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1. Satellite observations

Quasi-stationary magnetic structures in the plasma
frame (holes or humps), are commonly observed

in the solar wind and the planetary magnetosheaths. C: Nearly sinusoidal

A: Peaks in low field regions

B: Dips in high field regions
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Figure 1. Each panel shows 3 hours of Galileo magnetometer field magnitude data (solid black line), 0- NP S - . i
appropriate quartiles (dotted), and the median value (solid gray) computed using 20 min sliding windows 13:30 13:35 13:40 13:45 1350

with single sample shifts. The panels show examples of “peaks™ (top), “dips” (middle), and “other”

(bottom) structures.

Joy et al. J. Geophys. Res. 111, A12212 (2006)

Figure 2. A, B and C show the field magnitude recorded
during three intervals from 20 Dec 1997. They illustrate
three forms of mirror structure: peaks, dips and a near si-
nusoidal wavelorm.

Structures observed in the magnetosheath
Lucek et al. GRL 26, 2159 (1999)
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Magnetic field magnitude B and direction angles o and ¢ are presented in satellite
coordinates for part of a highly disturbed orbit. The angle between the magnetic field and
the satellite spin axis is «. The angle between the magnetic field and the sun, as projected
onto the satellite’s equatorial plane is . Each point plotted represents the average of 16
individual field measurements taken during a 5-scc time interval,
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Kaufmann et al., J. Geophys. Res. 75, 4666 (1970)
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Figure 8. Galileo magnetic field and plasma (3 observations from the outbound pass of the 29th orbit.
The shading convention used here is the same as in Figure 2. The heavy black line indicates an interval of
amplitude saturation. The vertical dotted lines mark the bow shock and magnetopause crossing times.

Depending on local values of 3, magnetic holes or humps are preferentially formed.
Same conclusion by Bavassano-Cattaneo et al. 1998 (Saturn’s magnetosheath) ,
Soucek, Lucek & Dandouras 2007 (Earth’s magnetosheath).

Stability properties amenable to a simple energetic argument in the framework of anisotropic MHD with
(quasi-isothermal) equations of state appropriate for slow dynamics
(Passot, Ruban & Sulem, PoP, 13, 102310, 2006)
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Figure 1. Examples of magnetic holes observed (a) by
Ulysses in the free solar wind (taken from Figure 2 of
Winterhalter et al. [1994), (b) by Ulysses in the magne-
tosheath of Jupiter, called mirror mode structures (from
Figure 5 of Erdds and Balogh [1996)), and (c) by Helios
in the free solar wind (data courtesy of K. Sperveslage
and F .M. Neubauer, University of Koln, 1999). Shown
is the magnetic field magnitude.

Baumgértel JGR 104 (A12), 28295 (1999)

Magnetic holes may display
different shapes (sharp or roundish).
Do they have a unique origin?



Main properties:
« Structures are quasi-static in the plasma frame,
* Observed in regions displaying: ion temperature anisotropy T. >T. |
B of a few units
(conditions met under the effect of plasma compression in front of the magnetopause).
* Mostly longitudinal magnetic field fluctuations.
* Density is anticorrelated with magnetic field amplitude.

» Size of these structures: a few Larmor radii.

» 3D shape is cigar-like, quasi-parallel to the ambient field.

Origin of these structures is still not fully understood.
Usually viewed as nonlinearly saturated states of the mirror instability.

Other recent interpretations:

« trains of slow-mode magnetosonic solitons (Stasiewicz 2004)

« mirror instability is the trigger, generating high amplitude fluctuations that evolve such
as to become nonlinear solutions of isotropic or anisotropic plasma equations
(Baumgartel, Sauer & Dubinin 2005)



Mirror instabillity:

Extensively studied in the linear regime:

Venedov and Sagdeev (1958), Hasegawa (1969), Hall (1979)

Gary (1992), McKean et al. (1992,1994), Southwood and Kivelson (1993),
Pokhotelov et al. (2004 and references therein), Hellinger (2007).

