



1856-60

2007 Summer College on Plasma Physics

30 July - 24 August, 2007

Plasma effects in cold atom physics

J.T. Mendonca Instituto Superior Tecnico, Lisbon, Portugal



# Plasma effects in cold atom physics

# J. T. Mendonça

GoLP and CFIF, Instituto Superior Tecnico, Lisboa



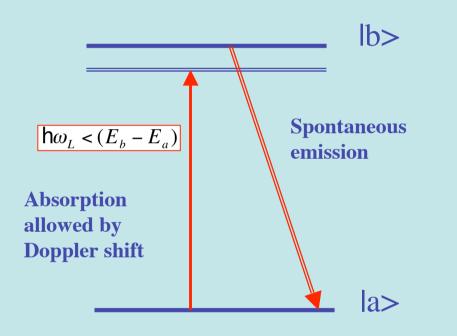
# **Outline**:

- 1. Laser cooling forces;
- 2. From wave equation to kinetic equation;
- 3. Collective oscillations of a cold atom gas;
- 4. Mie resonance (observations?);
- 5. Plasma-acoustic mode;
- 6. Coulomb-like explosions;
- 7. Tonks-Dattner resonances;
- 8. Rydberg plasmas;
- 9. Waves in could quantum plasmas;
- 10. Conclusions.



# **1. Principle of laser cooling**

#### **Energy picture**



The atom looses kinetic energy at each absorption-emission cycle

#### **Momentum picture**

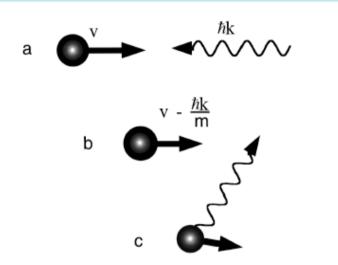


FIG. 1. (a) An atom with velocity v encounters a photon with momentum  $\hbar k = h/\lambda$ ; (b) after absorbing the photon, the atom is slowed by  $\hbar k/m$ ; (c) after re-radiation in a random direction, on average the atom is slower than in (a).

#### Taken from W.D. Phillips, RMP (1998)



### Laser cooling forces

1) Induced light pressure force [Ashkin, PRL (1970)]

$$F = F_0 - \beta v + O(v^2)$$

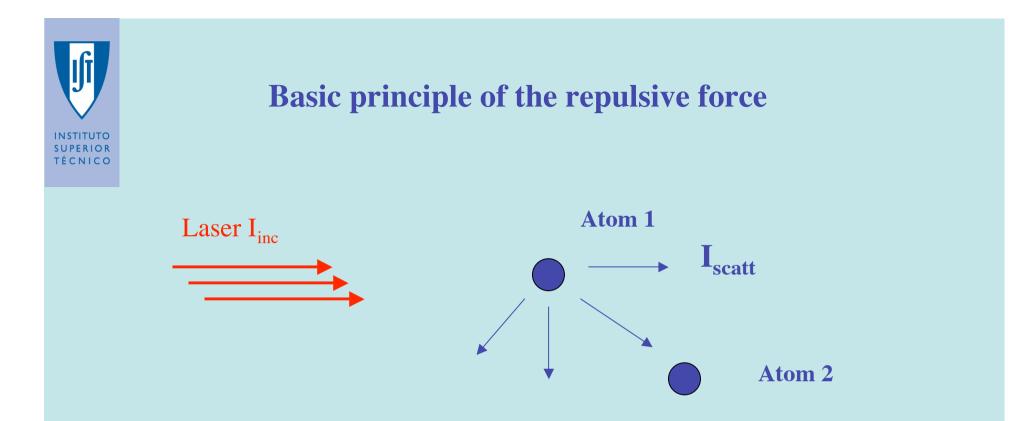
$$F_{0} = \hbar q \Gamma I \frac{\Gamma^{2}}{\Gamma^{2} + \Delta^{2}} ,$$
  
$$\beta = \frac{4MI}{[1 + (\Delta/\Gamma)^{2}]^{2}} \left[\frac{\varepsilon}{\Gamma}\right] \Delta$$
  
