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These Lecture Notes are devoted to a presentation of a statistical theory for magnetic field line
random walk in magnetized turbulent plasmas. The random displacement of magnetic field lines in
the presence of magnetic turbulence in plasmas is investigated from first principles. Two different
models for the turbulence spectrum are employed and critically discussed, namely a two-component
(slab/two-dimensional composite) model and an isotropic turbulence model . An analytical investi-
gation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried
out. It is shown that the magnetic field lines behave superdiffusively in the composite model, since
the FL-MSD σ varies as σ ∼ z4/3. This superdiffusive result, which is confirmed numerically via an
iterative algorithm, is in disagreement with earlier results obtained via quasilinear theory. Contrary
to the composite model, quasi-linear theory is shown to provide an adequate description of FLRW
for isotropic turbulence. In the latter case, asymptotic FL-MSD behavior is shown to be superdiffu-
sive, as σ ∼ z(ln z +cst.). Contrary to the composite model, quasi-linear theory is shown to provide
an adequate description of FLRW for isotropic turbulence. In the latter case, asymptotic FL-MSD
behavior is shown to be superdiffusive, as σ ∼ z(ln z + cst.). The relevance to previous results is
discussed.

I. INTRODUCTION

Elucidating the physical mechanisms underlying the transport of particles and energy in magnetized plasmas is
a long standing problem. Although it traces its roots in cosmic astrophysics [1], transport theory has received new
impulse due to investigations of relevance with man-made magnetically confined systems (nuclear fusion plasmas)
[2]. Plasma transport theory initially relied on the picture of collisional transport, i.e., scattering of trajectories in
position and in velocity space due to mutual charged particle interactions. This transport mechanism is possible even
in a plasma embedded in a uniform magnetic field [2, 3] and, in fact, also for unmagnetized plasma (typically relying
on a binary collision term in Landau kinetic theory) [2]. In contrast with (and complementary to) this paradigm,
collisionless plasma transport occurs due to magnetic field turbulence, which results in particle trajectories becoming
erratic, yet on average confined to the (helicoidal) motion imposed by the strong mean magnetic field.

The random behavior of magnetic field lines in magnetized plasmas embedded in turbulent fields plays a major role
in particle diffusion, as intuitively expected, from a physical point of view. Charged particle trajectories (cosmic rays)
are confined by magnetic lines, to a first approximation, essentially performing uniform motion along the field lines,
in addition to Larmor gyration in the plane perpendicular to them. In general, the magnetic field lines are defined
as the solutions, at a given point in space-time, of the equations dx/Bx = dy/By = dz/Bz, thus plainly prescribing
rectilinear field lines for a uniform magnetic field. Due to inevitable random fluctuations, however, neighboring field
lines tend to walk away from each other, in an intrinsically stochastic manner. This random walk of magnetic field lines
can be modelled statistically, as shown in a classic series of papers by Jokipii and co-workers [4, 5], who followed the
general statistical-mechanical framework of random processes in order to formulate a stochastic theory for magnetic
field line behavior. The erratic transport of charged particles in turbulent plasmas [6] was later associated to the
stochastic spatial field line topology via the notion of compound diffusion (see e.g. in Refs. [7–9]; also Refs. therein),
which essentially describes a convolution of the two intertwined random processes. Recent extensions of this formalism
account for effects like non-axisymmetry and magnetic field line mutual separation [10, 11].

Initial investigations of charged particle transport across a large scale magnetic field (essentially the solar magnetic
field, in our case of interest) have relied on an ad hoc diffusive assumption for the field-line displacement; e.g. [8, 9, 12].
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Subsequent approaches have adopted various degrees of sophistication, in search of a description which accounts for
the intrinsic nonlinearity of the complex problem of particle transport [13–16], and have thus extended the theoretical
toolbox by relaxing restricting (e.g. quasilinear [4]) analytical assumptions. Open problems in cosmic ray transport
theory include the subdiffusive behavior of perpendicular transport in certain slab models and the recovery of diffusion
for non-slab geometry [17], as observed in test-particle simulations; e.g. [18]. Although certain progress was marked by
the extended nonlinear guiding center theory [15] (which explains subdiffusion in the slab model, as well as the recovery
of diffusion in slab/two-dimensional (2D) composite geometry), there is no satisfactory definite physical explanation
allowing one to understand the forementioned diffusion regimes. An attempt to fill in this gap was carried out in
[19] by relating field-line transport coefficients to particle transport parameters. A generalized compound diffusion
model has recently attempted to relate particle distribution along the field to lateral transport perpendicular to it,
thus confirming results obtained by numerical simulations [20].

These Lecture Notes are devoted to an investigation of the random displacement of magnetic field lines, from first
principles. A turbulent magnetic field is assumed to be present, in addition to a dominant uniform ambient field. A
hybrid two-component (slab/two-dimensional) description of the stochastic random field spatial behavior is employed.
No approximation or any restricting assumption of any kind is made, other than the Corrsin hypothesis [6, 21] and
assuming stationary turbulence statistics, as well as a Gaussian distribution of magnetic field lines. Part of the
material presented here relies on the published Ref. [20] cited below, while part of it will be included in a future
publication, currently under preparation. An interested reader should consider reading this text in combination with
the generalized compound diffusion model introduced in Ref. [19]a.

The layout of this text includes a detailed exhibition of the model framework, in Section II. The two-component
slab/2D model is introduced in Section III, followed by an asymptotic analysis and an analytical identification of
characteristic super-diffusive regimes, in Section IV. The analytical findings are confirmed by a numerical analysis in
Sec. V. Isotropic turbulence is then considered in Sec. VI, where (contrary to the composite model), quasi-linear
theory is shown to provide an adequate description of FLRW. Finally, our results are summarized in the concluding
Section.

II. DESCRIPTION OF THE PHYSICAL PROBLEM & ANALYTICAL FORMALISM

This Section is devoted to a brief review of the analytical framework employed in a statistical description of FLRW
as a random process. We shall focus on statistically homogeneous, axisymmetric two-component magnetic turbulence.
We consider a plasma immersed in a magnetic field B(r) = B0 + δB(x, y, z). Here B0 = B0êz denotes the uniform
ambient field (B0 = cst.), while δB is a turbulent (random) magnetic field, here assumed to lie in the xy− plane, i.e.
δB · B0 = 0 (or δBz = 0). The stochastic magnetic field function δB is assumed to be essentially time-independent
for time scales of interest to us. Electric field turbulence is neglected for simplicity.

We shall focus on a two-component turbulence model, by explicitly assuming that the fluctuating magnetic field is
given by

δB(x, y, z) = δB2D(x, y) + δBslab(z) , (1)

where both slab and two-dimensional (2D) contributions (i.e. the latter and the former terms, respectively) are
assumed to be of zero mean and statistically uncorrelated. In contrast, a standard isotropic turbulence model consists
in assuming

δB(x, y, z) = δB(r) , (2)

where r denotes the radial position coordinate (x2 +y2 +z2)1/2 (where no distinction is made among different degrees
of freedom). These two assumptions will be critically compared in the following.

The field-line equation for the x− component reads dx/dz = δBx/B0. The solution of this equation provides the
field-lines in the form x = x(z). A similar equation can be formulated for the y− component.

Following the standard field-line random walk formalism (see e.g. in Ref. [5]), the field-line displacement ∆x =
x(z) − x(0) in the x-direction takes the form

∆x(z) =
1

B0

∫ z

0

dz′ δBx(x(z′)). (3)



The field-line (FL) mean square displacement (MSD) is thus given by

〈
(∆x(z))

2
〉

=
1

B2
0

∫ z

0

dz′
∫ z

0

dz′′ 〈δBx(x(z′)) δB∗
x(x(z′′))〉

=
1

B2
0

∫ z

0

dz′
∫ z

0

dz′′ Rxx(z′, z′′) (4)

where the brackets in the first step denote an average over a statistical ensemble. In the second step we have employed
the xx−component of the magnetic correlation tensor Rxx(z′, z′′) = 〈δBx(x(z′))δB∗

x(x(z′′))〉. The real part of the
integral(s) in the right-hand side (rhs) is henceforth understood everywhere. Since the correlation tensor is itself
dependent on x(z) = (x(z), y(z), z), this is an implicitly nonlinear integral equation for the magnetic field-line space
topology.

In principle, one is interested in determining the MSD
〈
(∆x)2

〉
for large values of z. Anticipating an asymptotic

behavior in the form

〈
(∆x)2

〉 ||z|→∞= a |z|b , (5)

one identifies distinct regimes, depending on the value of the exponent: b = 1 corresponds to classical (“Markovian”)
diffusion, while b < 1 (b > 1) denotes a subdiffusive (superdiffusive, respectively) “anomalous” regime.

Applying a Fourier representation for the magnetic field, the magnetic correlation tensor in Eq. (4) takes the form

Rxx(z′, z′′) =

∫
d3

k

∫
d3

k
′
〈
δBx(k)δB∗

x(k′) ei[k·x(z′)−k
′·x(z′′)]

〉

�
∫

d3
k

∫
d3

k
′ 〈δBx(k)δB∗

x(k′)〉
〈
ei[k·x(z′)−k

′·x(z′′)]
〉

, (6)

where Corrsin’s independence hypothesis [6, 13, 21, 22] was applied in the last step, for the sake of analytical
tractability. Assuming stationary turbulence statistics, viz. 〈δBx(k)δB∗

x(k′)〉 = Pxx(k) δ(k − k
′), one finds

Rxx(z′, z′′) =

∫
d3

k Pxx(k)
〈
eik·[x(z′)−x(z′′)]

〉
. (7)

This expression allows for an exact evaluation of the FL-MSD, once one has adopted an analytical assumption for the

magnetic field correlation Plm (l,m = x, y, z) and for the characteristic function < ei�k·∆�x(z) >. This is exactly the
task remaining to be undertaken in the following.

In order to evaluate Eq. (7), one needs to determine the correlation tensor Rxx. For the sake of analytical

tractability, in order to evaluate the characteristic function < ei�k·∆�x(z) >, we will assume Gaussian statistics for the
field-lines, thus

〈
ei�k·∆�x(z)

〉
= e−

1
2 〈(∆x(z))2〉k2

x−
1
2 〈(∆y(z))2〉k2

y+ik‖z

= e−
1
2 〈(∆x(z))2〉k2

⊥+ik‖z, (8)

where axisymmetric turbulence (
〈
(∆x)2

〉
=

〈
(∆y)2

〉
) led to the last step (k2

⊥ = k2
x + k2

y).
Combining Eqs. (8) and (7) into (4), one obtains an expression for the FL-MSD, in the form of a multiple integral

(to be evaluated once an exact form for Pxx(k) is specified). This is the final result of this Section.
An ordinary differential equation for the FL-MSD. Although we may directly refer to the following Section, at this

stage, we wish to add some clarifying information on our analytical toolbox, for the sake of comparison to previous
works, and for future reference.

Considering Eq. (4) and assuming homogeneous turbulence Rxx(z′, z′′) = Rxx(|z′ − z′′|), one obtains, via a trivial
transformation [23]

〈
(∆x(z))

2
〉

=
2

B2
0

∫ z

0

dz′ (z − z′)Rxx(z′) . (9)

Upon simple differentiation with respect to z, we find for the field-line MSD

d

dz

〈
(∆x(z))

2
〉

=
2

B2
0

∫ z

0

dz′ Rxx(z′) . (10)



A second differentiation leads to

d2

dz2

〈
(∆x(z))

2
〉

=
2

B2
0

Rxx(z) ,

=
2

B2
0

∫
d3k Pxx(�k) cos(k‖z)e−

1
2 〈(∆x(z))2〉k2

⊥ (11)

where (7) and (8) were taken into account in the last step. Interestingly, Eq. (11) has also been previously derived by
Lerche [24], for purely 2D turbulence (also see Refs. [16]); however, no further investigation was carried out in Ref.
[24].