* Requires ion temperature anisotropy ( T,, >T. ) and sufficiently large .

» Zero-frequency instability.

* At least near threshold, develops at large angle with respect to ambient
magnetic field.

(At small or moderate angle and/or smaller [, lon Cyclotron Anisotropic instability
can be dominant).

* Driven by Landau wave-particle resonance and quenched at small-scales
(usually at a fraction of the ion Larmor radius) by finite Larmor radius effects.

Theory of the nonlinear regime still incomplete.



Magnetic holes are also observed in conditions for which
the plasma is linearly stable (BISTABILITY).

(instability condition
for bi-Maxwellian

Lo e
-~ distribution)
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Skewness of magnetic fluctuations: *i : o

« when negative: magnetic holes
» when positive: magnetic humps
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Mirror condition
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- Holes in small beta
region

-Linearly stable or
close to threshold

- Bistability region

- Linear mirror mode
- Classical sinusoidal

shape

- Humps in large or
moderate beta region

- Corresponds to the
first phase of simulations

Magnetosheath CLUSTER data (Génot et al., AGU 2006)

Soucek, Lucek & Dandouras 2007: “peaks are typically observed in an unstable plasma,
while mirror structures observed deep within the stable region appear almost exclusively as dips.”

Bistability also observed in Jovian magnetosheath (Erdés and Balogh 1996)



Observational data thus suggest that for fixed T./T; ,magnetic holes are
obtained for relatively small f and magnetic humps for relatively large B.

This effect can be understood on the basis of an energetic argument

in the context of usual anisotropic MHD with a suitable equations of state
Ty T, B/Bo T
— =1 = (A=

e 7© " (A+1)B/By— A’ T”(O

obtained by closing the STATIONARY fluid hierarchy, assuming a
bi-Maxwellian distribution function.

The problem of stationary structures is amenable of a variational formulation.

On stationary configurations, the functional 6
3
H = /(——l—n - B)—I—lnn-—l} —|—l> dr §°'7'
06 1
(where F(B) = In[(A + 1 Al —InB. and B = B/BY) 0.5
should achieve a mlnlmal value. o
Q03
This model that does not include kinetic effects could possibly Lo2l
be relevant to describe the very large magnetic holes (hundreds 01 |
to thousands of ion Larmor radii), observed in the solar wind 0 AR S VI VN O
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Passot, Ruban, Sulem, PoP 13, 102310 (2006)
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2. Direct numerical simulations of the Vlasov-Maxwell equations
Shed light on the time evolution and the origin of the structures.

Mirror unstable regime relatively near threshold in a large domain
Orp = T2.8° (most unstable direction)

With a PIC code in a large domain: _ | 9
=18, =1.857 [ = 10~

1024 cells with 500 000 particles/cell; Py
Domain size= 2048 C/oopi
Growth rate: 0.005 Qp'1
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Gray scale plot of the magnetic field kva/S kva/p
fluctuations perpendicular to the direction
of variation, as a function of space and time. A |arge number of modes are excited

Humps form and undergo coarsening.



Linear phase

magnetic humps magnetic holes
v Af (v, L) viAf(vp,vL)

The more noisy aspect of
the distribution perturbation
in the magnetic humps is

due to the poorer statistics
in these regions.
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Figure 2. Changes in the distribution function at the
time t = 1000/€2, in regions with 6B, /Bo > 0.01 (left)
and 0B, /By < —0.01 (right). The overplotted curves
show the theoretical linear response v1 df corresponding
to the most unstable mode at maximum 0B, (left)

and minimum 6B, (right): solid and dashed
curves denotes positive and negative values of v 0 f , re-
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m
time t = 1000/€2, : approximatively the end of the linear phase.




MAIN QUESTION: processes leading to the saturation of the linear instability.