Recoil energy  $\varepsilon = \frac{\hbar q^{2}}{2M}$ 

2) Shadow effect or absorption force [Dalibard, Opt.Commun. (1988)

$$\vec{\nabla} \cdot [\vec{F}_A(\vec{r})] \!=\! -\sigma_L^2 \frac{I}{c} n(\vec{r})$$

3) Repulsive effect or radiation trapping force [Sesko et al., JOSA B (1990)]

$$\vec{\nabla} \cdot [\vec{F}_{R}(\vec{r})] = \sigma_{R} \sigma_{L} \frac{I}{c} n(\vec{r})$$



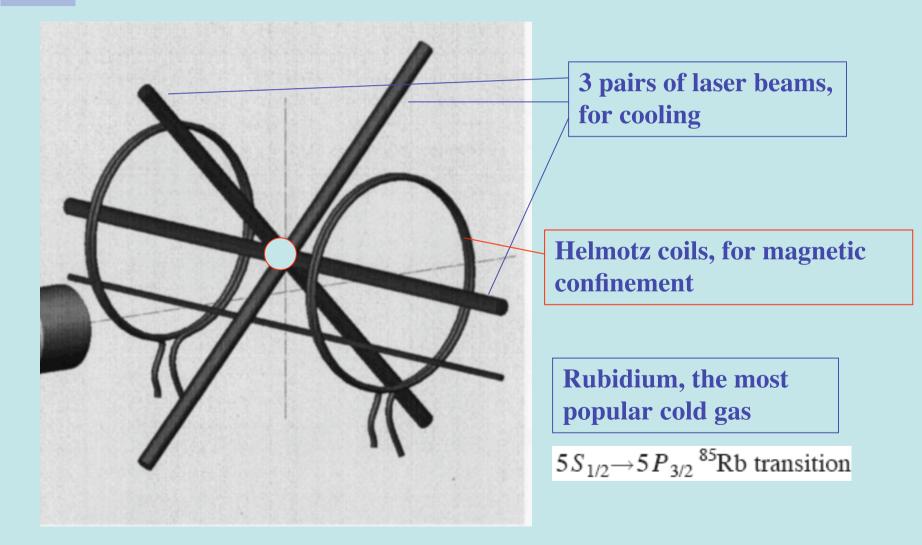
Atomic repulsion results from radiation pressure of the scattered radiation (I  $_{scatt}$  ~1 / r^2 )

$$\nabla \cdot \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ F(\mathbf{r}) \end{bmatrix} = Qn(\mathbf{r}), \qquad Q = (\sigma_R - \sigma_L)\sigma_L I/c$$

**Competing effect: repulsive force dominates over shadow effect** 



### **Magneto-optical traps (MOTs)**



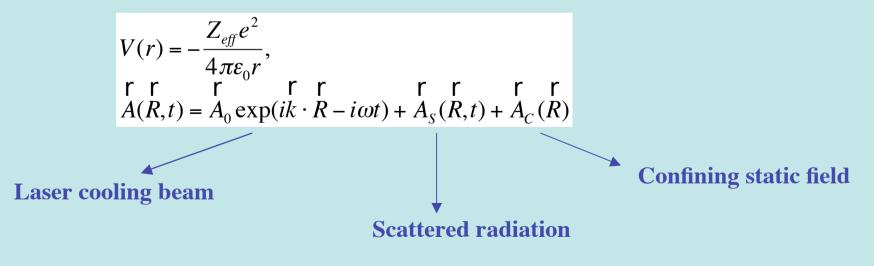


### 2. From the Wave Equation ...

#### **Schrödinger's equation**

$$ih\frac{\partial}{\partial t} | \stackrel{\mathbf{r}}{r}, \stackrel{\mathbf{r}}{R} \ge H | \stackrel{\mathbf{r}}{r}, \stackrel{\mathbf{r}}{R} \ge$$
$$H = H(\stackrel{\mathbf{r}}{r}, \stackrel{\mathbf{r}}{R}, t) = \frac{1}{2m}(\stackrel{\mathbf{r}}{p} + \stackrel{\mathbf{r}}{eA})^2 + \frac{1}{2M}(\stackrel{\mathbf{r}}{P} - \stackrel{\mathbf{r}}{ZeA})^2 + V(r)$$