The ordinary differential equation (ODE) (11) was obtained exactly, relying on no other assumptions than Corrsin’s
hypothesis and Gaussian FL statistics. Once a turbulence model is specified, it provides a general basis for the
determination of the FL-MSD, which is thus directly related to the turbulence statistics. Also note that the “running
FL diffusion coefficient” is thus related to the turbulence characteristics in an elegant manner, as

dxx ≡ 1

2

d

dz

〈
(∆x(z))

2
〉∣∣∣∣

z→∞

=
1

B2
0

∫ z→∞

0

Rxx(z′)dz′ . (12)

The relations in this Section form the basic toolbox of our transport-theoretical study. One needs to specify the

correlation tensor Pxx(k) of the magnetic fluctuations, and also model the characteristic function
〈
eik·[x(z′)−x(z′′)]

〉
.

In the following, we shall consider and compare two different hypotheses for the magnetic turbulence statistics, namely
a hybrid (composite) slab/2D and an isotropic turbulence model.

III. THE COMPOSITE SLAB/2D TURBULENCE MODEL

We shall now adopt a hybrid (composite) slab/2D model (cf. Refs. [7, 10, 11, 25]), by explicitly assuming

Pxx(k) = P slab
xx (k) + P 2D

xx (k) . (13)

The slab and 2D contributions to the correlation tensor are given by

P slab
lm (k) = gslab(k‖)

δ(k⊥)

k⊥

⎧⎨
⎩

δlm if l,m = x, y

0 if l or m = z
(14)

and

P 2D
lm (k) = g2D(k⊥)

δ(k‖)

k⊥

⎧⎨
⎩

δlm − klkm

k2 if l,m = x, y

0 if l or m = z
(15)

respectively, i.e., here P slab
xx (k) = gslab(k‖)δ(k⊥)/k⊥ and P

(2D)
xx (k) = g2D(k⊥)δ(k‖)k

2
y/k3

⊥ . It is straightforward to

calculate, by substituting the latter expressions into (7) above, the FL MSD
〈
(∆x(z))

2
〉

(comp)
in the composite

slab/2D model. Since slab and 2D fluctuations are uncorrelated, they provide two distinct additive contributions; cf.
(13) above. Let us evaluate these two distinct parts, separately.

The first (slab) contribution to the FL-MSD, which is due to the first term in the rhs of (13), reads

〈
(∆x(z))

2
〉

(slab)
=

2π

B2
0

∫ +∞

−∞

dk‖ gslab(k‖)

∫ z

0

dz′
∫ z

0

dz′′ eik‖(z′−z′′)

=
4π

B2
0

∫ +∞

−∞

dk‖ gslab(k‖)
1 − cos(k‖z)

k2
‖

= 4C(nu) l2slab

(
δBslab

B0

)2 ∫ ∞

0

dζ (1 + ζ2)−ν 1 − cos(ζz/lslab)

ζ2
, (16)

where ζ = k‖lslab [23]. In the last step, we have adopted the spectrum [25]

gslab(k‖) =
C(ν)

2π
lslab δB2

slab (1 + k2
‖l

2
slab)

−ν , (17)



where we have defined the slab bendover length scale lslab, the strength of the turbulent field δBslab, and the
inertial-range spectral index 2ν. The normalization constant is C(ν) = Γ(ν)/[2π1/2Γ(ν − 1/2)], where Γ denotes
the Euler gamma function Γ(z) =

∫ ∞

0
tz−1e−tdt [26, 27]. As shown in Ref. [19], the slab contribution behaves as〈

(∆x(z))
2
〉

FL
≈ (1/2)(δBslab/B0)

2z2 for small |z| (� lslab), while
〈
(∆x(z))

2
〉

FL
≈ 2κFL|z| for large |z| (� lslab).

The field-line diffusion coefficient κFL is given by [19]

κFL = π C(ν) lslab (δBslab/B0)
2 (18)

It should be stressed that this diffusive behaviour of field-line separation is only correct if the wave-spectrum, which
controls the MSD, is constant at the large turbulence scales of the energy-range. Otherwise, field-lines may present a
superdiffusive behavior, for a descreasing spectrum in the energy-range [19].

The second (2D) contribution to the FL-MSD is due to the second term in rhs(13); it reads

〈
(∆x(z))

2
〉

(2D)
=

1

B2
0

∫
d3

k g2D(k⊥)
δ(k‖)

k⊥
sin2 Ψ

∫ z

0

dz′
∫ z

0

dz′′
〈
eik·[x(z′)−x(z′′)]

〉

=
π

B2
0

∫ ∞

0

dk⊥ g2D(k⊥)

∫ z

0

dz′
∫ z

0

dz′′
〈
eik·[x(z′)−x(z′′)]

〉∣∣∣∣
k‖=0

, (19)

where polar coordinates {k⊥,Ψ, k‖} were used in Fourier space. Different approximations have been proposed in the

past for the characteristic function
〈
eik·[x(z′)−x(z′′)]

〉
. We shall here assume that the field-line distribution is described

by a Gaussian distribution, so that

〈
eik·[x(z′)−x(z′′)]

〉
= e−

〈(∆x)2〉
2 k2

⊥ (20)

(a factor eik‖z was omitted due to the δ function in P 2D
lm (k)). Assuming this to be a function of |z′ − z′′| [23], and

substituting into Eq. (19), one finds

〈
(∆x(z))

2
〉

(2D)
=

2π

B2
0

∫ ∞

0

dk⊥ g2D(k⊥)

∫ z

0

dz′ (z − z′) e
−

D
(∆x(z′))

2
E

k2
⊥/2

= 4C(ν) l2D

(
δB2D

B0

)2 ∫ ∞

0

dk⊥
1

(1 + k2
⊥l22D)ν

∫ z

0

dz′ (z − z′) e
−

D
(∆x(z′))

2
E

k2
⊥/2

. (21)

In the last step, we have adopted the spectrum [14]

g2D(k⊥) =
2C(ν)

π
l2D (δB2D)2 (1 + k2

⊥l2slab)
−ν (22)

Here, we have defined the 2D bendover length scale l2D and the strength of the turbulent field δB2D, while the
constant C(ν) was defined above. We stress that Eq. (21) is a transcendental integral equation: note the appearance
of the MSD in the left-hand side (lhs), and also in the exponent in the integrand, in the rhs.

It is straightforward to show that Eq. (21) for the 2D contribution to the MSD is tantamount to

d2

dz2

〈
(∆x(z))

2
〉

(2D)
= 4C(ν) l2D

(
δB2D

B0

)2 ∫ ∞

0

dk⊥ (1 + k2
⊥l22D)−ν e

−
D
(∆x(z′))

2
E

k2
⊥/2

. (23)

As shown in the Appendix, the 2D contribution to the MSD behaves as
〈
(∆x(z))

2
〉

2D
≈ (1/2)(δB2D/B0)

2z2 for

small
〈
(∆x(z))

2
〉

(� l22D), so that the well known superdiffusive (ballistic) previous result is thus recovered in this

limit.

We have seen that the MSD
〈
(∆x(z))

2
〉

comp
in the hybrid (composite slab/2D) model is expressed as the sum of

two parts, which are exactly given by expressions (16) and (21). In order to obtain a working basis for our analytical
purposes, it is appropriate to combine these expressions into a dimensionless formula for the FL-MSD. Scaling all

lengths by the slab bendover length scale, i.e. setting
〈
(∆x(z))

2
〉

= σl2slab and z̃ = z/lslab, one finds

σ = 4C(ν)

(
δBslab

B0

)2 ∫ ∞

0

dx (1 + x2)−ν 1 − cos(xz̃)

x2

+ 4C(ν)

(
δB2D

B0

)2 ∫ ∞

0

dx′ (1 + x′2)−ν

∫ z̃

0

dz̃′ (z̃ − z̃′) e−σx′2/(2ξ2) , (24)



where we defined the (dimensionless) dummy parameters x = k‖lslab, x′ = k⊥l2D, and the 2D-to-slab bendover scale
ratio ξ = l2D/lslab.

It is straightforward to show that the latter relation is tantamount to the differential equation

d2σ

dz̃2
= 4C(ν)

(
δBslab

B0

)2 ∫ ∞

0

dx (1 + x2)−ν cos(xz̃)

+4C(ν)

(
δB2D

B0

)2 ∫ ∞

0

dx (1 + x2)−ν e−σx2/(2ξ2) , (25)

where we have dropped the primes in the dummy integration variable in the latter integral.

IV. ANALYTICAL EVALUATION OF THE MSD IN THE TWO-COMPONENT MODEL

A. Small field-line displacement behavior

First, let us consider the small displacement and MSD limit (i.e., z̃ � lslab,
〈
(∆x(z))

2
〉
� l22D, viz. σ � ξ2). In

this approximate case, the two contributions in (24) can be evaluated along the considerations in the previous Section

(cf. Appendix). It is straightforward to show that the FL-MSD behaves as
〈
(∆x(z))

2
〉
≈ 1

2

(
(δBslab)

2+(δB2D)2

B2
0

)
z2

[28]. In the limit of small |z|, therefore, the field lines separate superdiffusively with ∼ z2, as in the pure slab and/or
2D model(s). In this case, both (slab and 2D) contributions have the same form, bearing a free-streaming-like ballistic
(parabolic MSD) result.

B. Infinitely large FL-MSD behavior: approximate analysis

In the large |z|-limit, the two contributions to the FL-MSD present a different behavior. The former (slab) con-
tribution behaves diffusively, as shown in Ref. [19]. In the following paragraph we shall show that the latter (2D)
contribution behaves superdiffusively, in fact as ∼ |z|4/3 (cf. Ref. [20]), in the infinite |z| limit.

It can be shown that the slab contribution in (25) may be neglected, for an infinitely large distance |z|. To see
this, note that the first integral in (25) varies as ≈ e−z̃, at large distance z̃, whence we deduce that it is negligible,
with respect to the second one, for large z � lslab (see in Appendix A 1 for details). On the other hand, the second

integral in (25) behaves (for large values of σ, i.e., y � 1) as ≈ ξ
√

π/
√

2σ (see in Appendix A 2). Omitting analytical
details here (see in the Appendix), (25) now becomes

σ′′(z̃) ≈ 4πC(ν)

2νΓ(ν)

(
δBslab

B0

)2

z̃ν−1e−z̃ +
4ξ
√

πC(ν)√
2

(
δB2D

B0

)2

σ−1/2 . (26)

We point out that this relation was obtained under the assumptions z � lslab and
〈
(∆x)2

〉 � l22D (i.e., it is valid for
large values of the reduced position z̃ � 1 and MSD σ � ξ variables). Note that the first term in the rhs (i.e., the
slab contribution) vanishes for large z̃, and may thus be omitted in the asymptotic analysis. Multiplying both sides
in (26) by σ′(z̃)/2 and integrating, one easily obtains

[σ′(z̃)]2 ≈ 4ασ1/2 + β , (27)

where

α = 4C(ν) ξ

√
π

2

(
δB2D

B0

)2

(28)

, and β is an integration constant, to be determined below [29].
Eq. (27) can be cast (for y′ > 0) in the form

dσ

(4ασ1/2 + β)1/2
= dz̃ , (29)

so both sides can now be integrated to obtain the explicit (asymptotic) dependence of σ on z̃. Different special cases
for the coefficients α and β may be singled out, as we shall see below.



