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* Different systems described by the same formalism

* Transfer of know how from one discipline to another one
 Alternative “keys of reading” for each discipline

* New insights and possibility of new predictions



ot 2m

a

Ulrt, W (r, ))]7) = Ugy (1,8) + goN [ (r, 1))
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W (1, t) = macroscopic wave function of the condensate

m, = atomic mass,

U.,, (r,t) = external confining potential for BECs

g,= 4m V2 a/ m_ = coupling constant (related to the short range scattering (s-wave) )
a = length representing the interactions between atomic particles

N = number of atoms
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*Several kind of solitons have been found in
some approximations

’

In order to get exact soliton structures a sort
of “control of the system” seems to be necessary
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standard GPE control potential
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The control potential has to be determined dynamically
by the system itself
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We present a controlling potential method for solving the three-dimensional Gross—Pitaevskii equation (GPE),
which governs the nonlinear dynamics of the Bose—Einstein condensates (BECs) in an inhomogencous poten-
tial trap. Our method allows one to construct ground and excited matter wave states whose longitudinal profiles
can have bright solitons. This method provides the confining potential that filters and controls localized BECs.
Moreover, it is predicted that, while the BEC longitudinal soliton profile is controlled and kept unchanged, the
transverse profile may exhibit oscillatory breathers (the unmatched case) or move as a rigid body in the form of
cither coherent states (performing the Lissajous figures) or a Schrodinger cat state (matched case). © 2004
MAIK “Nauka/Interperiodica”.
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Abstract. We present one-dimensional (1D) stability analysis of a recently proposed method to filter and
control localized states of the Bose-Einstein condensate (BEC), based on novel trapping techniques that
allow one to conceive methods to select a particular BEC shape by controlling and manipulating the exter-
nal potential well in the three-dimensional (3D) Gross—Pitaevskii equation (GPE). Within the framework
of this method, under suitable conditions, the GPE can be exactly decomposed into a pair of coupled
equations: a transverse two-dimensional (2D) linear Schroédinger equation and a one-dimensional (1D)
longitudinal nonlinear Schrédinger equation (NLSE) with, in a general case, a time-dependent nonlinear
coupling coefficient. We review the general idea how to filter and control localized solutions of the GPE.
Then, the 1D longitudinal NLSE is numerically solved with suitable non-ideal controlling potentials that
differ from the ideal one so as to introduce relatively small errors in the designed spatial profile. It is shown
that a BEC with an asymmetric initial position in the confining potential exhibits breather-like oscillations
in the longitudinal direction but, nevertheless, the BEC state remains confined within the potential well
for a long time. In particular, while the condensate remains essentially stable, preserving its longitudinal
soliton-like shape, only a small part is lost into “radiation”.

PACS. 03.75.Lm Tunneling. Josephson effect. Bose-Einstein condensates in periodic potentials. solitons,
vortices, and topological excitations — 05.45.Yv Solitons — 05.30.Jp Boson systems — 03.65.Ge Solutions
of wave equations: bound states
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We assume that:
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Hermite-Gauss modes




e transverse space and using the controlling
condition,we get the controlled 1D GPE:
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_ 4 12 q,., depends on the shape
qip(s)=¢q f (W (r,9) [ dr { of the transverse density profile



~Once the transverse and the longidinal solutions are found,
namely ¥ (r, ,s) and W, (z,s), the explicit dependence in space and
time of the control potential, Vontr = Voon(1,8), that allows to keep

and control the 3D solution
*For cilindrical simmetry, namely K=K =K. [ g, (s)

1
o1 (s)

o, (s) = r.m.s. of the transverse Hermite-Gauss/Laguerre-Gauss
modes 42 o, A

=0 Pinney-Ermakov equation
ds’ o’
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W (z,5)=+/p(z,5) exp Aiﬁ(z,s)
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Solitary waves in the Madelung’s fluid: Connection between
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Abstract. Aninvestigation to despen the connection between the family of nonlinear Schrodinger equations
and the one of Korteweg-de Vries equations is carried out within the context of the Madelung’s fluid picture.
In particular, under suitable hypothesis for the current velocity, it is proven that the cubic nonlinear
Schrédinger equation, whose solution is a complex wave function, can be put in correspondence with the
standard Korteweg-de Vries equation, is such a way that the soliton solutions of the latter are the squared
modulus of the envelope soliton solution of the former. Under suitable physical hypothesis for the current
velocity, this correspondence allows us to find envelope soliton solutions of the cubic nonlinear Schrédinger
equation, starting from the soliton solutions of the associated Korteweg-de Vries equation. In particular, in
the case of constant current velocities, the solitary waves have the amplitude independent of the envelope
velocity (which coincides with the constant current velocity). They are bright or dark envelope solitons
and have a phase linearly depending both on space and on time coordinates. In the case of an arbitrarily
large stationary-profile perturbation of the current velocity, envelope solitons are grey or dark and they
relate the velocity wo with the amplitude; in fact, they exist for a limited range of velocities and have a
phase nonlinearly depending on the combined variable = — uys (s being a time-like variable). This novel
method in solving the nonlinear Schrodinger equation starting from the Korteweg-de Vries equation give
new insights and represents an alternative key of reading of the dark/grey envelope solitons based on the
fluid language. Moreover, a comparison between the solutions found in the present paper and the ones
already known in literature is also presented.