#### **Potentials**





# **2... to Wave Kinetic equation**

Wigner matrix

$$W_{nk}(\vec{R}, \vec{q}, t) = \int \Phi_n^* (\vec{R} + s/2, t) \Phi_k(\vec{R} - s/2, t) \exp(-i\vec{q} \cdot s) ds$$

**Wigner-Moyal equation** 

$$\begin{pmatrix} \frac{\partial}{\partial t} + \frac{\mathbf{h}q}{M} \cdot \frac{\partial}{\partial R} \end{pmatrix} W_{nn} = \sum_{k} h_{nk}(\omega) [W_{nk}^{(-)} - W_{nk}^{(+)}] \exp(ik \cdot R - i\Delta\omega t)$$
  
 
$$\Delta\omega = \omega - \omega_{nk}, \qquad h_{nk}(\omega) = \frac{\omega}{\mathbf{h}} A_0 p_{nk}, \qquad W_{nk}^{(\pm)} = W_{nk}(\mathbf{R}, \mathbf{q} \pm \mathbf{k}/2, t)$$

**Quasi-classical approximation** 

$$W_{nk}^{(\pm)} \approx W_{nk} \pm \frac{k}{2} \cdot \frac{\partial}{\partial q} W_{nk} + \frac{kk}{2^3} \cdot \frac{\partial^2}{\partial q^2} W_{nk}$$
  
Diffusion term

### **3. Collective forces in cold atom gas**

Wave kinetic equation in the quasi-classical limit

$$\begin{bmatrix} \frac{\partial}{\partial t} + \stackrel{\mathbf{r}}{v} \cdot \frac{\partial}{\partial r} + \frac{1}{M} \begin{pmatrix} \stackrel{\mathbf{r}}{F_{conf}} + \stackrel{\mathbf{r}}{F} \end{pmatrix} \cdot \frac{\partial}{\partial v} \end{bmatrix} W = 0$$

**Collective (shadow - repulsive) force** 

$$\nabla \cdot F = Qn(r,t) \equiv Q \int W(v) dv$$

**Coulomb-like atom-atom interaction** 

$$Q = (\sigma_R - \sigma_L)\sigma_L I/c$$





#### Equilibrium

$$F_{conf} + F_0 = 0, \qquad \nabla \cdot F_0 = Qn_0(r)$$

#### Perturbation

$$\delta \vec{F} = \vec{F}_{conf} + \vec{F} \propto \exp(i\vec{k} \cdot \vec{r} - i\omega t),$$
  

$$\vec{F} \cdot \vec{r} = W_0(\vec{v}) + \tilde{W}(\vec{v})\exp(i\vec{k} \cdot \vec{r} - i\omega t)$$

**Linearized evolution equations** 

$$\tilde{W} = -\frac{i}{M} \frac{\delta F \cdot \partial W_0 / \partial v}{(\omega - k \cdot v)}$$
  
$$r r r Q \int \tilde{W}(v) dv$$

**Dispersion relation for cold atom gas** (infinite geometry)

$$1 + \frac{Q}{Mk^2} \int \frac{k \cdot \partial W_{\mu 0} / \partial v}{(\omega - k \cdot v)} dv = 0$$



#### Dispersion relation similar to that of electrostatic waves in a plasma

$$1 + \chi(\omega, k) = 0$$

**Mono-kinetic distribution** 

$$1 - \frac{QN_{r_0}}{M(\omega - k \cdot v_0)^2} = 0$$

For  $v_0 = 0$ , cold atom oscillations similar to plasma oscillations (compare with  $\omega_{pe}$ )

$$W_0(v) = N_0 \delta(v - v_0)$$

$$\omega = \omega_P \equiv \sqrt{\frac{QN_0}{M}}$$

**Effective atomic charge** 

$$q_{eff} = \sqrt{\varepsilon_0 Q}$$

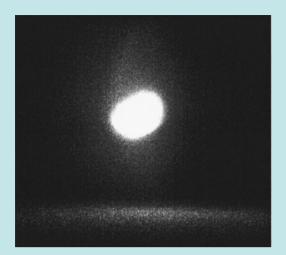
Typical experimental value,  $q_{eff} = 10^{-6} e$ 