C. The pure slab turbulence limit

It is clear from (27) that the real constant β physically corresponds to the (square) limit value of σ′ for vanishing α,
that is, cancelling the 2D component of turbulence stochasticity. Indeed, assuming α = 0 (purely slab MSD), (27) can
be easily integrated to give σ =

√
β z̃, which implies a diffusive behavior of the FL-MSD. For consistence, the value

of β should therefore be determined in agreement with the well known (diffusive) result in this limit, which reads〈
(∆x(z))2

〉
slab

= 2κFL|z| (30)

(see above; details in Ref. [19]), hence, in dimensionless form,

σ′
slab(z̃) = 2κFL/lslab .

Therefore, we shall set

β =

(
2
κFL

lslab

)2

= 4π2 C(ν)2
(

δBslab

B0

)4

, (31)

where the slab model diffusion coefficient κFL was defined in (18) above.

D. The pure 2D turbulence limit

We shall now consider the vanishing β limit. For β = 0, Eq. (27) becomes σ′′(z̃) = ασ−1/2. Anticipating a solution
in the form σ(z̃) = c z̃d [and assuming σ′(0) = 0], one is easily led to c = (3

√
α/2)4/3 and d = 4/3. We therefore

obtain

σ(z̃) ≈ 2−1/334/3[C(ν)2/3]ξ2/3π1/3

(
δB2D

B0

)4/3

z̃4/3 =

(
81πξ2

2

)1/3

[C(ν)]2/3

(
δB2D

B0

)4/3

z̃4/3 . (32)

The same result is obtained upon integrating Eq. (29). Scaling back to the original variables, we have

〈
(∆x(z))2

〉 ≈
(

9
√

πC(ν)√
2

)2/3 (
δB2D

B0

)4/3

l22D

(
z

l2D

)4/3

. (33)

We draw the conclusion that the asymptotic behavior of the MSD is superdiffusive, in fact bearing a characteristic
exponent 4/3, in addition to an asymptotic value which is related to intrinsic turbulence parameters via relation (33).
This result was here obtained via an approximate treatment of (25), and adopting simple qualitative arguments. We
shall show below that this prediction is indeed confirmed by a direct numerical evaluation of (24).

As a matter of fact, the purely 2D turbulence model obtained in this mathematical limit may, in fact, be somehow
questioned physically (it implies δB = δB(x, y), although the z− behavior of FL is considered); however, we have
considered it appropriate to study this limit, here, for the sake of comparison and future reference.

E. Two-component model

We shall henceforth consider the case α 
= 0 and β 
= 0. The relation (29) can readily be integrated [32] to give

1

6α2

[
(2α

√
σ − β) (4α

√
σ + β)1/2 + β3/2

]
= z̃ , (34)

where we have neglected a finite (arbitrary) real constant z0 in the large z limit. Note that both limits considered in
the latter two paragraphs are here properly recovered, for vanishing α or β, respectively.

The relation (34) can be rearranged as

(Y − 1) (2Y + 1)1/2 = Z − 1 , (35)

where

Z =
6α2

β3/2
z̃ , Y =

2α

β

√
σ . (36)

Eq. (35) is an algebraic equation, which can be solved for Y in terms of Z [33]. Before doing so, however, it may be
interesting to consider the asymptotic behavior of Y (Z), as obtained from (35).



F. Asymptotic behavior and parameter regimes

Considering the large- and small-value regimes for Y , it is straightforward to obtain from (35) the asymptotic
form(s):

Y 2 ≈ 2Z/3 for Y � 1 , and Y 2 ≈ (Z/
√

2)4/3 for Y � 1 . (37)

As expected, these forms correspond exactly to the diffusive (superdiffusive) results presented in the previous two
paragraphs, in the pure-slab (pure-2D, respectively) turbulence limits. Let us consider the critical point where the
two asymptotic regimes “cross into” each other, namely Zc = 25/33 ≈ 1.185, which implies [cf. definitions (36)] a
critical value

z̃ =
24

34

β3/2

α2
≈ 0.2

β3/2

α2
≡ z̃c,1 (38)

for the reduced position variable z̃. On the other hand, our theoretical calculation relies on the validity of the
assumptions z � lslab and

〈
(∆x)2

〉 � l22D, implying z̃ � 1 and σ � ξ2, which are assumed to hold in any case of
study. Combining with (36) and (37), in the respective regions, the latter requirements are seen to be tantamount to
z̃ � z̃c,2 and z̃ � z̃c,3, respectively; here we defined two additional critical values, namely:

z̃c,2 = ξ/
√

β , z̃c,3 = 2(αξ)3/2/3 . (39)

We thus finally find two distinct regimes, regarding the FL-MSD behavior,

max{1, zc,2} � z̃ � z̃c,1 → σ ∼ z̃ (diffusion) (condition 1)

z̃ � max{1, zc,1, zc,3} → σ ∼ z̃4/3 (superdiffusion) (condition 2) .

Note that diffusion occurs only if zc,1 � 1, and is otherwise excluded. The above results provide a set of explicit
criteria for the behavior of field-lines in the composite turbulence model. We recall that the turbulence spectrum-
related constants α and β were defined in (28) and (31), respectively, so that the critical values z̃cr,1/2/3 defined in (38)
and (39) can be expressed in terms of relevant turbulent plasma parameters. We provide here, for future reference,
the exact form of the critical values derived above:

z̃c,1 ≡ zc,1

lslab
=

(
2
√

π

3

)4

C(ν)

(
lslab

l2D

)2
δB6

slab

B2
0 δB4

2D

z̃c,2 ≡ zc,2

lslab
=

(
1

2πC(ν)

)
l2D

lslab

(
δBslab

B0

)−2

z̃c,3 ≡ zc,3

lslab
=

24

3

(
π

2

)3/4

C(ν)3/2

(
l2D

lslab

)3(
δB2D

B0

)3

. (40)

In particular, we shall retain the requirement z̃cr,1 � 1, for diffusion to be possible, which yields an explicit criterion
in the form:

δ ≡
(

lslab

l2D

)2
δB6

slab

B2
0 δB4

2D

� 1 (41)

(where a constant of the order ≈ 0.2 was neglected). The dimensionless parameter δ here defined determines the
limits of diffusion occurring in this model. If δ � 1, then a diffusive behavior may be anticipated if condition 1 (see
above) holds, otherwise a superdiffusive behavior is expected if condition 2 is satisfied instead. On the other hand, if
δ is of the order of unity or smaller, then superdiffusion will be dominant, and diffusion is excluded.

In view of a representative numerical application, we shall consider a typical set of cosmic plasma parameter values
(here referred to as Set 1 ): ν = 5/6 [hence C(ν) ≈ 0.1188], ξ = l2D/lslab = 0.1; a hybrid 20% slab/80% 2D turbulence
topology is assumed [i.e., setting δB2

2D/B2
0 = 4 δB2

slab/B2
0 = 0.8]. For these values, we find α ≈ 0.05 and β ≈ 0.22,

which lead to: z̃cr,1 ≈ 0.29, z̃cr,2 ≈ 0.67 and z̃cr,3 ≈ 0.0002. One easily sees that diffusion is excluded in this case,
while superdiffusion will be dominant for z � lslab. On the other hand, we have considered the opposite extreme case
of a dominant slab contribution, by assuming a hybrid 90% slab/10% 2D turbulence topology is assumed [i.e., setting
δB2

slab/B2
0 = 9δB2

2D/B2
0 = 0.9] (all remaining parameter values are taken to be the same as in Set 1 ); this choice of

parameters will be referred to as Set 2. One finds, for this model, a critical value z̃cr,1 ≈ 1500, while z̃cr,2 ≈ 0.15 and
z̃cr,3 ≈ 10−5. According to our regime identification above, this fact allows for an extended range of values (for z/lslab

well below z̃cr,1) where FL wandering will be quasi-diffusive, while a superdiffusive regime will, once more, dominate
for higher z values. These predictions are indeed confirmed by the numerical analysis below (refer to Figs. 2 and 3,
and the analysis in Section V below).
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FIG. 1: The logarithm ratio ln(σ/σ0)/ ln Z, where σ0 = (β/2α)2, is depicted against the reduced position variable Z =

6α2z/(β3/2lslab); this plot is dictated by the anticipated relationship σ = aZb, which implies b = limZ→∞(ln σ/ ln Z). The
value of σ is obtained by combining relations (36) - (43). See that the predicted value b = 4/3 is obtained, in the asymptotic
(large Z) limit.

G. Exact solution of (35) for the MSD

Eq. (35) is a cubic polynomial equation in Y 1/2, which may be solved analytically by employing standard algebraic
techniques. The procedure leads to a real root Y1(Z) [34]

Y =
1

2
(1 + A−1/3 + A1/3) , (42)

with

A = 2(Z − 1)2 + 2
√

(Z − 1)4 − (Z − 1)2 − 1

= 1 + 2Z(Z − 2) + 2
√

Z(Z − 2)(Z − 1)2 , (43)

in addition to two complex roots Y2/3(Z), whose lengthy analytical form is omitted here, for brevity. We shall add,
omitting details, that the asymptotic analysis of the 3 roots in terms of the argument Z leads to the anticipated result
obtained above. In particular, for Z � 1, we find Y2/3(Z) ≈ ∓

√
2Z/3, which leads exactly, after a short calculation

(inverting to the original scaled variables), to the diffusive behavior σ ≈ √
βz̃ presented in paragraph IVC above. On

the other hand, in the large Z limit, i.e. for Z � 1, one finds that Y1(Z) ≈ (Z/
√

2)2/3. It is straightforward to show

that we thus recover the superdiffusive behavior σ ≈ (3
√

α/̃2)4/3 presented in paragraph IVD above [35].
The exact value of σ ∼ Y 2 can be numerically evaluated from expressions (42, 43). In Figure 1, we have depicted

the ratio lnσ/ ln Z [making use of (42) and (43)] against the (reduced) position variable Z, in fact inspired by the
anticipated relationship σ = aZb, which implies b = limZ→∞(ln σ/ lnZ. We see that the predicted value b = 4/3 is
obtained, in the asymptotic (large Z) limit.

Resuming our findings so far, the relation (42) [together with the definitions in (36) and (43)] provides a solution
of (25) [cf. (26)]. The correct asymptotic result, namely superdiffusion (σ ∼ z4/3), is reproduced to leading order (see
that Y ∼ A1/3 ≈ 4Z2 for Z � 1); this is true for (α 
= 0 and) β = 0 (pure-2D turbulence limit), yet also in general
(for α, β 
= 0). We stress that the condition for this superdiffusive result to be valid implies z � β3/2/(6α2) lslab (cf.
the analysis above), which can always be satisfied for sufficiently large z̃, provided that the ratio β3/2/(6α2) remains
finite (or zero), viz. α 
= 0 (i.e., a small 2D contribution exists).

