree of freedom to be investigated. In a steady
state equation (9) shows that the total acting forces can be represented by
the volume force density (10). The latter only consists of an electrostatic
force due to the electron charge in conventional theory, and this tends to
“explode” the electron [10, 20]. In the present theory, however, there is an
extra magnetic force which under certain conditions can outbalance the elec-
trostatic one, at least when being integrated over the entire volume. A local
balance defined by f = 0 does on the other hand not seem to be possible,
because this leads to an overdetermined system of equations.

In a straight circular geometry of constant charge density, limited radius
and with an axial velocity vector, the radial force (10) vanishes [2]. A local
balance can on the other hand not be fully realized in the present geometry,
but the integrated radial force can in any case be made to vanish. Thus,
with the results obtained from equations (18)–(22) and (30), an integrated
radial force

Fr = −2πε0G
2
0

∫∫

[

DG + D
(

s2DG
)]

·
[

∂G

∂ρ
− 1

ρ
s2DG

]

ρ2s dρdθ (75)

is obtained where s = sin θ and

ρ2DG = DθT − 2T (76)

in the present point-charge-like model. The force balance (75) has the form

Fr = I+ − I− (77)

where I+ is a positive radially outward directed contribution due to the
electrostatic part of the volume force, and I− is a negative negative in-
ward directed (confining) contribution due to its magnetic part. Thus
I+/I− =1 defines an integrated radial force balance. When applied to the
four-amplitude case for Fig. 1, the values of the normalized charge q∗ and
the related values of the ratio I+/I− are found to vary along the perime-
ter of the plateau. The integrated force ratio decreases from I+/I− = 1.27
at q∗ = 0.98 to I+/I− = 0.37 at q∗ = 1.01, thus passing an equilibrium point
I+/I− =1 at q∗∼= 0.988. The remaining degrees of freedom of this case have
then been used up.

To sum up, a combination of a lowest possible normalized charge q∗

with the requirement of an integrated radial force balance results in a value
q∗∼= 0.988 which deviates only by one percent from the experimental value
of the elementary free charge. The reason for this small deviation is not clear
at this stage. One possible explanation could be due to a necessary small
quantum mechanical correction of the magnetic flux, in analogy with that
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of the magnetic moment in equation (45). Another possibility may be due
to a small error resulting from the large number of steps to be performed in
numerical analysis which includes matching of the quantum conditions (71)–
(73), of the flux factors (74), and of the contributions (77) to the radial force
balance.

7 Models of the Photon

In a model of the individual photon as a propagating boson, a wave or
wave packet with preserved and limited geometrical shape as well as with
undamped motion in a defined direction, has to be taken as a starting point.
This leads to cylindrical waves in a frame (r, ϕ, z) , with z in the direction
of propagation. As in conventional theory, an initial arbitrary disturbance
can in principle be represented by a spectrum of plane waves with normals
in different directions, but would then become disintegrated at later times
[20]. In this revised analysis we further introduce a velocity vector

C = c(0, cos α, sin α) (78)

of helical geometry where the angle α is constant and

0 < cos α ≪ 1 (79)

for reasons to be clarified later. In fact, cosα and sinα can have either sign,
as determined by the two directions of spin and propagation, but are here
restricted to positive values for the sake of simplicity.

The basic equations (5)–(8) can be combined to the wave equation
(

∂2

∂t2
− c2∇2

)

E +

(

c2∇ + C
∂

∂t

)

(divE) = 0 . (80)

of the electric field, and further in a cylindrical frame to
(

D1 −
1

r2
+

1

r2

∂2

∂ϕ2

)

Er −
2

r2

∂

∂ϕ
Eϕ =

∂

∂r
(divE) (81)

(

D1 −
1

r2
+

1

r2

∂2

∂ϕ2

)

Eϕ +
2

r2

∂

∂ϕ
Er =

[

1

r

∂

∂ϕ
+

1

c
(cos α)

∂

∂t

]

(divE)(82)

(

D1 +
1

r2

∂2

∂ϕ2

)

Ez =

[

∂

∂z
+

1

c
(sin α)

∂

∂t

]

(div E) (83)

where

D1 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
− 1

c2

∂2

∂t2
. (84)

A divergence operation on equation (5) yields
[

∂

∂t
+ c(cos α)

1

r

∂

∂ϕ
+ c(sin α)

∂

∂z

]

(divE) = 0 (85)
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when divC= 0. Equation (85) sometimes becomes useful, but it does not
introduce more information than that already contained in equation (80).
In the present theory where divE 6= 0 the symmetry between the fields E

and B has been broken. The magnetic field has instead to be given by the
electric field through the induction law (6).