# 4. Mie resonance

**Centre of mass position** 

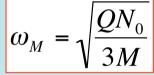
$$\overset{\mathbf{r}}{R}(t) = \frac{1}{N} \int \int dr dv W (\overset{\mathbf{r}}{r}, v, t) \overset{\mathbf{r}}{r}$$

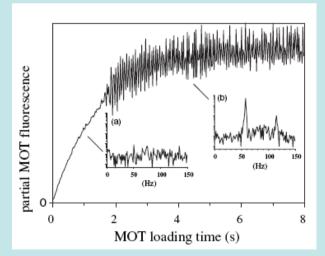


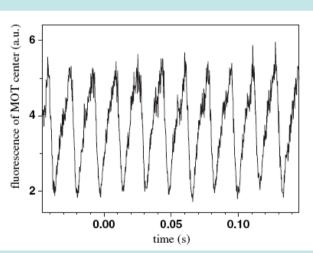
#### **Global equation of motion**

$$\frac{d^2 R}{dt^2} - \omega_M^2 R = f(t)$$

#### Mie frequency (similar to dust Mie frequency in a plasma)







Experiments by G. Labeyrie et al., PRL (2006)



### 5. Plasma-acoustic mode

#### Fluid equations for the cold gas

$$\frac{\partial v}{\partial t} + \stackrel{\mathbf{r}}{v} \cdot \nabla \stackrel{\mathbf{r}}{v} = -\frac{\nabla P}{Mn} + \frac{\dot{F}}{M}$$
$$\frac{\partial n}{\partial t} + \nabla \cdot (\stackrel{\mathbf{r}}{nv}) = 0$$
$$\stackrel{\mathbf{r}}{\nabla \cdot \stackrel{\mathbf{r}}{F}} = Qn$$

$$P \propto n^{\gamma}$$

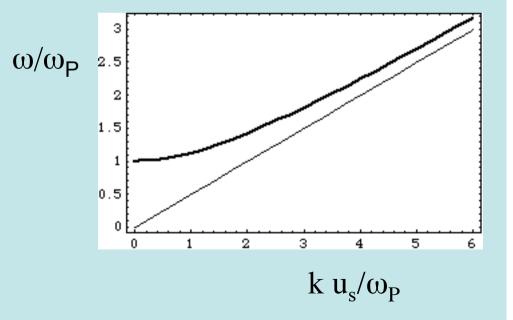
$$\frac{\partial^2 \tilde{n}}{\partial t^2} + \omega_P^2 \tilde{n} - u_s^2 \nabla^2 \tilde{n} = 0$$

**Dispersion relation** 

$$\omega^2 = \omega_P^2 + k^2 u_s^2$$

Sound speed

$$u_s^2 = \frac{5}{3} \frac{P_0}{Mn_0}$$



# 6. Coulomb-like explosions

Fluid equations

High viscosity limit

$$\frac{\partial v}{\partial t} + \stackrel{\mathsf{r}}{v} \cdot \nabla \stackrel{\mathsf{r}}{v} = -\frac{\nabla P}{Mn} + \frac{\dot{F}}{M} - \stackrel{\mathsf{r}}{\alpha v}$$
$$\frac{\partial n}{\partial t} + \nabla \cdot (\stackrel{\mathsf{r}}{nv}) = 0, \quad \nabla \cdot \stackrel{\mathsf{r}}{F} = Qn$$

$$\begin{aligned} \stackrel{\mathbf{r}}{v} &\approx \frac{\dot{F}}{\alpha} \\ \frac{\partial n}{\partial t} &= -\frac{1}{\alpha} \nabla \cdot \begin{bmatrix} \stackrel{\mathbf{r}}{r} \stackrel{\mathbf{r}}{r} \stackrel{\mathbf{r}}{r} \\ F(r)n(r,t) \end{bmatrix} \end{aligned}$$

