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Quasi-stationary magnetic structures in the plasma
frame  (holes or  humps), are commonly observed
in the solar wind and the planetary magnetosheaths.

Lucek et al. GRL 26, 2159 (1999)
Structures observed in the magnetosheath

A: Peaks in low field regions

B: Dips in high field regions

C: Nearly sinusoidal
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Joy et al.  J. Geophys. Res. 111, A12212 (2006)

1. Satellite observations



Kaufmann et al., J. Geophys. Res. 75, 4666 (1970)



Holes: low β

Peaks: higher β

Depending on local values of β,  magnetic holes or humps are  preferentially formed.
Same conclusion by Bavassano-Cattaneo et al. 1998 (Saturn’s magnetosheath) , 

Soucek, Lucek & Dandouras 2007 (Earth’s magnetosheath).

Stability properties amenable to  a simple energetic argument in the framework of anisotropic MHD with
(quasi-isothermal) equations of state appropriate for slow  dynamics
(Passot, Ruban & Sulem, PoP, 13, 102310, 2006)



Free solar wind
(Ulysses)

Jovian magnetosheath
(Ulysses)

Free solar wind
(Helios)

Magnetic holes may display 
different shapes (sharp or roundish).
Do they have a unique origin?

Baumgärtel JGR 104 (A12),  28295  (1999)



• Structures are quasi-static in the plasma frame,

• Observed in regions displaying: ion temperature anisotropy
β of a few units

(conditions met under the effect of plasma compression in front of  the magnetopause).

• Mostly longitudinal magnetic field fluctuations.

• Density is anticorrelated with magnetic field amplitude.

• Size of these structures: a few Larmor radii.

• 3D shape is cigar-like, quasi-parallel to the ambient field.

Origin of these structures  is still not fully understood.
Usually viewed as nonlinearly saturated states of the mirror instability.

Other recent interpretations:
• trains of slow-mode magnetosonic solitons (Stasiewicz 2004)
• mirror instability is the trigger, generating high amplitude fluctuations that evolve such 

as to become nonlinear solutions of isotropic or anisotropic plasma equations
(Baumgärtel, Sauer & Dubinin 2005) 

Main properties:

ii TT >⊥



Mirror instability:

Extensively studied in the linear regime:
Venedov and Sagdeev (1958), Hasegawa (1969), Hall (1979)
Gary (1992), McKean et al. (1992,1994), Southwood and Kivelson (1993),
Pokhotelov et al. (2004 and references therein), Hellinger (2007).

• Requires ion temperature anisotropy (               ) and sufficiently large β.ii TT >⊥

• Zero-frequency instability.

• At least near threshold, develops at large angle with respect to ambient
magnetic field.

• Driven by Landau wave-particle resonance and quenched at small-scales
(usually at a fraction of the ion Larmor radius) by finite Larmor radius effects. 

Theory of the nonlinear regime still incomplete. 

(At small or moderate angle and/or smaller β, Ion Cyclotron Anisotropic instability
can be  dominant).



Magnetosheath CLUSTER data (Génot et al.,  AGU 2006)

Magnetic holes are also observed in conditions  for  which
the plasma is linearly stable (BISTABILITY).

(instability condition
for bi-Maxwellian
distribution)

Bistability also observed in Jovian magnetosheath (Erdös and Balogh 1996)

Skewness of magnetic fluctuations:
• when negative: magnetic holes
• when positive: magnetic humps

Distance to threshold

Soucek, Lucek & Dandouras 2007: “peaks are typically observed in an unstable plasma, 
while mirror structures observed deep within the stable region appear almost exclusively as dips.”



Observational data thus suggest that for fixed             ,magnetic holes are 
obtained for relatively small β and magnetic humps for relatively large β.

TT /⊥

This effect can be understood on the basis of an energetic argument 
in the context of usual anisotropic MHD with a suitable equations of state 

obtained by closing the STATIONARY fluid hierarchy, assuming a 
bi-Maxwellian distribution function.