H. Asymptotic large z̃ behavior for arbitrary α and β

Eq. (42) has provided a basis for an investigation of the dependence of the FL-MSD σ ∼ Y 2 versus Z ∼ z̃, both
analytically and numerically. We shall here advance the analytical calculation in the asymptotic limit Z � 1. At a



first step, one is tempted to consider Y ≈ A1/3/2 ≈ (2Z)2/3/2 (i.e. omitting terms ∼ O(Z0) or smaller, in the infinite
Z limit). However, this choice trivially leads to the same result as obtained above in the pure-2D limit (for β = 0),
as previously mentioned. To gain analytical insight, even approximately, one can keep the leading two orders in the
asymptotic expansion (for large Z), i.e., Y ≈ (1 + A1/3)/2 ≈ [1 + (2Z)2/3]/2, where terms O(Z−2/3) or smaller were
now omitted. Reversing the transformation (36), we thus obtain

σ ≈
(

3
√

α

2

)4/3

z̃4/3 +
β

2

(
3

2α

)2/3

z̃2/3 . (44)

We note, for rigor, that the same relation is obtained by combining (36) - (43) into an expression for σ = σ(z̃) and
then linearizing in β. We remark that the second term in the rhs is due to the slab contribution – and vanishes
without it, i.e. for β = 0 – although we find out, not without surprise, that it is not linear in z. Recovering the
original dimensions of all quantities, we find (in the composite model)

〈
(∆x(z))

2
〉

comp
≈

(
9
√

πC(ν)√
2

)2/3 (
δB2D

B0

)4/3

l
2/3
2D z4/3

+

(
3π5/2C(ν)2

2

)2/3 (
δBslab

B0

)4 (
δB2D

B0

)−4/3

l2slab l
−2/3
2D z2/3 . (45)

We shall retain the latter expression as an improved approximate (reduced) expression for the MSD in the two-
component turbulence model. We see that the diffusive character of the MSD in the slab model is entirely lost in the
presence of 2D turbulence.

V. NUMERICAL ANALYSIS IN THE TWO-COMPONENT MODEL

We have shown above that the asymptotic value of the MSD y(z), which exactly obeys Eq. (24), is approximately
given by Eq. (33). This result was obtained analytically, by applying simplifying qualitative arguments in expression
(25) (focusing on its large z � 1 behavior). In the following, we shall test this prediction by directly solving (24)
numerically.

We have carried out an accurate numerical evaluation of (24), for ν = 5/6 (thus C(ν) ≈ 0.1188), ξ = l2D/lslab = 0.1,
and assuming a hybrid 20% slab/80% 2D turbulence topology [i.e., setting δB2

2D/B2
0 = 4 δB2

slab/B2
0 = 0.8]. In order

to take into account the intrinsic nonlinearity of this integral equation – manifested by the appearance of σ in the
left-hand side (lhs) and inside the integrand in the rhs – we have employed an appropriate recursive algorithm, which
is outlined in the following. First, the range of values of the position variable z̃ is determined, say from 0 to z̃max, and
spanned by sampling at N different points, i.e., separated by an interval h = z̃max/N . We have chosen z̃max = 103 and
N = 104 (thus h = 10−1) in the plots presented below, although the recipe was also tested for different combination
of values, for comparison, and was found to yield practically identical results. The iterative solution scheme consists
in substituting σ in the rhs at every step n (for n = 0, 1, 2, ...) by a specific function σn(z̃), and then evaluating the
lhs numerically. The next step trial function σn+1(z̃) is thus obtained, to be subsequently substituted in the rhs in
the next iteration, and so forth. The anticipated convergence of the algorithm, viz. σn+1(z̃) � σn(z̃) (for n ≥ nmax,
i.e., after some order of iteration) was effectively ensured, up to a accuracy of ∼ 10−4 or better, after as few as
nmax = 10, roughly, iterations (yet a few more iterations were carried out to ascertain convergence was achieved).
The (quasilinear) assumption σ0(z) = 0 was used as an initial condition, yielding at the first iteration step the expected
ballistic result σ1 ∼ z2 [i.e., the exact analytical result which may be obtained by evaluating the integrals in rhs(24)],
and then a series of functions σn for n = 2, 3, ..., which behaved as ∼ anz̃bn for z̃ values above, approximately, 50.
The coefficients an and the characteristic exponents bn were determined by least-square fitting in the log(σ) vs. log(z̃)
plane. For the parameter values mentioned above, the iteration converged to a function σ ≈ 0.232 z̃1.328 (found by
linear fitting of a sample of values), in agreement with the prediction (33), which yields: σ ≈ 0.225 z̃1.333, for our
choice of parameter values. Note that the predicted value of the characteristic exponent, namely b=4/3, was thus
confirmed up to a small relative error of 0.4%. For comparison, we have repeated the same procedure for pure slab
turbulence, i.e. by keeping only the first contribution in the rhs of (24) [setting (δB2D/B0)

2 = 0, (δBslab/B0)
2 = 1].

The expected diffusive asymptotic behavior (σ ∼ z̃) was thus obtained, as σ ≈ 0.737 z̃1.0017, and was actually found
to agree quite well with the analytical asymptotic result σ ≈ 0.746 z̃, which can be straightforward obtained in this
case [28].

The numerical results for Set 1 (weakly-slab composite turbulence) are depicted in Figs. 2 and 3. The (dimension-

less) running “diffusion coefficient” dxx(z̃) ≡ σ/(2z̃) =
〈
(∆x(z))

2
〉

/(2 lslab z) is depicted in Fig. 2, as a function of



FIG. 2: (color online) The “running diffusion coefficient”
˙
(∆x(z))2

¸
/(2lslabz) is shown, as a function of the position z/lslab.

The numerical result (solid curve) is compared to the analytical asymptotic result (33) (dashed curve), for 20 % slab / 80 %
2D composite geometry. The corresponding slab-model results (numerical, dotted curve, and theoretical, dash-dotted line) are
provided, for comparison. The analytical and numerical results are obviously in good agreement.

the reduced position variable z̃ = z/lslab. The composite model appears to attain a clearly superdiffusive regime (viz.
dxx 
= cst., for large z̃), which is close to the anticipated (approximate) theoretical result, given by (33). The pure-slab
model leads to the expected diffusive result (viz. dxx ≈ cst., for large z̃), which is also provided for comparison. The

superdiffusive character of FL random walk is clearly confirmed by a log-log plot of the FL-MSD
〈
(∆x(z))

2
〉

vs.

position z̃ (see Fig. 3). In particular, a linear dependence of the form lnσ = −1.459 + 1.328 lnz̃ is obtained by curve
fitting of the rectilinear data on Fig. 3 (upper dashed curve), in (approximate) agreement with the theoretical result
(33), as stated in the previous paragraph.

The numerical results for Set 2 (dominantly-2D composite turbulence) are depicted in Figs. 4 to 6. In Fig. 4, it
is observed that the value of the diffusion coefficient remains in the vicinity of the (diffusive) slab result for a while
(cf. Fig. 4b), and then for large z approaches the superdiffusive behavior predicted analytically (under practically
the same slope) for very large z (expected to be attained in the infinite limit). Three different regimes are witnessed
in Fig. 5, namely: a ballistic initial regime (slope ≈ 2; cf. Fig. 6a)), a diffusive intermediate regime (slope ≈ 1; cf.
Fig. 6b)), and a superdiffusive asymptotic regime (slope ≈ 4/3; cf. Fig. 6c)). Note that the second (quasi-diffusive)
regime was absent in Set 1 (cf. Figs. 2-3). We conclude that the predictions put forward in Section IV F are indeed
confirmed by the numerical analysis.

VI. ISOTROPIC TURBULENCE MODEL

A standard hypothesis in the analysis of magnetized plasmas consists in considering isotropic turbulence. This Sec-
tion is devoted to an analytical investigation of FLRW in isotropic turbulent plasmas, in view of a critical comparison
to the composite turbulence model adopted above.

We shall adopt a correlation tensor element of the form

Pxx(k) =
G(k)

k2

(
1 − k2

x

k2

)
, (46)

where the (spherically symmetric) magnetic turbulence spectrum is given by

G(k) =
1

2π
l0 C(ν) δB2 (1 + k2l20)

−ν , (47)



FIG. 3: (color online) The field-line MSD
˙
(∆x(z))2

¸
is depicted, as a function of the position z/lslab. The numerical result

(solid curve) is compared to the analytical result (33) (dashed curve), for 20 % slab / 80 % 2D composite geometry. The
corresponding slab-model results (numerical, dotted curve, and theoretical, dash-dotted line) are provided, for comparison.
The analytical and numerical results are in excellent agreement.

defining the bendover length scale l0, the strength of the turbulent field δB, and the inertial-range spectral index 2ν.
The normalization constant C(ν) was defined above.

Employing spherical Fourier space coordinates {k,Ψ, φ}, viz. kx = k cos Ψ sin φ, ky = k sin Ψ sinφ and kz = k cos φ

(or, k‖ = kz = ηk and k⊥ =
√

k2
x + k2

y = k
√

1 − η2, where η = cos φ), it is straightforward to find that (11) takes the

form

d2

dz2

〈
(∆x(z))

2
〉

= l0C(ν)
δB2

B2
0

×
∫ 1

−1

dη

∫ ∞

0

dk (1 + l20k
2)−ν(1 + η2) cos(kηz)e−

1
2 〈(∆x(z))2〉k2(1−η2) , (48)

or, in dimensionless form,

d2σ(z̃)

dz̃2
= C(ν)

δB2

B2
0

∫ ∞

0

dx (1 + x2)−ν

∫ 1

−1

dη (1 + η2) cos(xηz̃)e−
1
2 σx2(1−η2) , (49)

where σ =
〈
(∆x(z))

2
〉

/l20, z̃ = z/l0 and x = kl0. Note the appearance of the FL-MSD σ in both sides; cf. (25) above.

In the following, we shall solve the ODE (49) in various limits of interest.

A. The quasilinear-theoretical (QLT) limit

Substituting with σ = 0 in rhs(49) [viz. setting e−
1
2 σx2(1−η2) = 1], the angle integral is evaluated as

∫ 1

−1

dη (1 + η2) cos(xηz̃) =
4

x3z̃3
[xz̃ cos(xz̃) + (x2z̃2 − 1) sin(xz̃)] . (50)

One is now interested in carrying out the x− integration in (49), and, finally, solving for the MSD σ, in view of
tracing its dependence on the position variable z̃.
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FIG. 4: (color online) (a) The “running diffusion coefficient”
˙
(∆x(z))2

¸
/(2lslabz) is shown, as a function of the position z/lslab.

The numerical result (solid curve) is compared to the analytical asymptotic result (33) (dashed curve), for 90 % slab / 10 %
2D composite geometry. The corresponding slab-model results (numerical, dotted curve, and theoretical, dash-dotted line) are
provided, for comparison. The analytical (asymptotic) and numerical results bear the same slope (i.e., the same exponent) in
the large z region, and tend to coincide for infinite z. (b) The same plot, focusing on lower values of the position variable z.

Alternatively, the x− integration in (49) may be first evaluated (still in the QLT limit):

∫ ∞

0

dx (1 + x2)−ν cos(xηz̃) =

√
π

Γ(ν)

( |η|z̃
2

)ν−1/2

Kν−1/2(|η|z̃) , (51)

where Kn(x) denotes a modified Bessel function of the 1st kind [26].
In the following, we shall evaluate the solution of (49) analytically and numerically.
We shall here set ν = 1 in (49), for simplicity (the shape of real observed spectra is indeed qualitatively reproduced

this way). Eq. (49) thus becomes:

d2σ(z̃)

dz̃2
= C(1)

δB2

B2
0

[
π

(
1

z̃
+

2

z̃3

)
− 2πe−z̃

(
1

z̃
+

1

z̃2
+

1

z̃3

)]
, (52)



FIG. 5: (color online) The field-line MSD
˙
(∆x(z))2

¸
is depicted, as a function of the position z/lslab, in a logarithmic plot.