Spherically expanding gas cloud

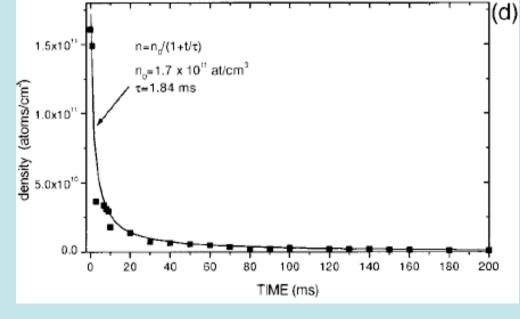
$$\frac{1}{n(t)} = \frac{1}{n_0} + \frac{Q}{\alpha}t$$

INSTITUTO

SUPERIOR

TÉCNICO

$$V/V_0 = 1 + t/\tau$$
,  
 $n/n_0 = (1 + t/\tau)^{-1}$ 

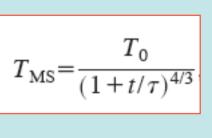


L.Pruvost et al, PRA(2000)

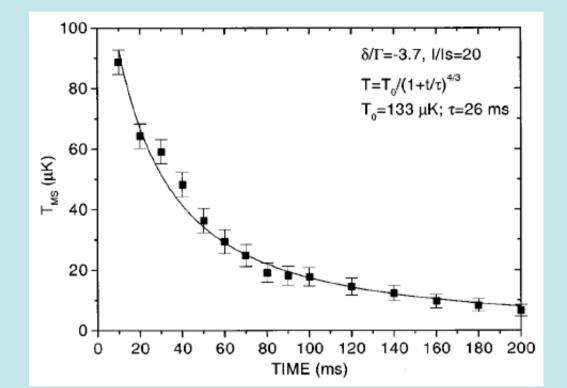


### Atom cooling results from cloud expansion

Similar but slower than Coulomb explosion in plasmas



 $k_B T_{\rm MS} = m \langle \nu^2 \rangle$ 



Question: can collective effects lead to new cooling processes, and to more effective BE condensation?



### 7. Tonks-Dattner resonances

Internal oscillations in a Nonuniform cold gas

$$\nabla^2 \tilde{n} + k^2 (r) \tilde{n} = \frac{\delta F}{M u_s^2} \nabla n_0 + \frac{\nabla n_0}{M} \nabla \tilde{n},$$
  
$$k^2 (r) = [\omega^2 - \omega_P^2 (r)] / u_s^2$$

a) Uniform slab

$$\frac{d^2\tilde{n}}{dx^2} + \frac{1}{u_s^2} [\omega^2 - \omega_P^2(x)]\tilde{n} \approx 0$$

$$\omega_m^2 = \omega_P^2 \left[ 1 + \left( m + \frac{1}{2} \right)^2 \pi^2 \frac{\lambda_D^2}{L} \right]$$

m = 0, 1, 2, ...

b) Cylindrical geometry (plasma)

Parker, Nickel and Gould, PoF (1964)

c) Spherical geometry(neutral cold atom gas)

Terças, Mendonca (2007)



# 8. Rydberg Plasmas

a. Creation of ultracold plasmas by photoionization of laser cooled Xe atoms [T.C. Killian et al., PRL (1999)]

b. Spontaneous evolution of a Rydberg could Xe gas, into a plasma

**Creation of very could plasmas** (an apparent contradiction)

 $T_i \sim 30 \ \mu K, T_e < 100 \ mK$ (instead of 1-10 eV)