The problem of stationary structures is amenable of a variational formulation.
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Passot, Ruban, Sulem, PoP 13, 102310 (2006)

=β
This model that does not include kinetic effects could possibly 
be relevant to describe  the very large magnetic holes (hundreds
to thousands of ion Larmor radii), observed in the solar wind
(Stephen and Kasper, JGR 2007).



With a PIC code in a large domain:
1024 cells with 500 000 particles/cell; 
Domain size= 2048 c/ωpi
Growth rate: 0.005 Ωp

-1

A large number of modes are excited
Humps form and undergo coarsening.

2. Direct numerical simulations of the Vlasov-Maxwell equations

Mirror unstable regime relatively near threshold in a large domain
(most unstable direction)

Shed light on the time evolution and the origin of the structures.
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Gray scale plot of the magnetic field
fluctuations  perpendicular to the direction
of variation, as a function of space and time.



: approximatively the end of the linear phase.

The more noisy aspect of 
the distribution perturbation
in the magnetic humps is 
due to the  poorer statistics 
in these regions.

Linear phase

magnetic humps magnetic holes



MAIN QUESTION: processes leading to the saturation of the linear instability.

Mechanism first suggested:  based on quasi-linear theory (Shapiro and Shevshenko 1963)
• Assumes space homogeneity (thus absence of coherent structures)
• Can thus be valid at early times only
• Requires many modes in interaction: extended domain
• Mainly associated with a diffusion process in velocity space, dominantly along the 
ambient field.

Flattening of the distribution function resulting 
from the diffusion in velocity space.

Space averaging is needed to make quasi-linear theory conspicuous
(it eliminates the contribution of the linear response function that is pointwise dominant).  

:



simulation



Distance to threshold reaches
negative values, a signature that
quasi-linear theory ceases to apply
when coherent structures begin to form.

The instability continues to take
place due to hydrodynamic-type nonlinearity.

Positive skewness: magnetic humps.

Bi-Maxwellian distance 
to threshold:

Instantaneous distance 
to threshold:

Gray scale plot of the magnetic
fluctuations as a function of 
space and time.

Fluctuating magnetic energy



Hybrid simulations at moderate β (Baumgärtel, Sauer & Dubinin, GRL, 2003)

Initial random noise in a mirror instable 
regime leads to the formation of 
magnetic humps whose number 
decreases as time elapses.

A localized magnetic 
perturbation in the form 
of a finite-amplitude 
hole persists

A localized 
magnetic 
perturbation in 
the form of a 
finite amplitude 
hump relaxes



In a small domain, the quasi-linear phase is not present

With an Eulerian code, in a small domain (15x 2π c/ωpi), 

β║=15,  T┴/T║=1.4 and θ=1.37

Magnetic hump (and density hole) resulting from the mirror instability, 
starting from noise.
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Magnetic humps form even very close to threshold

Time evolution of the unstable modes

Distribution function does not display flattening (in contrast with simulations in large boxes):
No quasi-linear phase.

Structure formation: amenable to a reductive perturbative expansion expansion of the 
Vlasov-Maxwell equations.

Growth rate of most unstable mode
(m=3) : 0.0017 Ωi

High resolution in velocity space nevertheless required.



Vlasov equation for the distribution function f(x,v,t)

Diffusion equation in 
velocity space for the 
space-averaged 
distribution function.

Quasi-linear theory Reductive perturbative expansion

Averaging over 
space-variables

Averaging over 
velocity variables

Nonlinear equation for 
magnetic perturbations

Involves kinetic nonlinearities Involves hydrodynamic nonlinearities

Incoherent dynamics
(random phases)

Coherent structures



At large scales, kinetic effects (Landau damping and finite Larmor radius 
corrections) are expected to be  weak and to contribute only linearly in the  
weakly nonlinear regime supposed to develop near threshold.

This argument is validated by a reductive perturbative analysis consistently
performed on the Vlasov-Maxwell system.

For the sake of simplicity, assume cold electrons with negligible inertia.