The numerical result (dashed curve) is compared to the analytical result (solid curve), for 90 % slab / 10 % 2D composite
geometry. The corresponding slab-model results (numerical, dotted curve, and theoretical, dash-dotted line) are provided, for
comparison. The analytical (asymptotic) and numerical results tend to coincide in the large z region.

which may be integrated twice, assuming σ(0) = σ′(0) = 0, to give

σ(z̃) =
1

2

δB2

B2
0

[
z̃ ln z̃ +

1

z̃
(1 − e−z̃) − e−z̃ − z̃Ei(−z̃) +

(
γ − 1

2

)
z̃

]
. (53)

We have here employed the Euler constant γ ≈ 0.5772 and the exponential integral function Ei(z) = − ∫ ∞

−z
dt e−t/t

(a very rapidly decreasing, in absolute value, function of z̃). We have used C(1) = 1/(2π).
For practical purposes, we retain, for large z̃ � 1

y(z̃) ≈ 1

2

δB2

B2
0

(z̃ ln z̃ + cz̃) =
1

2

δB2

B2
0

z̃ ln

(
z̃

z̃1

)
, (54)

where the constant c here equals c = γ − 1/2 ≈ 0.0772 = − ln z̃1 (thus z̃1 ≈ 0.9257).
Expression (54) is our strong result to be retained at this stage; it determines the behavior of the FL-MSD for large

(yet finite) values of the position variable z. Quite interestingly, in the infinite z limit, a classical diffusive exponent is
thus obtained. Precisely, anticipating σ(z̃) = az̃b (for z̃ → ∞), one may define the exponent b = limz̃→∞(lnσ(z̃)/ ln z̃)
and then determine its value by making use of De l’Hôpital’s rule, as: limx→∞[ln(c1x lnx + c2x)/ ln x] = 1 (for
arbitrary finite real constants c1 and c2). One thus finds b = 1, as can also be shown numerically. On the other hand,
in the small z limit, a simple expansion in (53) shows that the MSD behaves as σ ∼ 2z̃2/3; a ballistic behavior is
therefore obtained, for z̃ � 1, as

σ(z̃) ≈ 1

3

δB2

B2
0

z̃2 .

Note that the derivative of the MSD σ is related to the running diffusion coefficient; cf. (12). We thus find:

σ′(z̃) = πC(1)
δB2

B2
0

[
ln z̃ +

e−z̃

z̃
− 1 − e−z̃

z̃2
− Ei(−z̃) + γ +

1

2

]
, (55)

i.e., essentially (recovering dimensions), for large z [cf. (12)],

dxx(z̃) ≈ l0
4

δB2

B2
0

ln

(
z

l0

)
, (56)

for large z̃ � 1.
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FIG. 6: (color online) The same plot as in Fig. 5 is provided, focusing on: (a) the low z ballistic regime (see that the composite
and slab model results coincide in this region); (b) the intermediate z quasi-diffusive regime (the composite model result
practically coincides with the diffusive asymptotic slab limit); (c) the large z superdiffusive regime (the composite model and
the superdiffusive analytical prediction converge asymptotically).



B. Quasilinear field line diffusion in the general isotropic case: an exact treatment

In this Section, we will show that, for field line diffusion coefficient in isotropic turbulence, quasilinear theory indeed
provides a good description. We start with the general Eq. (9), where the Fourier magnetic correlation Rxx is to be
substituted by

Rxx =

∫
d3

kPxx cos
(
k‖z

)
. (57)

Adopting expressions (46) and (47), and using spherical coordinates [see the definitions preceding Eq. (48) above],
we obtain 〈

(∆x)
2
〉

FL
=

δB2

B2
0

C(ν)l0

∫ ∞

0

dk
(
1 + l20k

2
)−ν

∫ 1

−1

dη
(
1 + η2

)

×
∫ z

0

dz′ (z − z′) cos(kηz′) . (58)

See that this relation is tantamount (upon a double differentiation) to (49) above. However, instead of evaluating the
latter, we shall now first calculate the integral over z to obtain

〈
(∆x)

2
〉

FL
=

δB2

B2
0

C(ν)l0

∫ ∞

0

dk
(
1 + l20k

2
)−ν

∫ 1

−1

dη
(
1 + η2

) 1 − cos(kηz)

(kη)
2 (59)

=
δB2

B2
0

C(ν)l0

∫ ∞

0

dk
(
1 + l20k

2
)−ν kz cos kz − sin kz + (kz)

2
Si(kz)

k3z
, (60)

where

Si(x) =

∫ x

0

dt
sin t

t
(61)

denotes the sine integral function.
Recalling the scaled variable definitions x = kl0 and z̃ = z/l0, one obtains

σ(z̃) ≡
〈(∆x

l0

)2
〉

FL

=
δB2

B2
0

C(ν)

∫ ∞

0

dx
(
1 + x2

)−ν J (x, z̃), (62)

where

J (x, z̃) =
xz̃ cos xz̃ − sinxz̃ + (xz̃)

2
Si(xz̃)

x3z̃
. (63)

A Taylor expansion of the function J (x, z̃) yields

J (x, z̃) �

⎧⎪⎪⎨
⎪⎪⎩

2z̃2

3
, x � 3π

4z̃

πz̃

2x
, x � 3π

4z̃

(64)

By integrating separately over the three intervals [0, 3π/4z̃], [3π/(4z̃), 1] and [1,∞], we obtain

σ(z̃) � δB2

B2
0

C(ν)
π

2

[
z̃ ln

(
4z̃

3π

)
+

(
1 +

1

2ν

)
z̃

]
, (65)

where we have omitted terms vanishing for large z̃. See that the logarithmic behavior obtained above is here also
qualitatively recovered, as

σ(z̃) � π

2

δB2

B2
0

C(ν) (z̃ lnz̃ + cz̃) , (66)

where the real constant c here equals c = 1 + 1/2ν + ln [4/(3π)] ≈ 0.143 + 1/2ν.
We thus obtain for the second derivative

d2σ

dz̃2
� δB2

B2
0

C(ν)
3π2

8z̃
∼ 1

z̃
, (67)

in qualitative agreement with our findings in the previous paragraphs.
The validity of the results in this paragraph will be tested in Section VII below.



C. Approximate treatment in the general case

Let us consider the ODE (49) once again. In search for analytical tractability, we may approximate the spectrum
function (1 + x2)−ν therein by replacing as

C(ν)

2π
(1 + x2)−ν → 1

4π3/2
e−x2

, (68)

where normalization to unity is preserved.
The x-integration in (49) may now be carried out, yielding

∫ ∞

0

dx e−x2

cos(xηz̃) e−
1
2 σx2(1−η2) =

√
π

2

1√
2 + (1 − η2)σ

e
− η2z̃2

2[2+(1−η2)σ] . (69)

Eq. (49) now becomes

d2σ(z̃)

dz̃2
≈ 1√

2

δB2

B2
0

∫ 1

0

dη (1 + η2)
1√

2 + (1 − η2)σ
e
− η2z̃2

2[2+(1−η2)σ] . (70)

Neglecting the contribution from η values far from zero (thanks to the exponential decrease of the integrand), the
latter expression can be approximated as

d2σ(z̃)

dz̃2
≈ 1√

2

δB2

B2
0

∫ 1

0

dη
1√

2 + σ
e−

η2z̃2

2(2+σ)

≈ 1√
2

δB2

B2
0

1√
σ

∫ 1

0

dη e−
η2z̃2

2(2+σ)

≈ 1√
2

δB2

B2
0

1√
σ

√
π

2

√
σ

z̃
erf

(
z̃2

2σ

)

≈
√

π

2

δB2

B2
0

1

z̃
, (71)

where z̃, σ � 1 and the large-argument behavior of the error function erf(x) were taken into account in the second
and last step(s) [? ]. Integrating (71) twice, we thus obtain rigorously

σ(z̃) =

√
π

2

δB2

B2
0

(z̃ ln z̃ + c1z̃ + c2) (72)

(c1 and c2 are real integration constants). We note that the qualitative behavior of the MSD σ z̃ ln z̃ (for large z̃)
found above is thus reproduced.

VII. NUMERICAL ANALYSIS IN THE ISOTROPIC MODEL

We have tested the results in §VI B numerically. First, in order to establish the validity of the expansion (64), which
led to (65), we have computed the integral in Eq. (62), both exactly [i.e., by directly integrating Eq. (62) numerically]
and approximately [i.e., evaluating (65), which relied on (64)]. The result of the numerical evaluation is shown in
Figure 7. We see that the two curves practically coincide for large z̃ = z/l0. We conclude that the expansion (64)
indeed provides a good analytical approximation of the integrand.

We have investigated the appropriateness of our result (65) as the final result for the MSD in the isotropic turbulence
model, and have naturally anticipated that it might provide a solution of the original ODE (11). In order to test the
validity of (65) [also related to (67)] for this purpose, we have inserted the MSD σ from Eq. (65) into the original
nonlinear ODE (11), and have then evaluated the rhs and lhs independently. As illustrated in Fig. 8, Eq. (65)
provides a very good approximation, for high z̃. The qualitative result σ′′(z̃) 1/z̃ is thus confirmed, validating the
preceding analysis.

We conclude that, for field line random walk in isotropic turbulence, quasilinear theory provides a satisfactory
description, at least in the large scale regime (i.e., for z � l0). The result provided by expression (66) is to be
retained, as the correct asymptotic behavior of the FL-MSD for large z.
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VIII. CONCLUSIONS

We have investigated the random displacement of magnetic field lines in the presence of magnetic turbulence in
plasmas, from first principles. A two-component (slab/two-dimensional composite) turbulence model was employed,
and an analytical evaluation of the asymptotic behavior of the field-line mean square displacement was carried out. It
was found that quasilinear theory was not appropriate in this model, although it can be recovered by “switching” off
the 2D component in the model (purely slab turbulence limit). We have shown that the magnetic field lines behave
superdiffusively for large values of the position variable z and, in fact, the FL-MSD varies as σFL ∼ z4/3. Furthermore,
a diffusive regime may occur, for intermediate (finite) values of z, while a ballistic behavior is witnessed for low z
(here coinciding with the prediction of the slab model). These predictions were indeed confirmed numerically.

In view of a critical comparison with the hybrid (composite slab/2D) model, an isotropic turbulence model was also
considered. Quasi-linear theory was proven to provide an adequate description for the latter (isotropic turbulence)



model. The asymptotic FL-MSD behavior was shown to be weakly superdiffusive, in fact behaving as σ ∼ z ln z for
large values of the position variable z. Qualitatively speaking, the logarithmic behavior of the MSD stems from the
fact that, in the energy range, the spectrum is essentially constant.

We point out that this nonlinear theory for field-line random walk was shown in ref. [20] to be agreement with results
obtained from test-particle numerical simulations, when combined with a generalized compound diffusion model [19].
Furthermore, it can be shown to agree with cosmic observations (refer to the discussion in Ref. [20]). However, it must
be noted that these results seem to contradict the diffusive behavior suggested in Ref. [7], which was nevertheless
found only under questionable assumptions; see the discussion in Ref. [28].