Mechanism first suggested: based on quasi-linear theory (Shapiro and Shevshenko 1963)
» Assumes space homogeneity (thus absence of coherent structures)

» Can thus be valid at early times only

* Requires many modes in interaction: extended domain

» Mainly associated with a diffusion process in velocity space, dominantly along the
ambient field.

t = 20000 t = 10000 Q;? Af(vy,vL) corresponds to the variation of the space av-
v Af(v),v1) vy Af(vp,v1) eraged distribution function from the initial to the con-

sidered time. In the white regions, (whose localization
corresponds to small parallel velocities), the distribution
function is reduced, while in adjacent black regions, it is

increased.

Dotted lines - contours of the initial equilibrium
distribution function.

OAI\JLO#A!‘JGJ

t'||

o0 11 Reduced distribution function f as a function of v (solid
o 1t 1 curve) compared to the initial reduced distribution func-
‘E 5.0f ' 1 tion (dotted curve).

45t 1 Flattening of the distribution function resulting

0 B from the diffusion in velocity space.

il Ul

Space averaging is needed to make quasi-linear theory conspicuous
(it eliminates the contribution of the linear response function that is pointwise dominant).



TSN TSN

5 T T
af 1 ]
¥ i
I" h
L ]
3F i 1t a ]
i " 'y ]
—__| I :I II I ‘n 1 ]
= I ) ! ! |1 I ]
L | | |'Il 1 ]
2L o 1t Ul ]
[ | JI lII "I | j
E i ‘II i ‘I
[ I:J' .
: M: \ ]
1E 1 ¢ E
ob o o R N T S S T R |
-1.0 -05 0.0 0.5 1.0-1.0 -05 0.0 0.5 1.0
Yl Y

simulation

Figure 4. Schematic view of the prediction of the quasi-
linear theory: Effect of the quasilinear diffusion Af on
the distribution function, a contribution of (left) the most
unstable mode and of (right) a weakly unstable mode.
Solid (dashed) contours show positive (negative) values.
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Skewness

Distance to threshold reaches

negative values, a signature that
quasi-linear theory ceases to apply
when coherent structures begin to form.

The instability continues to take
place due to hydrodynamic-type nonlinearity.

Positive skewness: magnetic humps.



Hybrid simulations at moderate [3 (Baumgértel, Sauer & Dubinin, GRL, 2003)
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Figure 4. Space-time evolution of the magnetic field in an
uniform, collisionless, anisotropic, mirror-unstable plasma
with bi-Maxwellian proton distribution (3,. = 5, B, = 2.5,
B.=1,0=280°
Initial random noise in a mirror instable
regime leads to the formation of

magnetic humps whose number
decreases as time elapses.

0=
A localized < Mi / \LJ 0.0
magnetic S
perturbation in ] o] 2000
the form of a ijww —
ot £1L i
~100.0 =500 0.0 500 100.0

A localized magnetic

prl/c
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Figure 1.
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time

In a small domain, the quasi-linear phase is not present

With an Eulerian code, in a small domain (15x 21 c/w;),

By=15, Tu/T)=1.4 and 6=1.37

Run 1, By Run 1, By, t=1400
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Magnetic hump (and density hole) resulting from the mirror instability,
starting from noise.




Magnetic humps form even very close to threshold

Run 17, By, t=4700 d’np. t=37100
003 0.002f \/—“‘\
0.02 0.000 4
0.01 =-0.002F ]
0.00 —0.004} .
-0.01 —4
—0.02 —0.006 .
0 1 2 3 4 5 6 0 T 2 3 4 5 6
Run 17, By, t=0 dn, t=0
0.0010 0.0010 b .
Time evolution of the unstable modes
0.0005E 0.0005
0.0000} 0.0000 Growth rate of most unstable mode
P \/\ (M=3): 0.0017 Qi
’ =0.0005 b
—-Q.0010

Distribution function does not display flattening (in contrast with simulations in large boxes):
No quasi-linear phase.