PACS. 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including
parametric effects, mode coupling, ponderomotive effects, etc.) — 05.45.Yv Solitons — 42.65.-k Nonlinear
optics — 67.57.Jj Collective modes
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Abstract

A theory involving a correspondence between envelope solitonlike solutions
of the generalized nonlinear Schridinger equation (GNLSE) and solitonlike
solutions of the generalized Korteweg-de Vries equation (GKVJE) is
developed within the context of the Madelung’s fluid description (fluid
counterpart description of the GNLSE). This correspondence, which, under
suitable constraints, can be made invertible, seems to be very helpful for
finding one family of solutions (whether envelope solitonlike solutions of
the GNLSE or solitonlike solutions of the GKdVE) starting from the knowl-
edge of the other family of solution (whether solitonlike solutions of the
GKAdVE or envelope solitonlike solutions of the GNLSE). The theory is suc-
cessfully applied to wide classes of both modified nonlinear Schrodinger
equation (MNLSE) and modified Korteweg-de Vries equation (MKVAJE),
for which bright and gray/dark solitonlike solutions are found. In particular,
bright and gray/dark solitary waves are determined for the MNLSE with
a quartic nonlinear potential in the modulus of the wavefunction (i.e.
g11 ¥ + g2 |¥[*) as well as for the associated MKdVE. Furthermore, the well
known bright and gray/dark envelope solitons of the cubic NLSE and the
corresponding solitons of the associated standard KAVE are easily recovered
from the present theory Remarkably. this approach opens up the possibility to
transfer all the know how concerning the instability criteria for solitonlike
solutions of the MKdVE to the instability theory of envelope solitonlike
solutions of the MNLSE.

where a and v are real constants?, and G[u] is a real
functional of w. In both equations, x is the 1-D con-
figurational space coordinate and s is the timelike
coordinate. In particular, in this letter, special attention will
be devoted to a correspondence between the special case
of (1) when U[|¥|*] = qo|¥|*, go and B being real and
positive real numbers, respectively, namely

S~ ¥ =0, 3)

and the special case of (2) when Glu] = pou’, py and 7y being
real and positive real numbers, respectively, namely
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a—— po’ —+ 0.

“4)

According to other authors [2-5], let us define (3) as modified
nonlinear Schridinger equation (MNLSE) and (4) as modi-
Sied Korteweg—de Vries equation (MKAVE). Our goals are:
(i) to construct a correspondence between (1) and (2) in such
a way that each positive stationary-profile solution of (2),
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Abstract

We review the results of recent investigations dealing with a connection
between the envelope soliton-like solutions of a wide family of nonlinear
Schrodinger equations (NLSEs) and the soliton-like solutions of a wide family
of Korteweg-de Vries equations (KdVEs). The investigation is carried out
within the context of the Madelung’s fluid picture, which plays the role of
the fluid counterpart of the NLSE. In two different fluid motion regimes
(uniform current velocity and stationary-profile current velocity variation,
respectively), bright and gray/dark soliton-like solutions of both modified
NLSE and modified KdVE are found. Remarkably, the present approach
represents an alternative key of reading for the envelope soliton theory of
the NLSE. In particular, the well known envelope soliton solutions and soliton
solutions of the cubic NLSE and the standard KdVE, respectively, are
recovered from the general approach and in terms of the fluid language
presented in this paper.

of the cubic NLSE, starting from the knowledge of the
corresponding bright and gray/dark solitons of the standard
KdVE [6-9]. Furthermore, a more general approach which
involves envelope solitons of the following generalized
nonlinear Schrodinger equation (GNLSE)

LY PPy 2
=== — 5=+ U[|1¥]¥, (1)

(U[|¥)] and 2 being an arbitrary real functional of the
complex wavefunction ¥ and an arbitrary real dispersion/
diffraction coeflicient, respectively) and the solitons of
the following generalized Korteweg-de Vries equation
(GKAVE)
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W (z,s)

c,(s) = arbitrary function of s
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the pair of fluid equations can be reduced to the following

one (KdV equation + continuity equation):
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W (z,5) =4/a4/q,,(s) sech 5 zZ |exp A_c Eg(s)zzﬂ?o

K. >0

with the following additional controlling conditions

1 d 1 dc
To _ 2g(s), = 2g(s)
q,, ds c, ds
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