3. Theoretical interpretation

Close to threshold, the linearly unstable mirror modes are confined to large scales.

As structures start to form, it is thus appropriate to study the nonlinear evolution
using a reductive perturbative expansion that focuses on the dynamics of the mirror
modes.
(Kuznetsov, Passot and Sulem, PRL, 98, 235003 ,2007).



Equation governing the proton velocity (derived from Vlasov equation)

with 

with 

Scaling on space and time variables suggested by the large-scale instability growth rate

Assuming cold electron with no inertia:

Lρ

(     : ion Larmor radius)Lρ



the ion-velocity equation reduces to a pressure balance equation

The perpendicular pressure and the gyroviscous force are to be calculated from Vlasov equation 

After substitution, the leading order cancels out.

In this near-threshold asymptotics,
• time derivative originates  from   

Landau damping
• Landau damping and  finite Larmor

radius effects arise only linearly

Lr : ion Larmor radius

In particular
E.B =0

One shows that . By the divergenceless condition :

cold electrons 
without inertia



Dynamical equation:

After simple rescaling 

When the spatial variation are limited to a direction making a fixed angle with the ambient field

whose Fourier transform is



Integration above threshold (σ>1), with
as initial conditions a sine function
involving several wavelengths.

After an initial phase of  linear instability, 
formation of  magnetic holes, whose 
number is progressively reduced to one.

After a while, solution blows up
with a self-similar behavior.

Solution profile near collapse

Finite time blowup of the solution

At the level of Vlasov-Maxwell  eqs,
the singularity is the signature of the 

formation of finite-amplitude structures,
through a subcritical bifurcation that 
cannot be captured perturbatively.

When  spatial variations limited to a direction 
making a fixed angle with the propagation: Wave-particle resonance  provides the 

trigger mechanism leading to the linear 
instability.

Hydrodynamic nonlinearities reinforce the
Instability, leading to collapse.

Linear FLR effects arrest the linear 
instability at small scales but cannot cope 
with hydrodynamic nonlinearities.

Kuznetsov, Passot , Sulem, PRL 98, 235003, 2007.



The asymptotic equation cannot capture the saturation of the mirror instability.
The asymptotic scaling are broken rather early. 

Phenomenological modeling of the saturaturation

Previous models for mirror structures:

(Pantellini et al. Adv. Space Res. 15, 341,1995, Kivelson and Southwood JGR 101, 17365 
1996, Pantellini JGR 103, 4789, 1998):

Based on a separation of the particle distribution into trapped and untrapped
components that respond differently to magnetic field variations.
Saturation based on the cooling of trapped particles in magnetic troughs.

Usually predict deep magnetic holes and are hardly consistent with the presence 
of magnetic humps (that are predicted only for exceptionally high values of  β)

Bi-stability not addressed.

These models are aimed to describe microscopic processes associated with the existence  
of coherent structures, rather than the dynamical process leading to their formation. 



A saturation mechanism based on the variation of the local ion Larmor
radius can be phenomenologically supplemented to the asymptotic model, 
making it consistent with Vlasov-Maxwell simulations. 

In regions of weaker magnetic field (and/or large       ), ion Larmor radius is larger, 
making stabilizing effects of finite radius corrections more efficient than in the linear 
regime. Consequently, mirror instability is more easily quenched in magnetic field 
minima than in maxima, making magnetic humps more likely to form in the 
saturating phase of the mirror instability.

(taken equal to 0.01) is related 
to the size of the box

Using conservation of 
magnetic moment, 

Furthermore, in addition to 
Laplacian which results from 
the leading order expansion of 
a nonlocal operator associated
with FLR  corrections, we also
retain the next order contribution.

Singularity is arrested 

Motivation:



σα = 1.54

tim
e

σα = 0.05

σα = - 0.3

σα = - 0.4

σα = - 0.05

Coarsening of magnetic humps resulting from
the mirror instability in the framework of the 
phenomenological model.