Our results are relevant in space and astrophysical environments, where the stochastic magnetic field line topology
plays an important role in transport phenomena related to cosmic ray propagation and may, in fact, determine the
characteristics of the observed cosmic particle and energy flow observed by relevant experiments.
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APPENDIX A: THE INTEGRALS IN (25)

1. The first integral in (25)

We shall evaluate the first integral in (25), say I1. Making use of tables of integrals [27], one finds

I1(z̃) =

∫ ∞

0

dx
1

(1 + x2)ν

cos(xz̃)

x2
=

√
π

(
z̃

2

)ν−1/2 Kν−1/2(z̃)

Γ(ν)
, (A1)

where Kn(x) denotes the modified Bessel function of order n. For small values of the argument z̃ (i.e. z̃ � 1), this
behaves as

Kν−1/2(z̃) ≈
(

2

z̃

)ν−1/2
1

2
Γ

(
ν − 1

2

)

(see 9.6.9, p. 375 in Ref. [26]), so that the above integral, say I1(z̃), behaves as

I1(z̃) ≈
√

π

2

Γ
(
ν − 1

2

)
Γ
(
ν
) ≡ 1

4C(ν)
(A2)

(cf. the definition of C(ν) in the text). For high values of the argument z̃ (i.e. z̃ � 1), the modified Bessel function
Kn(z̃) behaves as

Kν−1/2(z̃) ≈
√

π

2z̃
e−z̃ + O(z̃−3/2)

(see 9.7.2, p. 378 in Ref. [26]). It is straightforward to see that this implies a negligible value of the slab contribution
(first integral) in (25) [as compared to the 2D contribution, i.e. the second integral], for large z̃ values.

2. The second integral in Eqs. (25)

The second integral in (25)

I2 =

∫ ∞

0

dx (1 + x2)−ν e−yx2/(2ξ2)

can be evaluated analytically, by making use of the Kummer (confluent) hypergeometric function of the first kind
M(a, b, z) = 1F1(a, b, z) (where 1F1 denotes the generalized – or Barnes extended – hypergeometric function; see e.g.
in [30] and Refs. therein). The exact result reads:

I2(y) =
π

2

[
−

√
π

Γ(ν)

1F1(
1
2 , 3

2 − ν, y
2ξ2 )

Γ( 3
2 − ν)

+
1F1(ν, ν + 1

2 , y
2ξ2 )

Γ(ν + 1
2 )

(
y

2ξ2

)ν− 1
2
]

sec(νπ) . (A3)

For a given value of ν, this expression provides the right-hand side (rhs) of the ODE (23), which is then to be integrated
for a solution for y(z) (= σ2) to be obtained. In the following, we shall consider two asymptotic limits, namely the
small y limit, and the large y (or vanishing lslab) limit.

Asymptotic form of Î2(y) for small y � 1. Using the asymptotic expansion:

1F1(a, b, x) ≈ 1 +
ax

b
+

a(1 + a)

2b(1 + b)
x2 + O(x3)

[26] (see 13.1.2, p. 504 therein), in combination with Γ function recursive relations, viz. nΓ(n) = Γ(n + 1), we obtain

Î2(y) ≈ −π3/2

2

sec(νπ)

Γ(ν)Γ( 3
2 − ν)

+
π3/2

2

sec(νπ)

8Γ(ν)Γ(5
2 − ν)

y

ξ2
+

π

2

sec(νπ)

Γ(ν + 1
2 )

(
y

2ξ2

)ν−1/2

, (A4)



where the neglected terms are of the order O(min{y2, yν+1/2}) or higher. This approximate expression may therefore
be inserted in (23), and the resulting ODE may then be integrated twice, by using appropriate boundary conditions
(here, we assume that y(0) = y′(0) = 0). Keeping only the first (constant) term in the rhs (A4), one thus obtains

σ2
2D(z) ≈ 1

2

(
δB2D

B0

)2

z2 . (A5)

Asymptotic form of the integral Î2 for large y � 1. Upon the variable transformation x′2 := y′, the integral Î2(y)
in (23) takes the form

I2(y) =
1

2

∫ ∞

0

dy′ (1 + y′)−ν

√
y′

e−y′y/2ξ2

=
1

2
Γ

(
1

2

)
ψ

(
1

2
,
3

2
− ν,

y

2ξ2

)

≈ 1

2

√
π

(
y

2ξ2

)−1/2

+ O[(y)−3/2] (A6)

(for large y � 1) [31], where we have considered the asymptotic behavior of the characteristic function ψ(a, b, z) [27].
We conclude that

I2(y) ≈
√

π

2

ξ√
y

+ O(y−3/2) . (A7)
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ABSTRACT

We present an improved nonlinear theory for the perpendicular transport of charged particles. This approach is based on an improved
nonlinear treatment of field-line random walk in combination with a generalized compound diffusion model. The generalized com-
pound diffusion model employed is more systematic and reliable, in comparison with previous theories. Furthermore, the theory shows
remarkably good agreement with test-particle simulations and solar wind observations.
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1. Introduction

The long-standing problem of particle transport perpendicular
to a magnetic background field in turbulent magnetized plasmas
is revisited in this article. Although this problem has been dis-
cussed in several papers (e.g. Jokipii 1966; Bieber & Matthaeus
1997; Kóta & Jokipii 2000; Matthaeus et al. 2003; Shalchi et al.
2004; Webb et al. 2006; Shalchi 2006), a final solution has not
been provided so far. The perpendicular transport of charged par-
ticles is a central problem in astrophysics, since the knowledge
of the diffusion tensor for particle transport parallel and perpen-
dicular to the prescribed external magnetic field is essential for
describing solar energetic particles (Dröge 2000), the modula-
tion of Galactic cosmic rays (Burger & Hattingh 1998), diffusive
shock acceleration, and the lifetime of cosmic rays in the Galaxy
(Jokipii & Parker 1969). Furthermore, there are measurements of
perpendicular mean free paths in the heliosphere (Chenette et al.
1977; Palmer 1982; Burger et al. 2000) that still await a theoret-
ical explanation.

An early treatment of particle transport has relied on a quasi-
linear description of cosmic ray propagation (Jokipii 1966). In
the quasilinear theory (QLT) it is assumed that particles fol-
low the magnetic field-lines while they move unperturbed in
the direction parallel to the background field. Thus, the corre-
sponding result is often referred to as the field-line random walk
limit (FLRW-limit). According to this result, which has origi-
nally been derived for the slab turbulence model, the perpen-
dicular mean-square deviation (MSD) of the particle increases
linearly with time, viz.

〈
(∆x)2

〉
= 2κxxt. This linear time de-

pendence is usually referred to as a classical Markovian dif-
fusion process. Thirty-four years later, Kóta & Jokipii (2000)
formulated a compound diffusion model that assumes that
the particle moves along the magnetic field-lines while it is
scattered diffusively in the parallel direction. Relying on the
Taylor-Green-Kubo-formulation (e.g. Kubo 1957), in combina-
tion with the assumption of diffusive field-line wandering, Kóta
& Jokipii (2000) have found a subdiffusive behavior of particle
transport of the form

〈
(∆x)2

〉
∼ √t. In the same years, parti-

cle propagation in magnetized plasmas was explored by making
use of test-particle simulations (e.g. Giacalone & Jokipii 1999;

Mace et al. 2000; Qin et al. 2002a,b), where it was clearly con-
firmed that

〈
(∆x)2

〉
∼ √t, so long as a slab model is considered

for the turbulence geometry (see Qin et al. 2002a). By using im-
proved test-particle codes (see Qin et al. 2002b for instance), it
has been demonstrated that for a non-slab model, diffusion is re-
covered (though only partially, as demonstrated in Sect. 3 of this
paper). This recovery of diffusion cannot been explained by the
method of Kóta & Jokipii (2000).

Various other theories have been proposed for perpendic-
ular transport, mainly based on nonlinear extensions of QLT,
such as the nonlinear closure approximation of Owens (1974)
or model-based approaches such as the one proposed by Bieber
& Matthaeus (BAM 1997). However, these theories provide
a diffusive behavior of perpendicular transport for the slab
model, in disagreement with simulations. One more promis-
ing theory, namely the nonlinear guiding-center theory (NLGC-
theory), has been derived by Matthaeus et al. (2003). Although
this theory shows agreement with some test-particle simulations
in slab/2D geometries, the theory cannot reproduce subdiffu-
sion for the slab model. An extended nonlinear guiding-center
(ENLGC) theory was therefore formulated by Shalchi (2006),
which agrees with simulations for slab and non-slab models.
However, this theory is very close to the original NLGC-theory
and uses nearly the same crude approximation: exponential form
of the velocity correlation function, magnetic fields and particle
velocities are uncorrelated.

In this paper we propose a more reliable theoretical approach
that uses less ad-hoc assumptions and ansätze than the NLGC-
theory. The layout of this article goes as follows. In Sect. 2,
we argue that field-line wandering behaves superdiffusively for
non-slab models. In Sect. 3, we employ a generalized compound
diffusion model to deduce an analytic form for the perpendic-
ular MSD of particles. By comparing with test-particle simula-
tions (Sect. 4) and solar wind observations (Sect. 5) we show
that our theory provides the correct result.

2. Nonlinear description of field-line wandering

The key input into our new formulation is the MSD of the mag-
netic field-lines 〈(∆x(z))2〉FL. In several previous papers (e.g.

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20077260
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Jokipii 1966; Matthaeus et al. 1995; Ragot 2006; Ruffolo et al.
2006), field-line wandering (or random walk) has been described
by applying linear and nonlinear formulations. In a recent paper
(Shalchi & Kourakis 2007), an improved formulation for non-
linear field-line random walk in magnetostatic turbulence has
been developed, thus criticizing the validity of those previous
approaches. The approach of Shalchi & Kourakis (2007) is a di-
rect generalization of the theory proposed by Matthaeus et al.
(1995) and further applied by Ruffolo et al. (2006). For a dif-
fusive behavior of field-lines this theory can be obtained by the
theory of Shalchi & Kourakis (2007) as a special limit. However,
our theory can also be applied in non-diffusive transport cases.
A further advantage of this theory is its analytical tractability,
which enriches and complements the existing numerical toolbox
on field-line wandering (see e.g. Ragot 2006).

In view of modeling field-line random walk, the turbu-
lence model has to be specified in terms of the magnetic cor-
relation tensor Pi j(k) = 〈δBi(k)δB j(k)〉. According to Bieber
et al. (1994) the so-called slab/2D composite model is a re-
alistic model for solar wind turbulence. This two-component
model ignores the usually smaller parallel field turbulent vari-
ance (δBz) and only includes excitations with wavevectors ei-
ther purely parallel or purely perpendicular to the mean magnetic
field B0, leading to the following form of the correlation tensors:
Pxx(k) = Pslab

xx (k) + P2D
xx (k) with Pslab

xx (k) = gslab(k‖)δ(k⊥)/k⊥ and
P2D

xx (k) = g2D(k⊥)δ(k‖)k2
y/k

3⊥. For the two wave spectra gslab(k‖)
and g2D(k⊥), we employ a standard form that has also been pro-
posed by Bieber et al. (1994)

gslab(k‖) =
C(ν)
2π

lslabδB
2
slab (1 + k2

‖ l
2
slab)−ν

g2D(k⊥) =
2C(ν)
π

l2DδB
2
2D (1 + k2

⊥l22D)−ν. (1)

Here we have defined the normalization constant C(ν) =
Γ(ν)/(2

√
πΓ(ν − 1/2)), where Γ denotes the Euler Gamma

function. We have defined the slab- and 2D bendover length
scales lslab and l2D, the strength of the turbulent fields δBslab
and δB2D, and the inertial-range spectral index 2ν.