High resolution in velocity space nevertheless required.

Structure formation: amenable to a reductive perturbative expansion of the
Vlasov-Maxwell equations.



Vlasov equation for the distribution function f(x,v,t)

Quasi-linear theory Reductive perturbative expansion

Averaging over

_ Averaging over
space-variables

velocity variables

Diffusion equation in

velocity space for the Nonlinear equation for
space-averaged magnetic perturbations
distribution function.

Involves kinetic nonlinearities Involves hydrodynamic nonlinearities

Incoherent dynamics Coherent structures
(random phases)



3. Theoretical interpretation

Close to threshold, the linearly unstable mirror modes are confined to large scales.

As structures start to form, it is thus appropriate to study the nonlinear evolution

using a reductive perturbative expansion that focuses on the dynamics of the mirror
modes.

(Kuznetsov, Passot and Sulem, PRL, 98, 235003 ,2007).

At large scales, kinetic effects (Landau damping and finite Larmor radius
corrections) are expected to be weak and to contribute only linearly in the
weakly nonlinear regime supposed to develop near threshold.

This argument is validated by a reductive perturbative analysis consistently
performed on the Vlasov-Maxwell system.

For the sake of simplicity, assume cold electrons with negligible inertia.



Equation governing the proton Ve|OCitV (derived from Vlasov equation)
T 1 1
ﬂ—l——v-pp (E—I— —u, X B) =0

dt — pp My &

Assuming cold electron with no inertia:

b = —1(’% — L) X B with ] = (C/il'ﬂ')v X B
C ne

| BJ”
ST

dup
i =V

4r (B-V)B ~|B|? ~ A7 |
)+( \B\Q(m_p”)) T (b'v)(lJr‘B|2(m—p||))+V-H

In order to address the asymptotic regime, we rescale the independent variables in the
form X = /ex, Y = /ey, Z = ez, T = £°t, where £ measures the distance to threshold,

and expand any field ¢ in the form

o= & ns

n=>0
Scaling on space and time variables suggested by the large-scale instability growth rate (o, : ion Larmor radius)

Lo B [BL_ Lk BBy 3 o
|k|th||\/_‘8l|:‘g" 1= 3, kiﬁl(+ 2 ) 4B lpL}




. T o 5 /- B2 (5/2) T2 T2
In partlcular BJ_ — 53_;’.283_3;-';2:1 4+ E.J_fZBE_ /2) 4o E B 0 EJ_ — EJ- EJ_ ‘I‘ £ i EJ_ ‘I‘ ‘e
1) | 2p@) ot B = SEG) 4 TR
B.=By+:By/+BY +-... cold electrons » =& B+ e R

without inertia

One shows that 7, « B{*? = (. By the divergenceless condition : B\% = (—A,)7'V, 0, BY.

Defining by = By’ +¢By” and oy = p)’ +ep}?

the ion-velocity equation reduces to a pressure balance equation

(5/2)

(14 2008 ,) 0550, + (v 1) " = 0

b2 2

By
v{pL+4ﬁ}Z+ St 3

The perpendicular pressure and the gyroviscous force are to be calculated from Vlasov equation

B\ Bob, T, \-1 (2 Byb,
-"jll) e f)T(—H")Z) Tﬁ 4[-}?7 In this near-threshold asymptotics,

47 Uth I . . . i
o 9 b, - BiN2/b, \2 * time derlvatlvg originates from
—ep, [ reA| — (1 — 44—+ 3(—) (—) } Landau damping

15 Bo Pl i/ A Bo » Landau damping and finite Larmor
radius effects arise only linearly

pL=0u(1-

(5/2) 37 jJ_ (0) Z)Z
-H) — __(1 ) 2ALV ( )
(v L 4 5” PLTLELYL BU

I' - ion Larmor radius

After substitution, the leading order cancels out.