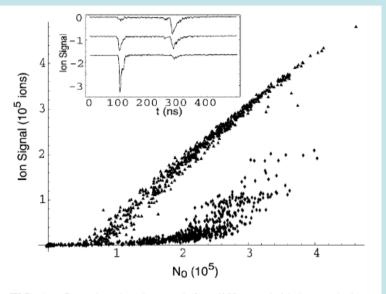


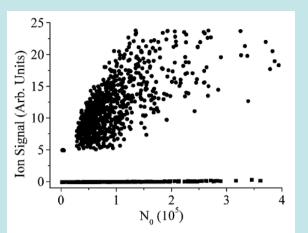
FIG. 1. Ion signals observed for different initial populations of the Rb 36d state. The two curves show the ion signals  $2 \ \mu s$  ( $\blacklozenge$ ) and  $12 \ \mu s$  ( $\blacktriangle$ ) delays after the dye laser excitation. The inset shows the time resolved signals obtained for  $N_0 = 1.9 \times 10^5$  atoms at delays of  $2 \ \mu s$  (upper trace),  $5 \ \mu s$  (middle trace), and  $12 \ \mu s$  (lower trace). In the upper trace there is no early ion signal and a large late atom signal while the reverse is true in the lower trace, indicating the formation of the plasma by  $12 \ \mu s$  after laser excitation.

M.P. Robinson et al., PRL (2000)



#### **Possible explanation**

Existence of a small fraction of hot atoms (1% at room temperature)



#### Or maybe not [T. Pohl et al. PRA (2003)]

FIG. 4. Ion signals obtained with a delay of 3  $\mu$ s after the excitation of the Cs 39*d* state with ( $\bullet$ ) and without ( $\blacksquare$ ) hot atoms. The signal hot atoms is offset by five units.

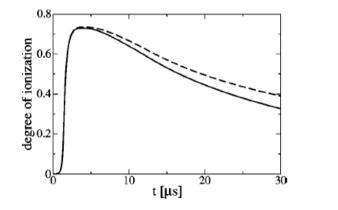


FIG. 1. Time evolution of the degree of ionization for the following initial conditions: atom density  $\rho = 8 \times 10^9$  cm<sup>-3</sup>, atom temperature  $T_a = 140 \ \mu$ K, plasma width  $\sigma = 60 \ \mu$ m, and initial principal quantum number of the Rydberg atoms,  $n_0 = 70$ . Results are shown with ionic correlations (solid) and without ionic correlations (dashed).

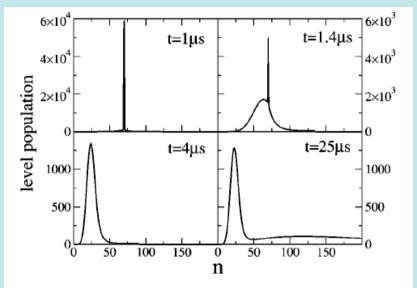


FIG. 3. Level distribution of Rydberg atoms after 1  $\mu$  s, 1.4  $\mu$  s, 4  $\mu$  s, and 25  $\mu$  s.

Plasma physics extends to new frontiers



# 9. Waves in Cold Quantum Plasmas

**Schrödinger-Poisson system of equations, for electrons and ions (or holes or positrons)** 

$$i\partial_t\psi_j + A_j\nabla^2\psi_j + (s_jV - |\psi_j|^\alpha)\psi_j = 0,$$

$$\nabla^2 V = |\psi_e|^2 - |\psi_i|^2$$

Time normalized by  $h/T_F$ , space by  $\lambda_D$ 

$$\lambda_D = \sqrt{\epsilon_0 T_F / e^2 n_0}.$$

$$s_e = +1$$
 and  $s_i = -1$   $A_j = m_j e^2 / 2\epsilon_0 \hbar^2 \sqrt{n_0}$ 

 $\alpha = 4/d$ , where d is the dimension of the system



### Wigner function for both species

$$F_j(\vec{r}, \vec{k}, t) = \int \psi_j(\vec{r} + \vec{s}/2, t) \ \psi_j^*(\vec{r} - \vec{s}/2, t) \ e^{i\vec{k}\cdot\vec{s}} \ d\vec{s}.$$

### Wave kinetic equation

$$i\left(\partial_t + A_j\vec{k}\cdot\nabla\right)F_j = -\int V_j(\vec{q},t)[F_{j-} - F_{j+}] e^{i\vec{q}\cdot\vec{r}} \frac{d\vec{q}}{(2\pi)^3}$$

$$V_j(\vec{r},t) = s_j V - \rho_j^{\alpha/2}$$
  $F_{j\pm} \equiv F_j(\vec{k} \pm \vec{q}/2).$ 