In a normal mode analysis every field quantity Q is here represented by
the form

Q = Q(ρ) exp [i(−ωt + m̄ϕ + kz)] ≡ Q(ρ) exp(iθm) (86)

where ρ= r/r0, ω is the angular frequency, and k the axial wave number.
In connection with the operator (84) and the form (86) we further define

K2
0 = (ω/c)2 − k2 . (87)

7.1 Conventional Wave Modes

In conventional theory divE drops out of equations (5)–(8) and (81)–(83).
The condition of a vanishing electric field divergence can be taken implicitly
into account by introducing the Herz vector [20]. For K2

0 > 0 the phase
velocity ω/k becomes larger and the group velocity ∂ω/∂k smaller than c, as
obtained from relation (87). The general solution then has field components
in terms of Bessel functions Zm̄(K0r) of the first and second kind, where the
r-dependence of every component is of the form Zm̄/r or Zm̄+1 [20]. These
solutions can be applied to wave guides with boundary conditions given by
surrounding metal walls. Application of the same solutions, as well as of
those for any value of K2

0 to a model of an individual photon with angular
momentum (spin) leads on the other hand to physically irrelevant results:

• Already the special purely axisymmetric case m̄ = 0 results in sz = 0
due to equation (15), and thus in zero spin.

• The photon model cannot be bounded by walls but has to concern the
entire surrounding vacuum space. But then the total integrated field
energy becomes divergent. This also applies to an attempt to form a
wave packet for each of the field components.

Consequently, conventional theory based on Maxwell’s equations does
not lead to a physically acceptable photon model.

7.2 Axisymmetric Space-charge Wave Modes

As a next step equations (81)–(85) are applied to purely axisymmetric space-
charge waves where ∂/∂ϕ= 0 but divE 6= 0. Equation (85) then results in
the dispersion relation

ω = kv v = c(sin α) (88)
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which has phase and group velocities both being equal to v for a constant
value of α. Combination of equations (81), (88) and (82) then yields

ik(cos α)2Er =
∂Ez

∂r
(89)

and
(

D − 1

ρ2

)

Eϕ = −(tgα)DEz (90)

where

D = D̄ρ − θ̄2(cos α)2 , D̄ρ =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
, θ̄ = kr0 . (91)

Here a generating function

G0 · G = Ez + (cot α)Eϕ G = R(ρ)ei(−ωt+kz) (92)

can be found which combines with equations (89)–(91) and (6) to the field
components

Er = −iG0

[

θ(cos α)2
]−1 ∂

∂ρ

[(

1 − ρ2D
)

G
]

(93)

Eϕ = G0 (tg α) ρ2DG (94)

Ez = G0

(

1 − ρ2D
)

G (95)

and

Br = −G0 [c(cos α)]−1 ρ2DG (96)

Bϕ = −iG0(sin α)
[

θc(cos α)2
]−1 ∂

∂ρ

[(

1 − ρ2D
)

G
]

(97)

Bz = −iG0 [θc(cos α)]−1

(

∂

∂ρ
+

1

ρ

)

(ρ2DG) . (98)

These solutions give rise to a nonzero spin. By a proper choice of the gen-
erating function the integrated field energy also becomes finite.

With the dispersion relation (88) it is seen that condition (79) has to be
satisfied for the group velocity not to get in conflict with experiments of the
Michelson-Morley type. For cos α≤ 10−4 the deviation of this velocity from
c would thus become less than a change in the eight decimal of c.

We are free to rewrite the amplitude factor of the generating function
(92) as

G0 = g0(cos α)2 . (99)

With this notation and the solutions (93)–(98), the components Er and Bϕ

are of zero order in the smallness parameter cos α, Eϕ, Br and Bz of first
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order, and Ez of second order. There is thus essentially a radially polarized
cylindrical wave.

A wave packet can be formed from the normal mode solutions, having a
narrow line width, as required from experiments and observations, and with
the spectral amplitude distribution

Ak =

(

k

k2
0

)

exp
[

−z2
0 (k − k0)

2
]

(100)

where k0 is the main wave number, 2z0 represents the axial packet length,
and k0z0 ≫ 1 in the narrow line limit. Integration over the spectrum is
performed with the notation z̄ = z − vt and

Ē0 = E0(z̄) =

(

g0

k0r0

)( √
π

k0z0

)

exp

[

−
(

z̄

2z0

)2

+ ik0z̄

]

. (101)

It results in the average packet field components

Ēr = −iE0

[

R5 + (θ′0)
2R1

]