Dynamical equation:

() = (o) (G- ) () + %LMé)

1 7 I,E'IJ)J_—..KJH —1 b. 371+ 9, b,
() (80) o (5) -5 () (5) ¢

After simple rescaling

0,U = ( — M) [JU FALU — AT U — 3U2]

Here, 0 = £1, depending on the positive or negative sign of the
threshold parameter 3, /3 —1 —1/3,.

When the spatial variation are limited to a direction making a fixed angle with the ambient field

i [n T § 'r2 Z Z
dTD K = [(O' + ()EE) U —3U } whose Fourier transform is | K|

where = 1s the coordinate along the direction of variation.




Finite time blowup of the solution

When spatial variations limited to a direction

making a fixed angle with the propagation: Wave-particle resonance provides the
o » trigger mechanism leading to the linear
ou = k= |0+ > U — 302 instability.
oT = 0=2

Hydrodynamic nonlinearities reinforce the
Instability, leading to collapse.

1

Linear FLR effects arrest the linear
| | instability at small scales but cannot cope
I‘ with hydrodynamic nonlinearities.

L L i
100 150 200 20

At the level of Vlasov-Maxwell eqgs,
the singularity is the signature of the
Integration above threshold (o>1), with formation of finite-amplitude structures,
as initial conditions a sine function through a subcritical bifurcation that

involving several wavelengths. cannot be captured perturbatively.

Solution profile near collapse

After an initial phase of linear instability,
formation of magnetic holes, whose
number is progressively reduced to one. Kuznetsov, Passot , Sulem, PRL 98, 235003, 2007.
After a while, solution blows up
with a self-similar behavior.




The asymptotic equation cannot capture the saturation of the mirror instability.
The asymptotic scaling are broken rather early.

Phenomenological modeling of the saturaturation

Previous models for mirror structures:

(Pantellini et al. Adv. Space Res. 15, 341,1995, Kivelson and Southwood JGR 101, 17365
1996, Pantellini JGR 103, 4789, 1998):

Based on a separation of the particle distribution into trapped and untrapped
components that respond differently to magnetic field variations.
Saturation based on the cooling of trapped particles in magnetic troughs.

Usually predict deep magnetic holes and are hardly consistent with the presence
of magnetic humps (that are predicted only for exceptionally high values of f3)

Bi-stability not addressed.

These models are aimed to describe microscopic processes associated with the existence
of coherent structures, rather than the dynamical process leading to their formation.



A saturation mechanism based on the variation of the local ion Larmor
radius can be phenomenologically supplemented to the asymptotic model,
making it consistent with VIasov-Maxwell simulations.

Motivation:

In regions of weaker magnetic field (and/or large 7'\), ion Larmor radius is larger,
making stabilizing effects of finite radius corrections more efficient than in the linear
regime. Consequently, mirror instability is more easily quenched in magnetic field
minima than in maxima, making magnetic humps more likely to form in the
saturating phase of the mirror instability.

.U = (_’Hrjé) [HU + AU — Allf)&[,-" _ 3172 Using conservation of
A magnetic moment,

p? =T, /IB|? «1/|B|l = 1/B.

1
1+ alU

/ T 4 v A2TT
AU+ §mi‘lb Furthermore, in addition to

Laplacian which results from
the leading order expansion of

AU —

(taken equal to 0.01) is related

V' 4o the size of the box a nonlocal operator associated
with FLR corrections, we also
— 2 o L / T_l - - retain the next order contribution.
a = 3J_ 1) —1
1+5; ﬂ|

Singularity is arrested



Evolution after saturation of linear instability
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Magnetic holes predicted by the phenomenological

Coarsening of magnetic humps resulting from
the mirror instability in the framework of the

phenomenological model.

model initiated random noise of small amplitude when
o> +1 and large amplitude when o< -1.



skewness

Skewness of magnetic fluctuations
in the quasi-stationary regime
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Figure 10. Variation of the skewness with the parame-
ter oo, as predicted by the phenomenological model.
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Cluster data : statistic of structures
observed in the magnetosheath
(courtesy of V. Génot).



