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Overview

Why look at quantum plasma effects?
Schrodinger’s description.
Non-relativistic single electron dynamics.
Paramagnetic electrons.

From micro to macro physics.

MHD regime.

Conclusions - what the future might bring.




Why quantum plasmas!?

® Manifold applications:
Solid state systems.
Astrophysical environments.
Ultracold plasmas (Rydberg atoms).
Nanostructured materials.

Laser-plasmas...

® [nteresting fundamental aspects of matter dynamics.

® Collective & nonlinear effects + quantum mechanics

\

New physics!




Schrodinger’s description

Electron properties described by complex scalar
wavefunction 1 (|| = probability)
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where we have the Hamiltonian operator
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and ¢ is the external electrostatic potential and €
being the magnitude of the electron charge.




® Nice approach: allows for easy generalizations, new
interactions can be incorporated in Hamiltonian.

Microscopic equations of motion
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for some operator F', |F, H| Poisson brackets.

Example:
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for previous scalar electron description.




Incorporating the spin

Electron properties described by complex spinor
wavefunction (spin degrees of freedom)
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and the Pauli Hamiltonian operator
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Here A is the vector potential, o is the spin
operator, (g = eh/2m, is the Bohr magneton.




Operator equations
of motion




Para- vs. diamagnetism

Energy of a magnetic dipole m
in magnetic field B

EF=-m-B

Parallel magnetic dipole
minimizes the energy —
paramagnetic behaviour, typical
of electrons.

Electron magnetic dipole
moment in terms of spin angular
momentum
21B
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opposite direction of magnetic
moment due to electron charge.

Electron orbital angular momentum
acts as diamagnet.

Any applied magnetic field alters
the electron orbit, thus altering
the atomic current, in such a way
as to counteract the applied
magnetic field.

Well known in classical plasmas.

In materials having both para- and
diamagnetic properties,
paramagnetism dominates.




From micro to macro

Allow the electron microstates to interact via
electromagnetic fields.

N-body problem seldom tractable in plasmas.

Develop a macroscopic model from the underlying
microscopic theory.

Neglecting spin: Let %o, = /T, €xp(iSa/h),
where o¢ enumerates the N wave functions. It is then
straightforward to add up the resulting conservation
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® For spin systems: Decompose spinor wave function
= /N exp(iSa/h)va

Electron spin: unit spinor ¥q.

® Electron fluid equations (continuity eq. unaffected)
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Maxwell’s equation

Due to the intrinsic magnetization, given by
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Ampere’s law is modified according to
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Gives dynamic spin contribution to Maxwell’s
equations.
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MHD regime

Single fluid dynamics (for lowest order coherent spin)
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Model magnetization using Brillouin function for
spin-1/2 particles

M = pugne tanh z B

where the Zeeman energy x = ugB/kpT,. gives the
degree of alignment through the Brillouin function. For

high temp. magnetization ——> 0.




Example:Dispersion relation

Linearizing the equations around a weak static
magnetic field, we get the dispersion relation
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where we have the modified Alfvén and
acoustic speeds
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Example:Dispersion relation

Linearizing the equations around a weak static
magnetic field, we get the dispersion relation
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where we have the modified Alfvén and
acoustic speeds
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Spin modified fast and
2 1/2 slow magnetosonic

~ waves
Cs — Cg

Spin modified
shear Alfvén wave




Example: Magnetic action

Ferrofluids Nanostructured paramagnetic fluids.
Formalism similar to the above applicable.

Normal field instability - saturated by gravity and
surface tension (Cowley & Rosensweig 1967).




Conclusions

New important effects appear from collective quantum domain.

Wide ranging possibilities for applications.
® Nanomaterials.
® Astroplasmas.

® Ultracold plasmas...

Interesting future possibilities:

® Theoretical development: Dense, relativistic plasmas using
computationally viable models.

® Solitons and plasmonics (see C.S. Liu’s talk, Aug 19).