(102)

Ēϕ = E0θ0(sin α)(cos α)
[

R3 − (θ′0)
2R1

]

(103)

Ēz = E0θ0(cos
2 α)

[

R4 + (θ′0)
2R1

]

(104)

B̄r = −
(

1

c

)

(sin α)−1Eϕ (105)

B̄ϕ =

(

1

c

)

(sin α)Er (106)

B̄z = −i

(

1

c

)

E0(cos α)[R8 − (θ′0)
2R7] (107)

where

R1 = ρ2R R2 = dR1/dϕ R3 = ρ2D̄ρR (108)

R4 = R − R3 R5 = dR4/dρ R6 = D̄ρR4 (109)

R7 =

(

d

dρ
+

1

ρ

)

R1 R8 =

(

d

dρ
+

1

ρ

)

R3 . (110)

Since expressions (105)–(107) have been obtained in the narrow-line approx-
imation, the condition div B= 0 is only satisfied approximately, whereas it
holds exactly for the normal mode solutions (96)–(98).

In the following analysis a generating function is chosen which is sym-
metric with respect to the axial centre z̄ = 0 of the moving wave packet.
Then

G = R(ρ) cos kz̄ (111)

when the real parts of (92) and (101) are adopted. Here G and (Eϕ, Ez, Br)
are symmetric and (Er, Bϕ, Bz) are antisymmetric functions of z with re-
spect to z̄ = 0.
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The analysis now proceeds in forming the spatially integrated average
field quantities which represent an electric charge q, magnetic moment M ,
total mass m, and spin s. The limits of z are ±∞, and those of ρ will later
be specified. The integrated charge becomes

q = 2πε0

∫
{

∂

∂r
(r2

∫ +∞

−∞
Ērdz̄) + r[Ēz]

+∞
−∞

}

dr = 0 (112)

and the integrated magnetic moment

M = πε0c(cos α)

∫
{

r
∂

∂r
(r

∫ +∞

−∞
Ērdz̄) + r2[Ēz ]

+∞
−∞

}

dr = 0 (113)

due to the symmetry properties of the field components. It should be ob-
served that, even if q and M vanish, the local charge density and magnetic
field strength are nonzero.

For the total mass the Einstein relation yields

m =

(

1

c2

)
∫

wf dV (114)

with dV as a volume element and the field energy density given by equation
(13). Using equations (102)–(107) and the energy relation by Planck, the
narrow-line limit then gives the result

m ∼= 2π
(

ε0/c
2
)

∫ +∞

−∞

∫

r|Ē2
r | drdz̄ = a0Wm = hν0/c

2 . (115)

Here ν0 = c/λ0 is the average frequency related to the average wave length
λ0 =2π/k0 of the packet,

a0 = ε0π
5/2

√
2z0 (g0/ck0z0)

2 ≡ 2a∗0g
2
0 (116)

and

Wm =

∫

ρR2
5 dρ . (117)

The slightly reduced phase and group velocity of equation (88) becomes
associated with a very small nonzero rest mass

m0 = m
[

1 − (v/c)2
]1/2

= m(cos α) . (118)

This can be further verified [2], by comparing the total energy of the wave
packet in the laboratory frame K with that in a frame K ′ following the
packet motion at the velocity c(sin α) < c of equation (88).

Turning to the integrated angular momentum, we first notice that the
volume force (10) contains the vector E+C×B. From equations (78) and
(102)–(107) is readily seen that the volume force has a vanishing component
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f̄ϕ and that its components f̄r and f̄z are of second order in the smallness
parameter cos α. Consequently, and somewhat in analogy with the force
balance of the electron in Section 6.6, there is here a local transverse force
balance, as provided by a confining magnetic force contribution.

The density of angular momentum (15) in the axial direction now be-
comes

s̄z = ε0r(ĒzB̄r − ĒrB̄z) ∼= −ε0rĒrB̄z (119)

which is on the other hand of first order in cos α. Consequently, the volume
force can be neglected and the contribution from the momentum density
(11) due to the Poynting vector dominates the right hand member of the
momentum equation (9). The total spin becomes

s =

∫

s̄z dV = a0r0c(cos α)Ws = h/2π (120)

for the photon as a boson, and where

Ws = −
∫

ρ2R5R7 dρ . (121)

The results (120) and (118) show that a nonzero spin s requires a nonzero
rest mass m0 to exist. These two concepts are associated with the component
Cϕ of the velocity vector. This component circulates around the axis of
symmetry and has two opposite possible spin directions.

