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Overview

• Why look at quantum plasma effects?

• Schrödinger’s description.

• Non-relativistic single electron dynamics.

• Paramagnetic electrons. 

• From micro to macro physics.

• MHD regime.

• Conclusions - what the future might bring.



Why quantum plasmas?
• Manifold applications: 

• Solid state systems. 

• Astrophysical environments. 

• Ultracold plasmas (Rydberg atoms). 

• Nanostructured materials.

• Laser-plasmas...

• Interesting fundamental aspects of matter dynamics.

• Collective & nonlinear effects + quantum mechanics

                           New physics!

 



Schrödinger’s description
Electron properties described by complex scalar 
wavefunction     (            probability)

 

where we have the Hamiltonian operator

and     is the external electrostatic potential and    
being the magnitude of the electron charge.
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Schrödinger’s description
• Nice approach: allows for easy generalizations, new 

interactions can be incorporated in Hamiltonian.

• Microscopic equations of motion 

for some operator    ,             Poisson brackets.

Example:

 

for previous scalar electron description.
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Incorporating the spin
Electron properties described by complex spinor 
wavefunction (spin degrees of freedom)      

 

and the Pauli Hamiltonian operator

Here     is the vector potential,     is the spin 
operator,                          is the Bohr magneton.
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Operator equations 
of motion

 

  

where                      .
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Para- vs. diamagnetism
• Energy of a magnetic dipole      

in magnetic field      

• Parallel magnetic dipole 
minimizes the energy       
paramagnetic behaviour, typical 
of electrons. 

• Electron magnetic dipole 
moment in terms of spin angular 
momentum 

opposite direction of magnetic 
moment due to electron charge.
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• Electron orbital angular momentum 
acts as diamagnet.

• Any applied magnetic field alters 
the electron orbit, thus altering 
the atomic current, in such a way 
as to counteract the applied 
magnetic field.

• Well known in classical plasmas.

• In materials having both para- and 
diamagnetic properties, 
paramagnetism dominates.

   



From micro to macro
• Allow the electron microstates to interact via 

electromagnetic fields.

• N-body problem seldom tractable in plasmas.

• Develop a macroscopic model from the underlying 
microscopic theory.

• Neglecting spin: Let                                        , 
where     enumerates the N wave functions. It is then 
straightforward to add up the resulting conservation 
laws for       and                           .

• Fluid equations with Bohm potential: 
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From micro to macro
• For spin systems: Decompose spinor wave function 

Electron spin: unit spinor      . 

• Electron fluid equations (continuity eq. unaffected)
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Maxwell’s equation
Due to the intrinsic magnetization, given by
 
                                            , 

Ampère’s law is modified according to

Gives dynamic spin contribution to Maxwell’s 
equations.
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MHD regime
Single fluid dynamics (for lowest order coherent spin)

Model magnetization using Brillouin function for 
spin-1/2 particles 

where the Zeeman energy                        gives the 
degree of alignment through the Brillouin function. For 
high temp. magnetization            0.
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Example:Dispersion relation
Linearizing the equations around a weak static 
magnetic field, we get the dispersion relation

where we have the modified Alfvén and 
acoustic speeds
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Example:Dispersion relation
Linearizing the equations around a weak static 
magnetic field, we get the dispersion relation

where we have the modified Alfvén and 
acoustic speeds
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Spin modified 
shear Alfvén wave

Spin modified fast and 
slow magnetosonic 
waves



Example: Magnetic action
Ferrofluids   Nanostructured paramagnetic fluids. 
Formalism similar to the above applicable.

Normal field instability - saturated by gravity and 
surface tension (Cowley & Rosensweig 1967).

 

Movies from http://mrsec.wisc.edu/Edetc/cineplex/ff/text.html



Conclusions

New important effects appear from collective quantum domain.

Wide ranging possibilities for applications.

Nanomaterials.

Astroplasmas.

Ultracold plasmas...

Interesting future possibilities:

Theoretical development: Dense, relativistic plasmas using 
computationally viable models.

Solitons and plasmonics (see C. S. Liu’s talk,  Aug 19).




