

1856-53

2007 Summer College on Plasma Physics

30 July - 24 August, 2007

Spin Plasma Dynamics

M. Marklund Umea University Sweden

Spin Plasma Dynamics

CfFP

Department of Physics, Umeå University, Sweden and Centre for Fundamental Physics, RAL, U.K. (Based on work with G. Brodin, PRL **98**, 025001 (2007); New J. Phys., in press (2007))

Plasma Physics Symposium, Abdus Salam ICTP, Trieste, Italy, August 20, 2007

Overview

- Why look at quantum plasma effects?
- Schrödinger's description.
- Non-relativistic single electron dynamics.
- Paramagnetic electrons.
- From micro to macro physics.
- MHD regime.
- Conclusions what the future might bring.

Why quantum plasmas?

- Manifold applications:
 - Solid state systems.
 - Astrophysical environments.
 - Ultracold plasmas (Rydberg atoms).
 - Nanostructured materials.
 - Laser-plasmas...
- Interesting fundamental aspects of matter dynamics.
- Collective & nonlinear effects + quantum mechanics

Schrödinger's description

Electron properties described by complex scalar wavefunction ψ ($|\psi|^2 =$ probability)

$$i\hbar\frac{\partial\psi}{\partial t} = H\psi$$

where we have the Hamiltonian operator

$$H = -\frac{\hbar^2}{2m_e}\nabla^2 - e\phi$$

and ϕ is the external electrostatic potential and e being the magnitude of the electron charge.

Schrödinger's description

- Nice approach: allows for easy generalizations, new interactions can be incorporated in Hamiltonian.
- Microscopic equations of motion

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \frac{1}{i\hbar}[F,H]$$

for some operator F, [F, H] Poisson brackets. Example:

$$oldsymbol{v}\equiv rac{doldsymbol{x}}{dt}=[oldsymbol{x},H]=rac{oldsymbol{p}}{m_e}$$

for previous scalar electron description.

Incorporating the spin

Electron properties described by complex spinor wavefunction (spin degrees of freedom)

 $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$

and the Pauli Hamiltonian operator

$$H = \frac{1}{2m_e} \left(\frac{1}{i\hbar} \boldsymbol{\nabla} + \frac{e}{c} \boldsymbol{A} \right)^2 + \mu_B \boldsymbol{B} \cdot \boldsymbol{\sigma} - e\phi$$

Here A is the vector potential, σ is the spin operator, $\mu_B = e\hbar/2m_e$ is the Bohr magneton.

Operator equations of motion

$$\boldsymbol{v} = \frac{1}{m_e} \left(\boldsymbol{p} + \frac{e}{c} \boldsymbol{A} \right)$$

$$m_e \frac{d\boldsymbol{v}}{dt} = -e(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) - \frac{2\mu_B}{\hbar} \boldsymbol{\nabla}(\boldsymbol{B} \cdot \boldsymbol{S})$$

 $rac{dm{S}}{dt}=rac{2\mu_B}{\hbar}m{B} imesm{S}$ where $m{S}=(\hbar/2)m{\sigma}$.

Para- vs. diamagnetism

• Energy of a magnetic dipole *m* in magnetic field *B*

 $E = -\boldsymbol{m} \cdot \boldsymbol{B}$

- Parallel magnetic dipole minimizes the energy ⇒ paramagnetic behaviour, typical of electrons.
- Electron magnetic dipole moment in terms of spin angular momentum

$$m{m}=-rac{2\mu_B}{\hbar}m{S}$$

opposite direction of magnetic moment due to electron charge.

- Electron *orbital* angular momentum acts as *diamagnet*.
- Any applied magnetic field alters the electron orbit, thus altering the atomic current, in such a way as to counteract the applied magnetic field.
- Well known in classical plasmas.
- In materials having both para- and diamagnetic properties, paramagnetism dominates.

From micro to macro

- Allow the electron microstates to interact via electromagnetic fields.
- N-body problem seldom tractable in plasmas.
- Develop a macroscopic model from the underlying microscopic theory.
- Neglecting spin: Let $\psi_{\alpha} = \sqrt{n_{\alpha}} \exp(iS_{\alpha}/\hbar)$, where α enumerates the N wave functions. It is then straightforward to add up the resulting conservation laws for n_{α} and $v_{\alpha} = \nabla S_{\alpha}/m_e$.
- Fluid equations with Bohm potential:

$$m_e \frac{d\boldsymbol{v}_e}{dt} = -e(\boldsymbol{E} + \boldsymbol{v}_e \times \boldsymbol{B}) - \frac{\boldsymbol{\nabla}p_e}{n_e} + \frac{\hbar^2}{2m_e} \boldsymbol{\nabla} \left(\frac{\boldsymbol{\nabla}^2 \sqrt{n_e}}{\sqrt{n_e}}\right)$$

From micro to macro

• For spin systems: Decompose spinor wave function

 $\psi_{\alpha} = \sqrt{n_{\alpha}} \exp(iS_{\alpha}/\hbar)\varphi_{\alpha}$

Electron spin: unit spinor φ_{α} .