To proceed further the radial function R(ρ) has to be specified. A form

R(ρ) = ργe−ρ γ > 0 (122)

being convergent at ρ= 0 is first considered. It has a maximum at the
radius r̂ = γr0 and drops rapidly towards zero at large ρ. When evaluating
the integrals (117) and (121), the Euler integral

J2γ−2 =

∫ ∞

0
ρ2γ−2e−2ρ dρ = 2−(2γ+3)Γ(2γ + 1) (123)

appears in terms of the gamma function. For γ ≫ 1 only the dominant terms
prevail, and the result becomes

Wm = 2−(2γ+4)γ6(2γ − 1)Γ(2γ + 1) = Ws/γ . (124)

Combination of relations (115), (120) and (124) finally leads to an effective
photon diameter

2r̂ =
λ0

π(cos α)
(125)

being independent of γ and of the exponential factor in equation (122), The
diameter (125) is limited but large as compared to atomic dimensions when
the wave length λ0 is in the visible range.
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We next turn to a radial function

R(ρ) = ρ−γe−ρ γ > 0 (126)

which diverges at the axis. Here r̂ = r0 can be taken as an effective radius.
This situation becomes similar to that of the electron model in Section 6.1
and a discussion of its radial form will not be repeated. To obtain finite
integrated values of the total mass m and spin s, small lower radial limits
ρm and ρs are introduced in the integrals (117) and (121). We further make
the Ansatz

r0 = cr · ε g0 = cg · εβ 0 < ε ≪ 1 (127)

of shrinking values for both the characteristic radius and the amplitude
of the generating function, and where cr, cg and β are positive constants.
Equations (115) and (120) combine to

m = a∗0γ
5c2

g

(

ε2β/ρ2γ
m

)

∼= h/λ0c (128)

s = a∗0γ
5c2

gcrc(cos α)
(

ε2β+1/ρ2γ−1
m

)

= h/2π . (129)

To obtain finite m and s it is then necessary that

ρm = εβ/γ ρs = ε(2β+1)(2γ−1) . (130)

We are here free to choose β = γ ≫ 1 by which ρs
∼= ρm = ε. This leads to a

similar set of geometrical configurations in the range of small ε. Combination
of equations (128) and (129) yields an effective photon diameter

2r0 =
ελ0

π(cos α)
(131)

being independent of γ and β. Here ε and ε/(cos α) can be made small
enough to result in “needle radiation” at a diameter (131) which becomes
comparable to atomic dimensions.

The obtained results (125) and (131) of an axisymmetric photon model
can be illustrated by a simple example where cos α = 10−4. For a wave length
λ0 =3 × 10−7 m equation (125) yields a photon diameter of about 10−3 m,
and equation (131) results in a diameter smaller than 10−7 m when ε< cos α
for needle-like radiation.

The individual photon models resulting from the present theory appear
to be relevant in respect to the particle-wave dualism. A subdivision into a
“bound” particle part associated with the component Cϕ and a “free” pilot
wave part associated with the component Cz is imaginable but not necessary.
This is because the rest mass here merely constitutes an integrating part of
the total field and its energy. In other words, the wave packet behaves as
an entirety, having particle and wave properties at the same time. Such a
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joint particle-wave nature of the single individual photon reveals itself in
the comparatively small effective radius, especially in the case of a needle-
like shape. This is reconcilable with the photoelectric effect where a photon
knocks out an electron from an atom, and also with the dot-shaped marks
which form an interference pattern on a screen in two-slit experiments at low
light intensity [21], as well as with recent such experiments under different
boundary conditions [22]. Thereby the interference patterns should also
arise in the case of cylindrical waves. The nonzero rest mass may further
make it possible for the photon to perform spontaneous transitions between
different wave modes, by means of proposed “photon oscillations” [2, 4, 6],
in analogy with the neutrino oscillations.

7.3 Screw-shaped Space-charge Wave Modes

In a review by Battersby [23] twisted light is described where the energy
travels along cork-screw-shaped paths. This discovery is expected to become
important in communication and microbiology.