4. Formation of magnetic holes

Subcritical solutions (large initial perturbations)

Model simulations

~0.2F |
: |
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FIG. 4. Quasistatic solution of the saturated equation for o =

—1, » = 0.01, and @ = 0.32, obtained with large initial pertur-
bations.

Vlasov simulation in a small domain

Run 10, By, t=900 (at t=0 strong By hole, in,=0)
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Large-amplitude magnetic holes
survive even far below threshold.

Magnetic humps do not survive



Vlasov simulations in a small domain for large-amplitude initial perturbations

Run 8, By, t=1800 (at t=0 strong By hole, én,=0)

~ Run 8, By (al 1=0 strong By hole, 6n,=0)
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Magnetic hole (and density hump), starting with a large amplitude

magnetic field depression, above threshold.
Note the overshoot

Domain size: 15x 21T c/w,;, with B"=6, TL/T||=1 .2 and 6=1.463

pi’

Magnetic field component perpendicular s Iz, 121500
fo the plane (k, Bo) is symmetric with :
respect to the center of the magnetic hole: oo
Contrast with soliton models based on —0.002

anisotropic Hall-MHD (Stasiewiicz 2004,
Mjélhus 2006).



Run 11, By (at t=0 strong By hole, §n,=0)
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Cluster observation
(Génot et al., AGU 2006)

Overshoot

With large amplitude initial conditions, magnetic holes are found to be
stable solutions even far above threshold.



Formation of magnetic holes from small-amplitude noise in a mirror unstable plasma

PIC simulation far from threshold starting form random noise.

At late times, holes form and replace the humps. 6,5 = 50.5¢ (mostunstable angle)
1024 cells with 500 000 particles/cell; Domain Bpp =1 ;_:-JPL =4
size=1024 c/w, B, = 10"
Growth rate: 0.156 Qp'1
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coarsening is less efficient.
In particular, there are no isolated structures. No such transition at larger 3 ( e.g. B, = 2).



Resulting magnetic holes:
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Qp/'lﬁ_q

Qualitative similarity with Ulysses measurements
in the magnetosheath of Jupiter (Erdos & Balogh
1996):
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The distribution function remains close
to bi-Maxwellian.
No flattening of the distribution function.



A scenario for hole formation in the magnetosheath
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Simulations consistent with plasma and
mirror mode properties observed by Cluster
during magnetosheath path (Sucek, Lucek &
Dandouras 2007): magnetic humps evolve into

holes as they are convected closer to the
magnetosphere within the “plasma depression
layer” where the plasma expends and its properties

change drastically. In particular, 5| and R
decrease.

PIC simulation in an expanding domain modeling
the magnetosheath (Hellinger & Travnicek 2007).



5. Fluid model for mirror modes
(Borgogno, Passot, Sulem, Nonlin. Processes Geophys. 14, 373, 2007)

Can fluid models describe mirror mode dynamics?

Reproducing linear mirror instability requires
» Landau wave-particle resonance
* (linear) finite Larmor radius (FLR) effects.

It is possible to construct a “FLR Landau fluid”

that generalizes anisotropic MHD by retaining the above effects
(Passot and Sulem, PoP, August 2007).

Extension of Landau fluids (Hammett & Perkins 1990, Snyder et al. 1997),
to include transverse scales comparable to the ion Larmor radius,
assuming the gyrokinetic scaling.

It consists in closing the fluid hierarchy at the level of the 4th order
moments, in a way consistent with the low-frequency linear
Kinetic theory.



FLR-Landau fluid retains all hydrodynamic
nonlinearities together with LINEAR (or semi-

linear) low-frequency kinetic effects.