It can easily be demonstrated (see e.g. Jokipii 1966;
Matthaeus et al. 1995) that, for pure slab geometry, the field-
lines behaves diffusively〈
(∆x(z))2

〉
|z|→∞ ≈ 2κFL |z |, (2)

for large |z|. In several previous papers (e.g. Matthaeus et al.
1995) it has been explicitly assumed that the form of Eq. (2) also
holds in two-component turbulence. More precisely, field-line
wandering always behaves diffusively, at least as long as there is
a finite slab contribution. However, by applying an improved for-
mulation of field-line random walk (Shalchi & Kourakis 2007),
it has been shown that

〈
(∆x(z))2

〉
|z|→∞ =

(
9

√
π

2
C(ν)

)2/3

×
(
δB2D

B0

)4/3
l22D

( |z |
l2D

)4/3
· (3)

The only assumptions that have been applied to derive this re-
sult are Corrsin’s independence hypothesis (Corrsin 1959) and
the assumption of a Gaussian distribution of field-lines (see
Matthaeus et al. 1995). For two-component turbulence, Eq. (3)
is the correct asymptotic limit that can be obtained in the limit
z → ∞. A quasilinear description of the field-line random walk

is not possible for these length scales (see Shalchi & Kourakis
2007). For completeness, it should be noted that the different
regimes where a quasilinear description is valid or not are dis-
cussed in Isichenko (1991a,b).

3. Generalized compound diffusion of charged
particles

In the previous section, we discussed results regarding the field-
line wandering in the slab/2D composite model as a function
of z. However, charged particles experience parallel scattering
while moving through the turbulence. Thus, the parameter z be-
comes a statistical variable in particle transport studies. If we as-
sume that the particles (or, more precisely, their guiding-centers)
follow the magnetic field-lines (guiding center approximation),
we have
〈
(∆x(t))2

〉
P
=

∫ +∞
−∞

dz
〈
(∆x(z))2

〉
FL

fP(z, t). (4)

Here the index P denotes the perpendicular MSD of the charged
particle, and fP(z, t) is the particle distribution in the direction
parallel to the background field.

Equation (4) can also be obtained from the Chapman-
Kolmogorov equation (see, e.g., Webb et al. 2006), which has
the form

f⊥(x, t) =
∫ +∞
−∞

dz fFL(x, z) fP(z, t) (5)

with the particle distribution in the perpendicular direc-
tion f⊥(x, t) and the field-line distribution function fFL(x, z). By
calculating the second moment of f⊥(x, t), Eq. (4) can be de-
duced from Eq. (5).

A further standard assumption in the cosmic ray transport
theory is the assumption of a Gaussian particle distribution, see
e.g. Matthaeus et al. (2003):

fP(z, t) =
(
2π
〈
(∆z(t))2

〉
P

)−1/2
e
− z2

2〈(∆z(t))2〉P . (6)

It should be noted, however, that the assumption of a Gaussian
distribution is a certain hypothesis that might be inaccurate for
certain parameter regimes. A non-Gaussian distribution might be
more appropriate mainly for a strong non-diffusivity of parallel
particle propagation. However, as demonstrated in Sect. 4, the
real particle motion is very close to the diffusive behavior, thus
Eq. (6) should be a good approximation. Forthcoming work will
be devoted to exploring the influence of non-Gaussian statistics.

By using Eq. (3) for the field-line MSD in combination with
Eq. (6) for the particle distribution, we can evaluate Eq. (4)
to find

〈
(∆x)2

〉
P
= α(ν)

(
δB2D

B0

)4/3 [
l2D

〈
(∆z(t))2

〉
P

]2/3
, (7)

with

α(ν) =
Γ(7/6)√
π

(
18

√
π

2
C(ν)

)2/3
. (8)

This is a tractable analytical result that can easily be applied
to the parameter regimes considered in test particle simulations
or for turbulence parameters appropriate for the solar wind.
In observed spectra, it was clearly found that ν = 5/6 and
thus α(ν = 5/6) ≈ 0.5. A (time-dependent) diffusion coeffi-
cient as obtained from test-particle simulations can be defined
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as κxx(t) = 〈(∆x)2〉/(2t). In general, one may adopt the assump-
tion 〈(∆z(t))2〉P ∼ tb‖+1, implying a parallel diffusion coefficient
κzz ∼ tb‖ . By assuming κxx ∼ tb⊥ , it is straightforward to find from
Eq. (7) the relation

b⊥ =
2b‖ − 1

3
· (9)

Therefore, knowledge of b‖ (e.g., from simulation data) leads to
an evaluation of b⊥, within this model. For instance, if paral-
lel transport behaves diffusively (b‖ = 0), we find b⊥ = −1/3
(subdiffusion). A diffusive behavior of perpendicular transport
(b⊥ = 0) can only be obtained for b‖ = 1/2 (superdiffusion).

For pure slab geometry, however, we deduce by combining
Eqs. (2) and (6) with Eq. (4):

〈
(∆x)2

〉
P

∣∣∣∣
t→∞ = 2

√
2
π
κFL

√〈
(∆z(t))2

〉
P

(10)

and therefore

bslab
⊥ =

bslab
‖ − 1

2
· (11)

For parallel diffusion (bslab
‖ = 0), we cleary obtain the well-

known result bslab⊥ = −1/2 (see e.g. Kóta & Jokipii 2000; Shalchi
2005). While the slab result is well-known, the relations (7)
and (9) are entirely new. The formulation proposed by this pa-
per allows a systematic and reliable discription of perpendicu-
lar transport requiring knowledge of parallel transport. We refer
to this new approach as the Generalized Compound Diffusion
(GCD)-model. In the next section, the GCD-model will be tested
via test-particle simulations.

4. Test particle simulations

In this section numerical tests are employed to assess the ac-
curacy of the GCD-model. By choosing the same turbulence
model as used for the application of the GCD-model (magne-
tostatic turbulence, slab/2D composite geometry, the wave spec-
tra of Eq. (1)) test-particle simulations can be performed easily.
The diffusion coefficient is computed numerically using proce-
dures described previously (Giacalone & Jokipii 1999; Qin et al.
2002a,b).

We have considered test-particle dynamics for the follow-
ing set of parameters: l2D = 0.1 lslab, ν = 5/6, and 20%/80%
slab/2D composite geometry. In Fig. 1, we depict the ratio of per-
pendicular and parallel diffusion coefficients κxx/κzz as a function
of the dimensionless time τ = vt/lslab for the dimensionless cos-
mic ray rigidity value R = RL/lslab = 0.001. We have chosen
a low value of R to ensure that the guiding-center approximation
is valid. The new results are compared to those obtained from the
NLGC- and ENLGC-theories and also to test-particle simula-
tions. For the NLGC-results we have assumed a parameter value
of a2 = 1, which corresponds to the assumption that guiding-
centers follow magnetic field-lines. Obviously the GCD-model
provides a result much closer to the simulations than the NLGC-
theory and the ENLGC-theory. However, it should be empha-
sized that the main advantage of the GCD-model is its more sys-
tematic nature.

By assuming the simple form κ̃xx(t) = aτb, we can deduce the
time dependence from numerical data by using b = (ln κ̃xx(τ) −
ln a)/ ln τ ≈ (ln κ̃xx(τ))/ ln τ in the high time limit (κ̃xx denotes
the dimensionless diffusion coefficients obtained by the simula-
tions). The exponents for the parallel b‖ and perpendicular b⊥
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Fig. 1. The ratio of perpendicular and parallel diffusion coefficients
(κxx(t)/κzz(t)) for R = RL/lslab = 0.001. The results from test-particle
simulations (dotted line) are compared to various theoretical results:
NLGC-theory (dashed line), ENLGC-theory (dash-dotted line), and our
GCD-model (solid line).
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Fig. 2. The parameters b‖ and b⊥ as a function of time for different val-
ues of the dimensionless rigidity: R = 10−3 (dotted line), R = 10−2

(dashed line), and R = 10−1 (solid line). The dots denote the values
predicted by the GCD-model. Clearly we find a weakly superdiffusive
behavior of parallel transport (b‖ > 0) and a weakly subdiffusive behav-
ior of perpendicular transport (b⊥ < 0).

diffusion coefficients are depicted in Fig. 2 for different values
of the parameter R. As shown, the test particle code provides
a weakly superdiffusive behavior of parallel transport, in addi-
tion to a weakly subdiffusive behavior of perpendicular trans-
port. In all cases considered, the GCD-model agrees well with
the simulations.

5. Comparison with solar wind observations

It is difficult to directly compare our new (non-diffusive) result
with solar wind observations. In this section, we attempt a rough
comparison by averaging our non-diffusive result over the char-
acteristic scattering time

tc =
λ‖
v
, (12)

where we have defined the parallel mean free path λ‖ and
the velocity v of the charged particle. First, we replace the
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parallel mean-square deviation in Eq. (7) by a diffusive behavior
(〈(∆z(t))2〉P ≈ 2tκ‖) to get

〈
(∆x)2

〉
P
= α(ν)

(
δB2D

B0

)4/3 (
2l2Dtκ‖

)2/3 (13)

and thus one obtains for the (time-dependent) perpendicular dif-
fusion coefficient

κ⊥(t) = 2−1/3α(ν)

(
δB2D

B0

)4/3 (
l2Dκ‖
)2/3 t−1/3. (14)

To proceed, we average over the scattering time (see Eq. (12))
to get

κ⊥ =
1
tc

∫ tc

0
κ⊥(t)

=
3

24/3
α(ν)

(
δB2D

B0

)4/3 (
l2Dκ‖
)2/3 ( v

λ‖

)1/3
· (15)

By using λ‖ = 3κ‖/v and λ⊥ = 3κ⊥/v, we find an analytical
expression for the perpendicular mean free path

λ⊥ =
(

3
2

)4/3
α(ν)

(
δB2D

B0

)4/3
l2/32D λ

1/3
‖ . (16)

For ν = 5/6 and δB2
2D/B

2
0 = 0.8, as proposed by Bieber et al.

(1994), we obtain

λ⊥ = 0.75 l2/32D λ
1/3
‖ . (17)

Palmer (1982) suggested that the parallel mean free path in the
solar wind is 0.08 AU ≤ λ‖,Palmer ≤ 0.3 AU and the perpendicular

spatial diffusion coefficient is κ⊥c/v ≈ 1021 cm2 s
−1

and thus
λ⊥,Palmer ≈ 0.007 AU. By taking the average value for the parallel
mean free path λ‖,Palmer ≈ 0.2 and by applying Eq. (17) we find
λ⊥,GCD ≈ 0.009 AU (for l2D = 0.1lslab ≈ 0.003 AU, as suggested
by e.g. Matthaeus et al. 2003), which is therefore very close to
the measurements. Obviously there is good agreement between
solar wind observations and our new theoretical approach.

The values for the perpendicular mean free paths obtained
from Jovian electrons (Chenette et al. 1977) and Ulysses mea-
surements of Galactic protons (Burger et al. 2000) are simi-
lar. Thus we conclude that the generalized compound diffusion
model can reproduce solar wind observations for the perpendic-
ular mean free paths.

To reproduce these observations we applied Eq. (16), which
can be obtained from the more general result of Eq. (7) by
averaging over the scattering time. According to our new the-
ory and test-particle simulations, parallel as well as perpen-
dicular transport behaves non-diffusively. However, the non-
diffusivity is very weak, thus Eqs. (16) and (17) should be good
approximations.

6. Summary and conclusion

By combining a compound diffusion model – cf. Eq. (4) – with
a nonlinear treatment of field-line wandering (namely Eq. (3)),
a new theoretical treatment for the perpendicular transport of
cosmic rays is presented in this article. In Table 1, the assump-
tions of this new theory are compared to the NLGC-theory, as
representative of existing transport theories. Obviously the new
approach relies on less approximations and model assumptions.
Therefore the GCD-model is less restricted and thus more reli-
able. In Table 2, we compare different theories and their results

Table 1. Comparison between the assumptions used in our GCD-model
and the assumptions used in the NLGC-theory.