Corresponding modes should exist in the present theory for a nonzero
m̄ in equations (81)–(85). As compared to the purely axisymmetric normal
modes, these screw-shaped modes lead to a more complex analysis, partly
on account of the second term in equation (5). In a first iteration we attempt
to neglect this term due to its small factor cos α, and then end up again with
the dispersion relation (88). From equation (83) the component Ez is seen
to be of the order (cos α)2 as compared to Er and Eϕ. Thereby equation
(81) would take the form

Er
∼= −

( r

m̄

)

[

1 − k2(cos α)2
( r

m̄

)2
](

∂

∂r
+

1

r

)

(iEϕ) . (132)

When inserting this relation into equation (82), the latter becomes identi-
cally satisfied up to first order in cos α. Consequently the component iEϕ

can be used in this approximation as a generating function

iEϕ = F = G0G , G = R(ρ) exp(iθm) . (133)

In analogy with the deductions in Section 7.2, wave packet solutions can be
formed, q and M be found to vanish, the volume force (10) to be neglected in
equation (9), and expressions for m and s to be obtained [4]. With the same
convergent radial function as in equation (122), there is a nearly radially
polarized wave in which

|Ēr/iĒϕ| = |γ + 1 − ρ| ≫ 1 (134)

for ρ≪ γ and γ ≫ 1. Moreover, insertion of Er from expression (132) into
equation (83) shows that Eϕ and Ez are of the same order in the parameter
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γ. Thus equation (134) shows that also |Er/iEz |≫ 1. The effective photon
diameter would then become

2r̂ =
λ0m̄

3/2

π(cos α)
m̄ 6= 0 . (135)

However, this result is not fully consistent with the basic equations. Relation
(88) and insertion of r = r̂ from equation (135) namely shows that the second
term in equation (85) is of second order in cos α as well as the sum of its
other two terms. To remove this difficulty, the analysis has to be restricted
to configurations where R is peaked at a nearly constant value of r, to form
a ring-shaped radial distribution. This is in fact what happens with the
form (122) which becomes strongly peaked at r̂ = γr0 in the limit of large γ.

As a next “iteration” we therefore replace the variable r in the second
term of equation (85) by a constant value

r̄ = m̄3/2/c1k(cos α) (136)

where c1 is a positive constant. This implies that the dispersion relation is
modified to

k2 − (ω/c)2 ∼= k2(cos α)2C0 C0 = 1 − 2c1/
√

m̄ . (137)

As a result, the effective photon diameter becomes

2r̂ =
λ0m̄

3/2

π(cos α)
√

C0
m̄ 6= 0 . (138)

This result is consistent with expression (136) for r = r̂, provided that

C0 = 1 + (2/m̄) − (2/m̄)
√

(1/m̄) + 1 (139)

where one solution has been discarded because c1 and C0 have to be positive.
The value of

√
C0 ranges from 0.414 for m̄ =1 to 1 for large values of m̄.

The result (138) as well as those of equations (125) and (131) are ap-
plicable both to individual photons and to dense light beams of N photons
per unit length, because the corresponding integrated mass and angular mo-
mentum both become proportional to N . In the beam case, the effective
diameters then stand for those of the corresponding beam models. This
also applies to the present screw-shaped mode with a convergent and ring-
shaped radial part of the generating function which seems to be consistent
with experimental observations [23]. Here screw-shaped normal modes of
radii (138) with slightly different values of cos α can be superimposed to
form a ring-shaped beam profile of a certain width.

Attempts to analyze screw-shaped modes having a divergent radial part
R and aiming at a needle-shaped behaviour are faced with the difficulties of
equation (85) when the configuration extends all the way to the axis.
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8 The Linearly Polarized Photon Beam

The photon and beam models studied here have so far essentially been radi-
ally polarized. We now turn to the case of a linearly polarized light beam of
circular cross section. Elliptically or circularly polarized beams are obtained
from the superposition of linearly polarized modes being ninety degrees out
of phase. For linear polarization a rectangular frame of reference would be-
come suitable, whereas a cylindrical one becomes preferable for a circular
cross-section.

Without changing the essential features the analysis is simplified by the
restriction to a homogeneous core with plane wave geometry, limited radially
by a narrow boundary region in which the light intensity drops to zero. The
radius of the beam is large as compared to the characteristic wave length, and
the boundary conditions can in a first approximation be applied separately
to every small local segment of the boundary. A localized analysis is then
performed in which the electric field vector of the core wave forms a certain
angle with the boundary, and where local rectangular coordinates can be
introduced. In its turn, the core wave is then subdivided into two waves of
the same frequency and wavelength, but having electric field vectors being
perpendicular and parallel to the local segment of the boundary region.

