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Outline:

1. Laser cooling forces;
2. From wave equation to kinetic equation;
3. Collective oscillations of a cold atom gas;
4. Mie resonance (observations?);
5. Plasma-acoustic mode;
6. Coulomb-like explosions;
7. Tonks-Dattner resonances;
8. Rydberg plasmas;
9. Waves in could quantum plasmas;
10. Conclusions.



1. Principle of laser cooling

Momentum picture

Taken from W.D. Phillips, RMP (1998)
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The atom looses kinetic energy at each
absorption-emission cycle



Laser cooling forces

1) Induced light pressure force
[Ashkin, PRL (1970)]

Recoil energy

2) Shadow effect or absorption force
[Dalibard, Opt.Commun. (1988)

3) Repulsive effect or radiation
trapping force [Sesko et al.,
JOSA B (1990)]



Competing effect: repulsive force dominates over shadow effect

  

! 

" #
r 
F (

r 
r )[ ] = Qn(

r 
r ), Q = ($

R
%$

L
)$

L
I /c

Laser Iinc Atom 1

Atom 2

Basic principle of the repulsive force

Iscatt

Atomic repulsion results from radiation pressure of the
scattered radiation (Iscatt ~1 / r2 )



Magneto-optical traps (MOTs)

Helmotz coils, for magnetic
confinement

3 pairs of laser beams,
for cooling

Rubidium, the most
popular cold gas



2. From the Wave Equation ...

Schrödinger’s equation
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2... to Wave Kinetic equation

Wigner matrix
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Wigner-Moyal equation
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3. Collective forces in cold atom gas

Wave kinetic equation in the quasi-classical limit
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Equilibrium   
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Linearized evolution equations
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Dispersion relation for cold atom gas
(infinite geometry)
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Mono-kinetic distribution
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For v0 = 0, cold atom oscillations
similar to plasma oscillations
(compare with ωpe)
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Dispersion relation similar to that of
electrostatic waves in a plasma
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4. Mie resonance

Experiments by G. Labeyrie et al., PRL (2006)

Centre of mass position
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5. Plasma-acoustic mode

ω/ωP

k us/ωP

Fluid equations for the cold gas
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6. Coulomb-like explosions

  

! 

"
r 
v 

"t
+

r 
v # $

r 
v = %

$P

Mn
+

r 
F 

M
%&

r 
v 

"n

"t
+$ # (n

r 
v ) = 0, $ #

r 
F = Qn

Fluid equations High viscosity limit

  

! 

r 
v "

r 
F 

#

$n

$t
= %

1

#
& '

r 
F (

r 
r )n(

r 
r ,t)[ ]

! 

1

n(t)
=
1

n
0

+
Q

"
t

Spherically expanding gas cloud

L.Pruvost et al, PRA(2000)



Atom cooling results from cloud expansion

Question: can collective effects lead to new cooling
processes, and to more effective BE condensation?

Similar but slower than
Coulomb explosion in plasmas



7. Tonks-Dattner resonances

Internal oscillations in a
Nonuniform cold gas
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b) Cylindrical geometry
(plasma) Parker, Nickel and Gould, PoF (1964)

c) Spherical geometry
(neutral cold atom gas)

Terças, Mendonca (2007)



8. Rydberg Plasmas

b. Spontaneous evolution of a
Rydberg could Xe gas, into a
plasma

M.P. Robinson et al., PRL (2000)

Creation of very could plasmas
(an apparent contradiction)

Ti ~ 30 µK, Te < 100 mK
(instead of 1-10 eV)

a. Creation of ultracold plasmas by photoionization of
laser cooled Xe atoms [T.C. Killian et al., PRL (1999)]



Possible explanation

Existence of a small fraction of hot
atoms (1% at room temperature)

Plasma physics extends to new frontiers 

Or maybe not [T. Pohl et al. PRA (2003)]



9. Waves in Cold Quantum Plasmas

Schrödinger-Poisson system of equations, for electrons
and ions (or holes or positrons)

Time normalized by h/TF, space by λD



Wigner function for both species

Wave kinetic equation

Poisson equation Probability density



Linear wave analysis

System of equations for the e-i perturbations
Dispersion relation



Electron oscillations

Cold quantum plasma Classical result

Electron plasma frequency

Two types of quantum corrections



Kinetic dispersion relation



Quantum Landau damping

Wave damping

Classical limit



10. Conclusions

 
• The neutral cold atom gas can behave like a plasma;  

• Collective effects are due to shadow-repulsive forces;

• Plasma-like oscillations and plasma-acoustic modes can exist;

• Mie and Tonks-Dattner resonances can be observed;

• Rydberg gas spontaneously evolves into a cold plasma;

• New areas of plasma physics can be explored.




