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            BECBEC
Mesoscopic PhysicsMesoscopic Physics

• Different systemsDifferent systems described by the  described by the same formalismsame formalism

••  Transfer of know howTransfer of know how from one discipline to another one from one discipline to another one

•• Alternative  Alternative ““keys of readingkeys of reading”” for each discipline for each discipline

•• New insights and possibility of  New insights and possibility of new predictionsnew predictions



The dynamics of BECs in a spatially nonuniform
confining potential well is governed by the GPE

      E. P. Gross, Nuovo Cimento 20, 454 (1961)
       L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

Ψ (r, t) = macroscopic wave function of the condensate
ma = atomic mass,
Uext (r,t) = external confining potential for BECs
g0= 4π ∇2 a/ ma = coupling constant (related to the short range scattering (s-wave)  )
a  =  length representing the interactions between atomic particles
N = number of atoms
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U(r,t, |Ψ (r, t))|2) = Uext (r,t) + g0N |Ψ (r, t))|2
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V[r,s, |Ψ (r, s))|2] = Vext (r,s) + q |Ψ (r, s))|2
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We assume that the Vext (r,s) is the sum of  quadratic terms:

 Vext (r,s) = V⊥(r⊥,s) + Vz(z,s)
 r = (x,y,z) = (r⊥ , z)

Assumptions for Assumptions for VVextext (r,s) (r,s)
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THE THE ““STANDARDSTANDARD”” GPE GPE

•Difficulties to find soliton solutions in one or
more dimensions
•Several kind of solitons have been found in
some approximations

In order to get exact soliton structures a sort 
of “control of the systemcontrol of the system” seems to be necessary
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  ““CONTROLLEDCONTROLLED”” 3D GPE 3D GPE

standard GPEstandard GPE control potentialcontrol potential
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A correct analysis of the system should includeA correct analysis of the system should include
the the control potential termcontrol potential term in the GPE in the GPE  

The control potential has to be determined dynamicallyThe control potential has to be determined dynamically
by the system itselfby the system itself







We look for a normalized localized solution of
the controlled 3D GPE in the form:

ΨΨ((rr,s) = ,s) = ΨΨ⊥⊥((rr⊥⊥,s) ,s) ΨΨzz (z,s) (z,s)

 under the under the controlling conditioncontrolling condition
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We assume that:We assume that:
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Hermite-Gauss modesHermite-Gauss modes

0,0 >> yx KK
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After multiplying by After multiplying by Ψ⊥  Ψ⊥*, integrating over all
the transverse space and using the controlling space and using the controlling
condition,we get the condition,we get the controlled 1D GPEcontrolled 1D GPE::
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The The controlled longitudinal GPEcontrolled longitudinal GPE::

qq1D depends on the shape  depends on the shape 
of the transverse density profileof the transverse density profile



••A soliton solution of the controlled 1D GPE is a one-A soliton solution of the controlled 1D GPE is a one-
dimensional solution of the controlled longitudinal GPEdimensional solution of the controlled longitudinal GPE
corresponding to the following control potential:corresponding to the following control potential:
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••Once the transverse and the longidinal solutions are found,Once the transverse and the longidinal solutions are found,
namely namely ΨΨ⊥⊥((rr⊥⊥,s) and ,s) and ΨΨzz (z,s),  (z,s), the explicit dependence in the explicit dependence in spacespace and and
timetime of the control potential,  of the control potential, VVcontrcontr =  = VVcontrcontr((rr,s), ,s), that allows to keepthat allows to keep
and control the 3D solutionand control the 3D solution

Such a solution is fully controlled by the transverseSuch a solution is fully controlled by the transverse
dynamics, namely dynamics, namely ΨΨ⊥⊥

••For cilindrical simmetry, namely For cilindrical simmetry, namely KKxx= = KKyy= = KKƒƒ::
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σσ⊥⊥(s) = (s) = r.m.s. of the transverse Hermite-Gauss/Laguerre-Gaussr.m.s. of the transverse Hermite-Gauss/Laguerre-Gauss
modesmodes

0
3

2

2

2

=!+
"

""
"

#

$
#

#
c

K
ds

d
Pinney-Ermakov equationPinney-Ermakov equation

Note that:Note that:



  SOLITON SOLUTION OF THESOLITON SOLUTION OF THE
CONTROLLED 1D GPECONTROLLED 1D GPE
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MadelungMadelung’’s fluid representations fluid representation
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••Assumption of quadratic phase:Assumption of quadratic phase:
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g(s) = function to be determined

••Provided that Provided that g(s) is a solution of the following is a solution of the following 
 Riccati Riccati’’s equations equation::
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ds

dg

the pair of fluid equations can be reduced to the following the pair of fluid equations can be reduced to the following 
one (KdV equation + continuity equation):one (KdV equation + continuity equation):
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After some manipulations and transformations, After some manipulations and transformations, 
the following soliton-like solution is obtained:the following soliton-like solution is obtained:
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with the following additional controlling conditionswith the following additional controlling conditions
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Properties of RiccatiProperties of Riccati’’s equation:s equation:

on the other handon the other hand
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Condition of consistency:Condition of consistency:
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Thank youThank you
for your attention!for your attention!