8.1 Flat-shaped Beam Geometry

In the analysis on a segment of the boundary region, a local frame (x, y, z)
is now chosen with z in the axial direction of propagation, and with the
normal of the boundary in the x-direction. There is no y-dependence. The
velocity vector is given by

C = c(0, cos α, sin α) 0 < cos α ≪ 1 (140)

thus having Cy along the boundary and Cz in the direction of propagation.
From a divergence operation on equation (5), a dispersion relation of the
form (88) is again obtained. The wave equation (80) for normal modes now
reduces to the three relations

Ex = −
[

i

k(cos α)2

]

∂Ex

∂x
(141)

[

k2(cos α)2 − ∂2

∂x2

]

Ey − ik(cos α)(sin α)

(

∂Ex

∂x
+ ikEz

)

= 0 (142)

∂Ex

∂x
= −

[

i

k(cos α)2

]

∂2Ez

∂x2
(143)

where relation (143) is merely obtained from derivation of (141). Combina-
tion of equations (141) and (142) gives

[

k2(cos α)2 − ∂2

∂x2

](

Ey +
sin α

cos α
Ez

)

= 0 . (144)
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Equations (141) and (144) thus show that the component Ez can serve as a
generating function for the transverse components Ex and Ey. At least one
solution of equation (144) is readily found when Ey and Ez have the same
spatial profiles and

Ey = − sinα

cos α
Ez (145)

The ordering of the electric field components with respect to the smallness
parameter cos α is thus Ex = O(1), Ey = O(cos α) and Ez = O(cos2 α).

The magnetic field components are finally given by

ω(Bx, By, Bz) =

(

−kEy, kEx + i
∂Ez

∂x
,−i

∂Ey

∂x

)

(146)

From relation (88) we have

Bx = −Ey/c(sin α) (147)

By = Ex/c(sin α) +
i

kc(sin α)

∂Ez

∂x
= (sin α)Ex/c (148)

Bz = − i

kc(sin α)

∂Ey

∂x
= −(cos α)Ex/c (149)

where Bx = O(cos α), By =O(1) and Bz = O(cos α).
Application of relations (88) and (145) on the result (147)–(149) finally

yields
E + C × B = 0 . (150)

This implies that the volume force (10) vanishes identically in rectangular
geometry, and the Poynting vector is again the source of the electromagnetic
momentum.

8.2 Two Special Flat-shaped Cases

Two special plane cases are now studied of a beam which has a core region
defined by −a< x< a and two narrow boundary regions −b< x< − a and
a< x< b of the small thickness d= b − a. There is symmetry in respect to
x= 0 and we discuss only the region at x = a henceforth. With the chosen
frame there is first the case in which Ex is the main component. Within
the core region a homogeneous linearly polarized plane wave is assumed to
exist, having the constant components Ex0 and By0.

Inside the boundary region an axial field Ez is assumed to increase lin-
early with x from a small value near x= a, and in such a way that Ex in
equation (141) becomes matched to Ex0 at x= a. Within the same region
Ez further passes a maximum, after which it drops to zero at the edge x= b.
There is then a reversed field Exin the outer part of the boundary layer, and
the maximum strength of Ex is of the same order as Ex0 according to equa-
tion (141). From equation (145) the spatial profile of Ey further becomes
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the same as that for Ez . The component By of equation (148) is matched
to By0 at the edge of the core region and to lowest order in cos α. Then the
Poynting vector components become Sx = 0 and

Sy
∼= −ExBz/µ0 = c(cos α)ε0E

2
x (151)

Sz
∼= ExBy/µ0 = c(sin α)ε0E

2
x . (152)

Thus there is a primary flow Sz of momentum in the direction of propagation,
a secondary flow Sy along the boundary, and no flux Sx across it. The field
energy density (13) becomes

wf
∼= ε0E

2
x (153)

to lowest order in cos α.
Turning then to the second case where Ey is the main field component,

being parallel with the boundary, there is a plane wave in the core region
with the components Ey0 and Bx0.

Within the boundary region, in a small range of x near x= a, the axial
field Ez is now assumed to be constant, and Ex thus vanishes due to equation
(141). Then relation (145) makes it possible to match Ey to Ey0 at x= a.
The field Ez is further chosen to decrease towards zero when approaching
the outer edge x= b. According to equations (141) and (145) this results in
a perpendicular field component

Ex =

[

i

k(cos α)(sin α)

]

∂Ey

∂x
(154)

which first reaches a maximum and then drops to zero at x= b. For a
characteristic length Lcy of the derivative of Ey the ratio

|Ex/Ey| = λ/2πLcy(cos α) (155)

can then become smaller than unity. Thus with λ/Lcy = 10−4 and cos α = 10−4

this ratio is about 0.16. The magnetic field components (147)–(149) now
have the ordering |Bx|= O(1)> |By| and Bz = O(cos α) when Ex is smaller
than Ey. Here Bx can be matched to Bx0 at x= a, since both By and Ex

vanish at x= a due to equation (148). The Poynting vector components
finally become Sx = 0 and