**Poisson equation** 

**Probability density** 

$$\nabla^2 V = \rho_e - \rho_i.$$

$$\rho_j(\vec{r},t) = |\psi_j(\vec{r},t)|^2 = \int F_j(\vec{r},\vec{k},t) \, \frac{d\vec{k}}{(2\pi)^3}$$



### Linear wave analysis

$$V(\vec{r},t) = \tilde{V} \exp(i\vec{q}\cdot\vec{r}-i\Omega t)$$
  

$$F_j(\vec{r},\vec{k},t) = F_{j0} + \tilde{F}_j \exp(i\vec{q}\cdot\vec{r}-i\Omega t)$$
  

$$\rho_j(\vec{r},t) = \rho_{j0} + \tilde{\rho}_j \exp(i\vec{q}\cdot\vec{r}-i\Omega t)$$

### **System of equations for the e-i perturbations**

**Dispersion relation** 

$$\begin{bmatrix} (q^2 - I_e) & I_e \\ I_i & (q^2 - I_i) \end{bmatrix} \begin{bmatrix} \tilde{\rho}_e \\ \tilde{\rho}_i \end{bmatrix} = 0.$$

$$(q^2 - I_e)(q^2 - I_i) - I_e I_i = 0$$

$$I_j(\Omega, \vec{q}) = \int \frac{(F_{j0-} - F_{j0+})}{(\Omega - \vec{v}_j \cdot \vec{q} - \rho_{j0}^{\alpha/2})} \frac{d\vec{k}}{(2\pi)^3}.$$



### **Electron oscillations**

### Cold quantum plasma

Classical result

$$\left(\Omega - \rho_0^{\alpha/2}\right)^2 = \rho A_e + \frac{1}{4} A_e^2 q^4$$

$$\Omega^2 = \omega_{pe}^2 (1 + 3q^2 \lambda_D^2)$$

**Electron plasma frequency** 

$$\omega_{pe} = \sqrt{\rho_0 A_e}$$

**Two types of quantum corrections** 

frequency shift  $\rho_0^{\alpha/2}$ 

 $q^4$  dispersion term



# **Kinetic dispersion relation**

$$q^{2} = \frac{1}{qA_{e}} \int \frac{\left[G_{0}(p - q/2) - G_{0}(p + q/2)\right]}{(p - p_{0})} \frac{dp}{2\pi}$$

$$G_0(p) = \int F_0(p, \vec{k}_\perp) \, \frac{dk_\perp}{(2\pi)^2}$$

$$\epsilon_r(\Omega, q) + i\epsilon_i(\Omega, q) = 0,$$

$$\epsilon_r(\Omega, q) = q^2 - \frac{\rho_0}{A_e} \left[ \frac{1}{(p_0^2 - q^2/4)} + \frac{2p_0 < p^2 >}{(p_0^2 - q^2/4)^2} \right]$$

$$\epsilon_i = -\frac{\pi}{4qA_e} \left[ G_0(p_0 - q/2) - G_0(p_0 + q/2) \right]$$



# **Quantum Landau damping**

### Wave damping

$$\gamma = -\epsilon_i(\Omega_r, q) / (\partial \epsilon_r / \partial \Omega)_r$$

$$\gamma = -\frac{\pi}{8} \frac{\rho_0^{1/2}}{q A_e^{1/2}} \left[ G_0(p_0 - q/2) - G_0(p_0 + q/2) \right]$$

### **Classical limit**

$$\gamma = \frac{\pi}{2^4} \left(\frac{\rho_0}{A_e}\right)^{1/2} \left(\frac{dG_0}{dp}\right)_{p=p_0}$$



### **10. Conclusions**

- The neutral cold atom gas can behave like a plasma;
- Collective effects are due to shadow-repulsive forces;
- Plasma-like oscillations and plasma-acoustic modes can exist;
- Mie and Tonks-Dattner resonances can be observed;
- Rydberg gas spontaneously evolves into a cold plasma;
- New areas of plasma physics can be explored.