Magnetic holes predicted by the phenomenological
model initiated random noise of small amplitude when 
σ> +1 and large amplitude when σ< -1.

Evolution after saturation of linear instability
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bistability

Cluster data : statistic of structures 
observed in the magnetosheath
(courtesy of  V. Génot).

Skewness of magnetic fluctuations 
in the quasi-stationary regime

I.C.: small-amplitude random noise in supercritical regime
large-amplitude  random noise in subcritical regime
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Subcritical solutions (large initial perturbations) 

Vlasov simulation in a small domain

Large-amplitude magnetic holes
survive even far below threshold.

Magnetic humps do not survive

Model simulations

4. Formation of magnetic holes



Magnetic hole (and density hump), starting with a large amplitude 
magnetic field depression, above threshold.

tim
e

Vlasov simulations in a small domain for large-amplitude initial perturbations

Domain size: 15x 2π c/ωpi, with β║=6,  T┴/T║=1.2 and θ=1.463

Note the overshoot 

Magnetic field component perpendicular
to the plane (k, Bo) is symmetric with
respect to the center of the magnetic hole:
Contrast with soliton models based on
anisotropic Hall-MHD (Stasiewiicz 2004, 
Mjölhus 2006).



With large amplitude initial conditions, magnetic holes are found to be
stable solutions even far above threshold.

Cluster observation 
(Génot et al., AGU 2006)

Overshoot 



PIC simulation far from threshold starting form random noise. 
At late times, holes form and replace the humps.

Distance to threshold remains slightly positive.
The system is continuously stirred and 
coarsening is less efficient.
In particular, there are no isolated structures.

Formation  of magnetic holes from small-amplitude noise in a mirror unstable plasma

Skewness
becomes
negative

(quarter of the box)

Late transition from magnetic 
humps to magnetic holes

1024 cells with 500 000 particles/cell; Domain 
size=1024 c/ωpi
Growth rate: 0.156 Ωp

-1

(most unstable angle)

--- biMaxwellian
___ instantaneous

β is decreasing, which favours nonlinear
stability of magnetic holes.

No such transition at larger β ( e.g. ).2=pβ



The distribution function remains close 
to bi-Maxwellian.
No flattening of the distribution function.

Space-integrated distribution function variation

Space-integrated parallel distribution function

Qualitative similarity with Ulysses measurements 
in the  magnetosheath of Jupiter (Erdös & Balogh
1996):

Resulting magnetic holes:



threshold

Time

humps

holes

A scenario for hole formation in the magnetosheath
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Simulations consistent with plasma and 
mirror mode properties observed by Cluster 
during magnetosheath path (Sucek, Lucek & 
Dandouras 2007): magnetic humps evolve into 
holes as they are convected closer to the 
magnetosphere within the “plasma depression 
layer” where the plasma expends and its properties 
change  drastically. In particular,  and R  
decrease.

PIC simulation in an expanding domain modeling
the magnetosheath (Hellinger &  Travnicek 2007).

R=

β



5. Fluid model for mirror modes
(Borgogno, Passot, Sulem, Nonlin. Processes Geophys. 14, 373, 2007)

Can fluid models describe mirror mode dynamics?

Reproducing linear mirror instability requires 
• Landau wave-particle resonance
• (linear) finite Larmor radius (FLR) effects.

It is possible to construct a “FLR Landau fluid”
that generalizes anisotropic MHD by retaining the above effects 
(Passot and Sulem, PoP, August 2007).

Extension of Landau fluids (Hammett & Perkins 1990, Snyder et al. 1997),
to include transverse scales comparable to the ion Larmor radius, 
assuming the gyrokinetic scaling.

It consists in closing the fluid hierarchy at the level of the 4th order 
moments,  in a way consistent with the low-frequency linear 
kinetic theory.



FLR-Landau fluid retains all hydrodynamic 
nonlinearities together with LINEAR (or semi-
linear) low-frequency kinetic effects.

Mirror instability:
Comparison of FLR Landau fluid predictions
(crosses) and full linear kinetic theory.