Sy = c(cos α)ε0E
2
y

[

1 + (sin α)2(Ex/Ey)
2
]

/(sin α)2 (156)

Sz = cε0E
2
y

[

1 + (sin α)2(Ex/Ey)
2
]

/(sin α)2 . (157)

Also here the flow of momentum is essentially of the same character as in
the first case. The field energy density becomes

wf
∼= ε0E

2
y (158)

as long as E2
x ≪E2

y .
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8.3 The Plane Core Wave

There is an additional problem with the matching of the solutions at the
edge of the beam core. This is due to the fact that the phase and group ve-
locity of expression (88) for the present electromagnetic space-charge (EMS)
wave in the boundary region is slightly smaller than that of a conventional
plane electromagnetic (EM) wave in the core. However, this problem can be
solved by introducing a plane EMS wave in the core which becomes hardly
distinguishable from a plane EM core wave.

We start with the basic equations (5)–(8) for a plane wave where all
quantities vary as

Q = Q0 exp [i(−ωt + k · r)] (159)

and Q0 is a constant. For the velocity vector we now use the form

C = c [(cos β)(cos α), (sin β)(cos α), sin α] . (160)

From the last of equations (8) the dispersion relation (88) is then recovered,
and a matching of the phase velocity becomes possible. The basic equations
further result in

c2k(−By, Bx) = [(kEz)Cx − ωEx, (kEz)Cy − ωEy] (161)

c(sin α)(Bx, By) = (−Ey, Ex) (162)

and Bz = 0. Combination of equations (161) and (162) yields

Ez(Cx, Cy) = −(cos α)2c(Ex, Ey) (163)

and
Ex/Ey = Cx/Cy = (cos β)/(sin β) . (164)

Here Ez is small due to equation (163). The first flat-shaped case corre-
sponds to the choice of a small sin β, whereas the second one is represented
by a small cos β. In this way a plane EMS wave is obtained which differs
very little from a plane EM wave, with the exception of the phase velocity
which now can be matched to that of the wave in the boundary region. A
matching of the field components can be made as in Section 8.2.

8.4 Simplified Analysis on the Spin of a Circular Beam

The results of the analysis on the small segments of the circular perimeter
are now put together to form a first simplified approach to a circular beam
in a frame (x, y, z), thus consisting of a homogeneous field E0 = (E0, 0, 0)
and B0 = (0, B0, 0) in its core, and with a narrow boundary layer with large
derivatives. Introducing the angle ϕ between the y-direction and the radial
direction counted from the axis, the electric field components of the core are
expressed by

E0⊥ = E0 sin ϕ E0‖ = E0 cos ϕ (165)
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in the perpendicular and parallel directions of the boundary.
In the boundary region E2 = E2

0 at the edge of the core. With the re-
striction E2

x ≪E2
y in expressions (155)–(157), the contributions (151) and

(156) to the Poynting vector add up in the transverse direction along the
boundary to

St = c(cos α)ε0E
2 (166)

being independent of the angle ϕ. The energy density of the beam core can
further be written as

wfc = εE2
0 = nphc/λ (167)

where np is the number of equivalent photons per unit volume. With a
parallel spin h/2π of each photon, the core would possess a total equivalent
(imagined) angular momentum per unit length

sc = r2
0nph/2 = ε0E

2
0λr2

0/2c (168)

as obtained from combination with equation (167), and with r0 standing for
the radius of the core. Due to equations (166) and (15) the real angular
momentum generated per unit axial length in the boundary layer becomes
on the other hand

sb = 2π(cos α)εE2
0fEr2

0d/c (169)

where d≪ r0 is the thickness of the layer and fE < 1 is a profile factor of
order unity obtained from integration of E2 over the same layer. This yields
the ratio

sb

sc
=

4π(cos α)fEd

λ
. (170)

For the equivalent angular momentum sc of the core to be replaced by a real
angular momentum sb being generated in the boundary layer, the result thus
becomes sb = sc or

d =
λ

4πfE(cos α)
(171)

which is analogous to the effective photon diameter relation (125) in the case
of a convergent radial part of the generating function (92). As an example,
λ= 3× 10−7 m, fE = 0.2 and cos α =10−4 leads to a physically relevant value
of d ∼= 10−3 m for a beam with a radius r0 = 10−2 m, say.

It should be observed that equation (168) applies to a case where all
imagined core photons have spin in the same axial direction. There is also
an imagined situation where two unequal fractions of the photons could have
opposite spin directions. This still results in a net beam angular momentum
as observed in experiments [12, 15], but requiring a smaller layer thickness
(171) at given values of the remaining parameters. In this consideration it
should also be remembered that a plane wave does not give rise to a spin.