Linear mirror instability accurately reproduced.

FLR Landau fluid contains all the ingredients

of the reductive perturbative asymptotics
+ additional hydrodynamic nonlinearities
that are sufficient to arrest the singularity.

Does not include nonlinear FLR effects:

hardly reproduces formation of magnetic humps

as the mirror instability saturates.

0.0004 ' ' 0.015
+
- t
0.0002 ootol :
(=9 =%
¢ 0.0000 G
- - 0005}
?—0.0002 r *I-’
—0.0004k 0.000
-0.0006 . . -0.005 . s
0.0 0.2 K 04 0.6 0.0 0.5 1.0 1.5
_IL k_IL
0.010 0.010
0,005} 0.008f )
o =% +
C 0.000 1 ¢ o.006f
S 0005 S 0004
-0.010¢ 0.002 +
-0.015 . s 0.000 . s s s
0.0 0.5 K 1.0 1.5 00 05 1.{Jk 19 20 25
_IL _IL
FIG. 10: Normalized growth rate w;/{, versus k) ry for mirror modes with @ = 5, 7 = 0.1,
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Mirror instability:
Comparison of FLR Landau fluid predictions
(crosses) and full linear kinetic theory.
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Evidence of bistability e e

Stationary subcritical magnetic hole solutions T .' — |
obtained from large amplitude initial conditions, rl! || y
fixing mean parallel and perpendicular temperatures. '
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Mjélhus 2006).



Stationarity enforced by maintaining

constant the mean proton temperatures
(mimic effect of boundary conditions such as
an inflow).

In large domains, formed magnetic
patterns are subject to spatio-temporal
chaos

T,/T,,=005, T,/T, =1
Byo=2, T,,I1T, =143
cosd =0.34

IC: random noise

Mirror modes in the Jovian magnetosheath
(Joy et al. 2007)



6. Conclusions

* Numerical integrations of VM equations demonstrate the existence, in large domains,
of an early phase described by quasi-linear theory, followed by a regime where
coherent structures form.

 In a small domain, no quasi-linear phase is observed.
» The structures resulting from saturation of mirror instabilty are magnetic humps.

» Reductive perturbative expansion performed on the VM eqgs near threshold, leads to an
equation with a finite-time singularity, signature of a subcritical bifurcation.

* A phenomenological modeling retaining ion Larmor radius variations predicts
formation of humps above threshold and holes mainly below threshold (when starting
with large amplitude initial conditions), in agreement with CLUSTER observations.

* Numerical integration of VM equation demonstrates the existence of stable holes
when initialized with large amplitude fluctuations both above and below threshold.

» Holes can also form in the late evolution of an extended system when initialized
far from threshold.
In this case, B decreases, which makes holes more energetically favored.

* FLR-Landau fluid model can accurately reproduce the linear regime and admits subcritical
magnetic hole solutions as well, but hardly leads to magnetic humps.



7. Open questions

 Would it be possible to phenomenologically include effects of local variation of ion
Larmor radius in FLR-Landau-fluid?

Nonlinear FLR are retained by gyrofluids (obtained by closing the moment hierarchy derived from
the gyrokinetic equation), but the formalism has not yet developed for anisotropic plasmas.

» Are there conditions (very large domains, very close to threshold) where the instability
saturates by quasi-linear effects?

* In asmall domain, can one observe, very close to threshold, the signature of the
singularity predicted by the reductive perturbative expansion ?

What is the role of trapped particles?

 How to understand quantitatively the observed transition from humps to holes in large-
box simulations far from threshold?

» Is there a unique origin to the commonly observed magnetic holes?

In particular, are the large-scale (hundreds or thousands ion Larmor radii) magnetic holes observed
in the solar wind by Stevens & Kasper (JGR 2007) also associated with the mirror instability?

« What s the role of the mirror structures on the magnetopause boundary?
Can they trigger micro-reconnection events?