Linear mirror instability accurately reproduced.

FLR Landau fluid contains all the ingredients
of the reductive perturbative asymptotics
+ additional hydrodynamic nonlinearities 
that are sufficient to arrest the singularity.

Does not include nonlinear FLR effects:
hardly reproduces formation of magnetic humps
as the mirror instability saturates. 



Formation of sharp magnetic holes
from initial random noise.
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The depth of the hole slowly decreases in time
(no effects saturate linear Landau damping)

time of nonlinear
saturation

pT⊥

5.1/    ,5 //// == ⊥ ppp TTβ

2.0cos   ,1/    , 05.0/ ////// === ⊥ θeepe TTTT
1850 −Ω= pt

c
x piω

|b|

n

Formation of magnetic humps
from initial random noise.
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At long times the peak amplitude is observed
to decrease and a hole eventually forms. 

    4.1/    ,20 //// == ⊥ ppp TTβ

During the saturation phase ,        and         evolve in a way that reduces the distance to threshold.  

Mean temperatures 
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Evidence of bistability

n

|b|

Stationary subcritical magnetic hole solutions
obtained from large amplitude initial conditions,  
fixing mean parallel and perpendicular temperatures.
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Vlasov simulation

Magnetic field component perpendicular
to the plane (k, B0) is symmetric with
respect to the center of the magnetic hole:
Contrast with soliton models based on
anisotropic Hall-MHD (Stasiewiicz 2004, 
Mjölhus 2006).



In large domains, formed magnetic
patterns are subject to spatio-temporal
chaos 

Stationarity enforced by maintaining
constant the mean proton temperatures
(mimic effect of boundary conditions such as 
an inflow).

IC: random noise

43.1/    ,2 //// == ⊥ ppp TTβ
34.0cos =θ

Mirror modes in the Jovian magnetosheath
(Joy et al. 2007)

1/    , 05.0/ ////// == ⊥ eepe TTTT



• Numerical integrations of VM equations demonstrate the existence, in large domains,
of an early phase described by quasi-linear theory, followed by a regime where
coherent structures form.

• In a small domain, no quasi-linear phase is observed. 

• The structures resulting from saturation of mirror instabilty are magnetic humps.

• Reductive perturbative expansion  performed on the VM eqs near threshold, leads to an 
equation with a finite-time singularity, signature of a subcritical bifurcation. 

• A phenomenological modeling retaining ion Larmor radius variations  predicts
formation of humps above threshold and holes mainly below threshold (when starting
with large amplitude initial conditions), in agreement with CLUSTER observations.

• Numerical integration of VM equation demonstrates the existence of stable holes
when initialized with large amplitude fluctuations both above and below threshold. 

• Holes can also form in the late evolution of an extended system when initialized
far from threshold. 
In this case,  β decreases, which makes holes more energetically favored.

• FLR-Landau fluid model can accurately reproduce the linear regime and admits subcritical
magnetic hole solutions as well, but hardly leads to magnetic humps.

6. Conclusions



7. Open questions

• Would it be possible to  phenomenologically include effects of local variation of  ion 
Larmor radius in FLR-Landau-fluid?
Nonlinear FLR are retained by gyrofluids (obtained by closing the moment  hierarchy derived from
the gyrokinetic equation), but the formalism has not yet developed for anisotropic plasmas.

• Are there conditions (very large domains, very close to threshold) where the instability
saturates by quasi-linear effects?

• In a small domain, can one observe, very close to threshold, the signature of the 
singularity predicted by the reductive perturbative expansion ?

• What is the role of trapped particles?

• How to understand quantitatively the observed transition from humps to holes in large-
box simulations far from threshold?

• Is there a unique origin to the commonly observed magnetic holes? 

In particular, are the large-scale (hundreds or thousands ion Larmor radii) magnetic holes observed
in the solar wind by Stevens & Kasper (JGR 2007) also associated with the mirror instability?

• What is the role of the mirror structures on the magnetopause boundary? 
Can they trigger micro-reconnection events?