• Electron fluid equations (continuity eq. unaffected)

$$m_e \left(\frac{\partial}{\partial t} + \boldsymbol{v}_e \cdot \boldsymbol{\nabla}\right) \boldsymbol{v}_e = -e \left(\boldsymbol{E} + \boldsymbol{v}_e \times \boldsymbol{B}\right) - \frac{\boldsymbol{\nabla} p_e}{n_e}$$
$$-\frac{2\mu_B}{\hbar} S_a \boldsymbol{\nabla} B^a - \frac{\hbar^2}{2m_e} \left(\frac{\boldsymbol{\nabla}^2 \sqrt{n_e}}{\sqrt{n_e}}\right) + \text{nonlinear spin terms}$$

 $\left(rac{\partial}{\partial t} + oldsymbol{v}\cdotoldsymbol{
abla}
ight)oldsymbol{S} = rac{2\mu_B}{\hbar}oldsymbol{B} imesoldsymbol{S} + ext{thermal and nonlinear spin terms}$

Maxwell's equation

Due to the intrinsic magnetization, given by

$$oldsymbol{M}=-rac{2\mu_B n_e}{\hbar}oldsymbol{S}$$
 ,

Ampère's law is modified according to $oldsymbol{
abla} imes oldsymbol{B} = \mu_0 (oldsymbol{j} + oldsymbol{
abla} imes oldsymbol{M}) + rac{1}{c^2} rac{\partial oldsymbol{E}}{\partial t}.$

Gives dynamic spin contribution to Maxwell's equations.

MHD regime

Single fluid dynamics (for lowest order coherent spin)

$$\rho \frac{d\boldsymbol{v}}{dt} = -\boldsymbol{\nabla} \left(\frac{B^2}{2\mu_0} - \boldsymbol{M} \cdot \boldsymbol{B} \right) + \boldsymbol{B} \cdot \boldsymbol{\nabla} \left(\frac{1}{\mu_0} \boldsymbol{B} - \boldsymbol{M} \right) - \boldsymbol{\nabla} p + \frac{\hbar^2 \rho}{2m_e m_i} \left(\frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right)$$
$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times \left\{ \boldsymbol{v} \times \boldsymbol{B} - \frac{\left[\boldsymbol{\nabla} \times (\boldsymbol{B} - \mu_0 \boldsymbol{M}) \right] \times \boldsymbol{B}}{\left[\boldsymbol{\nabla} - M_a \boldsymbol{\nabla} B^a \right]} - M_a \boldsymbol{\nabla} B^a \right\}$$

 $e\mu_0 n_e$

Model magnetization using Brillouin function for spin-1/2 particles

 ∂t

$$\boldsymbol{M} = \mu_B n_e \tanh x \, \hat{\boldsymbol{B}}$$

where the Zeeman energy $x = \mu_B B / k_B T_e$ gives the degree of alignment through the Brillouin function. For high temp. magnetization $\longrightarrow 0$.

Example: Dispersion relation

Linearizing the equations around a weak static magnetic field, we get the dispersion relation

$$\left(\omega^2 - k_z^2 \widetilde{C}_A^2\right) \left[\left(\omega^2 - k^2 \widetilde{C}_A^2 - k_x^2 \widetilde{c}_s^2\right) \left(\omega^2 - k_z^2 c_s^2\right) + k_x^2 k_z^2 \widetilde{c}_s^4 \right] = 0$$

where we have the modified Alfvén and acoustic speeds

$$\widetilde{C}_A = C_A \left(1 - \frac{\hbar^2 \omega_{pe}^2}{mc^2 k_B T} \right)^{1/2}$$
$$\widetilde{c}_s = c_s \left[1 - \left(\frac{\hbar \omega_{ce}}{k_B T} \right)^2 \right]^{1/2}$$

Example:Dispersion relation

Linearizing the equations around a weak static magnetic field, we get the dispersion relation

$$\begin{aligned} \left(\omega^2 - k_z^2 \widetilde{C}_A^2\right) \left[\left(\omega^2 - k^2 \widetilde{C}_A^2 - k_x^2 \widetilde{c}_s^2\right) \left(\omega^2 - k_z^2 c_s^2\right) + k_x^2 k_z^2 \widetilde{c}_s^4 \right] &= 0 \\ \end{aligned}$$
where we have the modified Alfvén and acoustic speeds
$$\widetilde{C}_A = C_A \left(1 - \frac{\hbar^2 \omega_{pe}^2}{mc^2 k_P T} \right)^{1/2} \end{aligned}$$

Spin modified shear Alfvén wave

 $\widetilde{c}_s = c_s \left[1 - \left(\frac{\hbar \omega_{ce}}{k_B T} \right)^2 \right]^{1/2}$

Spin modified fast and slow magnetosonic waves

Example: Magnetic action

<u>Ferrofluids</u> Nanostructured paramagnetic fluids. Formalism similar to the above applicable.

Normal field instability - saturated by gravity and surface tension (Cowley & Rosensweig 1967).

Conclusions

- New important effects appear from collective quantum domain.
- Wide ranging possibilities for applications.
 - Nanomaterials.
 - Astroplasmas.
 - Ultracold plasmas...
- Interesting future possibilities:
 - Theoretical development: Dense, relativistic plasmas using computationally viable models.
 - Solitons and plasmonics (see C. S. Liu's talk, Aug 19).