We finally notice that the obtained results should also hold for a corre-
sponding field configuration in the limit of a single photon model. Such a
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photon could thus become linearly polarized in its “core”, and be limited
in the transverse direction by an outer “mantle” of radially decreasing field
intensity within which an angular momentum is being generated.

9 Comments on the Momentum of the Radiation

Field

The pure radiation field has a momentum density g being based on equations
(9)–(11) and the Poynting vector. The latter has also been used as a basis
for the conventional and original QED theory described by Schiff [16] and
Heitler [15] among others.

In the case of a massive particle, the quantized momentum has on the
other hand been represented successfully by the operator p of expression (16)
in the nonrelativistic Schrödinger equation [16]. For the normal wave modes
(86) treated in this context the corresponding axial component becomes

pz = ~k = h/λ = hν/c . (172)

In conventional theory this component is related to a photon of energy hν,
moving along z at the velocity c of light.

A comparison between the concepts of g and p leads, however, to a
number of not quite clear questions concerning p. These are as follows:

• In the present theory based on the concept of g, individual photons
as well as light beams are limited spatially in the directions being
perpendicular to the axial direction of propagation and have vanishing
or negligible transverse losses of momentum. This is not the case when
applying the concept p which has a radial component and leads to a
corresponding transverse loss, thus becoming questionable from the
physical point of view.

• In a pure axisymmetric case the concept g results in a momentum
directed around the axis of symmetry. The same momentum vanishes
when applying the concept p.

• In the present Lorentz invariant photon model the momentum g has a
component around the axis which provides a spin at the expense of the
axial velocity of propagation which becomes slightly reduced below c.
With the concept p the result (172) is in conventional theory indicating
that the photon moves at the full velocity c in the axial direction. But
for the same photon to possess a nonzero spin, there should also exist
an additional transverse momentum pϕ corresponding to an additional
velocity vϕ which circulates around the z axis. However, this would
lead to a superlumial total velocity within the photon configuration.
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10 Conclusions

In the present revised quantum electrodynamic theory, the nonzero electric
field divergence introduces an additional degree of freedom and modifies
the basic field equations to a considerable extent, thereby also giving rise
to new results and interpretations in respect to a number of fundamental
applications.

Considering the resulting models of leptons such as the electron, the field
equations contain additional electric field divergence terms which constitute
large contributions already at the outset, and which give rise to a number
of new features:

• The point-charge behaviour comes out as a necessity from the theory,
with the requirement of a nonzero net electric charge.

• The infinite self-energy problem of the point charge is eliminated in the
present theory in which a divergent behaviour of the generating func-
tion is outbalanced by a shrinking characteristic radius. This provides
a physically more acceptable and realistic alternative to the renormal-
ization process in which extra ad hoc counter terms are merely added
to the Lagrangian, to outbalance one infinity by another.

• The integrated electrostatic force of the electron configuration can be
outbalanced by an integrated magnetic force. This prevents the elec-
tron from “exploding” under the action of its self-charge. This so far
not understood balance can be conceived as a kind of electromagnetic
confinement.

• Variational analysis, in combination with the requirement of an in-
tegrated electromagnetic force equilibrium, leads to a deduced and
quantized elementary charge which deviates by only one percent from
its experimental value. If this small deviation could be understood
and removed, the electronic charge would no longer remain an inde-
pendent constant of nature, but become deduced from the velocity of
light, Planck’s constant, and the dielectric constant.

In the applications to photon and light beam physics, the nonzero electric
field divergence appears at a first sight as a small quantity, but it still comes
out to have essential effects on the end results:

• The theory leads to a spin of the individual photon, not being obtained
from conventional theory in a physically relevant field configuration.
The present cylindrical field geometry is helical.

• It is explained how a propagating photon can behave as an object of
limited spatial extensions, and even in the form of needle radiation,

30



whereas conventional theory results in solutions which are extended
over space and lead to a divergent integrated field energy.

• The individual photon wave packet solutions have simultaneous par-
ticle and wave properties. They become reconcilable both with the
photoelectric effect and with the dot-shaped marks and their interfer-
ence patterns in two-slit experiments at low light intensities.

• There is electromagnetic confinement of the local transverse forces in
a propagating photon wave packet, somewhat in analogy with that of
the electron.

• Also a photon beam of limited cross-section has a spin which can be
explained by the present theory, and not by conventional analysis.

• The observed ring-shaped intensity profile of screw-shaped light beams
is consistent with the present theory.
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