Assumption NLGC GCD
Guiding-center approximation YES YES
Gaussian statistics YES YES
Corrsin’s hypothesis YES YES
Velocities and fields are uncorrelated YES NO
Exponential velocity correlation YES NO
Diffusion approximation YES NO

Table 2. Comparison between results for the parameter b⊥ from various
theories: QLT, BAM-model, NLGC-theory, WNLT, ENLGC-theory,
and the GCD-model. Negative values of b⊥ correspond to subdiffusion,
positive values to superdiffusion, and b⊥ = 0 corresponds to diffusion.

Theory slab turbulence slab/2D composite
Simulations −0.5 ≈−0.2
QLT 0 1.0
BAM 0 0
NLGC 0 0
WNLT 0 0
ENLGC −1/2 0
GCD-model −1/2 ≈−0.2

for the parameter b⊥, which denotes the time dependence of the
diffusion coefficient via κxx(t) ∼ tb⊥ . Furthermore, the theory is
easily applicable due to its simple analytical form (see Eqs. (7)
and (8)).

Through comparison with direct numerical simulations of
test particles, we have demonstrated that the GCD-model be-
haves very well and provides a noticeably improved description
of perpendicular transport compared to several other theories
considered in the tables for reference. Furthermore, by averag-
ing over the scattering time, we have derived a simple formula
(Eq. (16)) for the perpendicular mean free path. This formula can
easily be applied for solar wind parameters and can be compared
with observations. As demonstrated, there is very good agree-
ment between the GCD-model and the observations discussed by
Chenette et al. (1977), Palmer (1982), and Burger et al. (2000),
similar to the results of the NLGC-theory and its extended ver-
sion. However, the NLGC-theory, as well as the ENLGC-theory,
predict very large perpendicular mean free paths for certain lim-
its (see Bieber et al. 2004; Shalchi 2006). These limits do not
exist as shown in the current article, hence Eqs. (7) and (8) rep-
resent perpendicular tranport for all parameter regimes within
the two-component model. Thus, besides the weak superdiffu-
sivity discovery in the article, the GCD-model clearly disagrees
with the NLGC-theory that has been applied in several trans-
port theory studies. It is the subject of our current work to study
the application of the present theory in space physics and astro-
physics in the hope that an improved formulation of perpendic-
ular transport might be useful in solving a number of observa-
tional puzzles. Mainly the non-diffusivity of particle transport
for turbulence models that have been considered in the past as
realistic models for solar wind turbulence could be important for
reproducing heliospheric observations.

Acknowledgements. This research was supported by the Deutsche
Forschungsgemeinschaft (DFG) under the Emmy-Noether Programm
(grant SH 93/3-1). As a member of the Junges Kolleg, A. Shalchi
also aknowledges support by the Nordrhein-Westfälische Akademie der
Wissenschaften. The authors are grateful to Prof. W. H. Matthaeus,



A. Shalchi and I. Kourakis: Perpendicular transport of cosmic rays 409

Dr. G. Qin, and especially Dr. J. Minnie of the Bartol Research Institute
and Department of Physics and Astronomy, University of Delaware for
providing the test-particle code used in this paper. Futher information of
the code can be found at http://www.bartol.udel.edu/%7Ewhmgroup/
Streamline/streamline.html

References

Bieber, J. W., & Matthaeus, W. H. 1997, ApJ, 485, 655
Bieber, J. W., Matthaeus, W. H., Smith, C. W., et al. 1994, ApJ, 420, 294
Bieber, J. W., Matthaeus, W. H., Shalchi, A., & Qin, G. 2004, Geophys. Res.

Lett., 31, L10805
Burger, R. A., & Hattingh, M. 1998, ApJ, 505, 244
Burger, R. A., Potgieter, M. S., & Heber, B. 2000, J. Geophys. Res., 105, 27447
Chenette, D. L., Conlon, T. F., Pyle, K. R., & Simpson, J. A. 1977, ApJ, 215,

L95
Corrsin, S. 1959, in Atmospheric Diffusion and Air Pollution, Advanced in

Geophysics, Vol. 6, ed. F. Frenkiel, & P. Sheppard (New York: Academic)
Dröge, W. 2000, Space Sci. Rev., 93, 121
Giacalone, J., & Jokipii, J. R. 1999, ApJ, 520, 204
Isichenko, M. B. 1991a, Plasma Physics and Controlled Fusion, 33, 795

Isichenko, M. B. 1991b, Plasma Physics and Controlled Fusion, 33, 809
Jokipii, J. R. 1966, ApJ, 146, 480
Jokipii, J. R., & Parker, E. N. 1969, ApJ, 155, 799
Kóta, J., & Jokipii, J. R. 2000, ApJ, 531, 1067
Kubo, R. 1957, J. Phys. Soc. Japan, 12, 570
Mason, G. M., Desai, M. I., Cohen, C. M. S., et al. 2006, ApJ, 647, L65
Matthaeus, W. H., Gray, P. C., Pontius, D. H. Jr., & Bieber, J. W. 1995, Phys.

Rev. Lett., 75, 2136
Matthaeus, W. H., Qin, G., Bieber, J. W., & Zank, G. P. 2003, ApJ, 590, L53
Owens, A. J. 1974, ApJ, 191, 235
Palmer, I. D. 1982, Rev. Geophys. Space Phys., 20, 335
Qin, G., Matthaeus, W. H., & Bieber, J. W. 2002a, Geophys. Res. Lett., 29
Qin, G., Matthaeus, W. H., & Bieber, J. W. 2002b, ApJ, 578, L117
Ragot, B. R. 2006, ApJ, 644, 622
Ruffolo, D., Chuychai, P., & Matthaeus, W. H. 2006, ApJ, 644, 971
Shalchi, A. 2005, J. Geophys. Res., 110, A09103
Shalchi, A. 2006, A&A, 453, L43
Shalchi, A., & Kourakis, I. 2007, Phys. Plasmas, submitted

[arXiv:astro-ph/0703366]
Shalchi, A., Bieber, J. W., Matthaeus, W. H., & Qin, G. 2004, ApJ, 616, 617
Webb, G. M., Zank, G. P., Kaghashvili, E. Kh., & leRoux, J. A. 2006, ApJ, 651,

211



IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 11191–11201 doi:10.1088/1751-8113/40/36/017

Generalized compound transport of charged particles
in turbulent magnetized plasmas

A Shalchi, I Kourakis and A Dosch

Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität
Bochum, Germany

E-mail: andreasm4@yahoo.com

Received 16 March 2007, in final form 17 July 2007
Published 21 August 2007
Online at stacks.iop.org/JPhysA/40/11191

Abstract
The transport of charged particles in partially turbulent magnetic systems is
investigated from first principles. A generalized compound transport model
is proposed, providing an explicit relation between the mean-square deviation
of the particle parallel and perpendicular to a magnetic mean field, and the
mean-square deviation which characterizes the stochastic field-line topology.
The model is applied in various cases of study, and the relation to previous
models is discussed.

PACS numbers: 52.25.Xz, 51.10.+y

1. Introduction

The analytical description of magnetic field-line wandering, or random walk, in partially
turbulent systems is a long standing problem in astrophysics, space physics and turbulence
physics. In a number of previous works (e.g., Krommes et al (1983), Matthaeus et al
(1995), Ruffolo et al (2004), Ragot (2006), Shalchi and Kourakis (2007)), detailed linear and
nonlinear calculations have been performed in order to understand the field-line random walk,
in association with the random behavior of dynamical charged particle trajectories in turbulent
plasma systems.

The transport of charged particles perpendicular to a large scale magnetic field (e.g.,
the magnetic field of the Sun, if particle propagation in the solar system is investigated) is
often modeled in relevance with field-line wandering. In certain studies, it was assumed that
field-line wandering behaves diffusively, yet without giving a justification for this assumption
(e.g. Kóta and Jokipii (2000), Webb et al (2006)). Other theoretical approaches, such as the
nonlinear guiding-center theory (Matthaeus et al 2003), the extended NLGC theory (Shalchi
2006) or the weakly nonlinear theory (Shalchi et al 2004) have extended that methodology,
yet neither using any assumptions about field-line wandering nor assuming that the field-line
behavior has a direct influence onto particle propagation.

1751-8113/07/3611191+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK 11191
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An open issue in the cosmic ray transport theory is the subdiffusive behavior of
perpendicular transport in slab models and the recovery of diffusion for non-slab geometry, as
was observed in test-particle simulations (e.g. Qin et al 2002a, 2002b). Although the extended
nonlinear guiding-center theory (Shalchi 2006) can explain subdiffusion in the slab model as
well as the recovery of diffusion in slab/2D composite geometry quantitatively, no physical
explanation is yet available, to our knowledge, for these different regimes to be understood.
In this paper, we address this problem by relating field-line transport coefficients with particle
transport parameters. Via a generalized compound diffusion model, relying on a flexible
parametrization of the field-line diffusion and of (in relation with) the actual particle trajectory
diffusion in the directions parallel and perpendicular to the magnetic field, we aim to show
that different particle random walk regimes obtained in the past come out to be precisely the
consequence of underlying assumptions concerning the random behavior of magnetic field
lines. The outcome of this study will be important in the theoretical interpretation of charged
cosmic ray transport, as provided by space observations.

2. Random walk of magnetic field lines

We shall consider a collisionless magnetized plasma system which is embedded in a uniform
mean field ( �B0 = B0�ez) in addition to a turbulent magnetic field component δ �B. The field-
line equation in this system reads dx/dz = δBx/B0. Here we assumed a vanishing parallel
component of the turbulent field δBz = 0. We also assume that the mean field �B0 is aligned
parallel to the z-axis of our (cartesian) system of coordinates.

A characteristic quantity to describe field-line random-walk (FLRW) is the mean-square
displacements (MSD’s) 〈(�x)2〉 and 〈(�y)2〉 for large values of z. In the following we only
consider the variable x, since all calculations can easily be repeated for y. For axisymmetric
turbulence, which is assumed to be a good approximation for real turbulent systems, we have
〈(�x)2〉 = 〈(�y)2〉. In this case the results derived in this paper for 〈(�x)2〉 can also be used
for 〈(�y)2〉.

By doing this, one anticipates an asymptotic behavior in the following form:

〈(�x)2〉|z→±∞ = α|z|β. (1)

Field-line wandering is thus characterized by identifying different parameter regimes for β:

0 < β < 1: subdiffusion

β = 1: normal (Markovian) diffusion

1 < β < 2: superdiffusion

β = 2: ballistic behavior.

(2)

In the past several approaches have been proposed to describe FLRW analytically.
In the so-called slab turbulence approach (i.e. assuming that the turbulent fields only

depend on the parallel position variable, namely δBi(�x) = δBi(z), for i = x, y) the field-line
MSD can be calculated exactly. By assuming a constant wave-spectrum at large turbulence
scales (energy range) we find a diffusive behavior of the field lines:

〈(�x)2〉 = 2κFL|z| (3)

with the field-line diffusion coefficient κFL.
The description of FLRW in non-slab turbulence models is more problematic. As an

example, we consider the so-called two-component turbulence model, where we have a
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hybrid combination of the slab and 2D fluctuations (in the latter model, one assumes that
δBi(�x) = δBi(x, y), for i = x, y). In the slab/2D composite model we have, precisely,

δBi(�x) = δB
(slab)
i (z) + δB

(2D)
i (x, y) (4)

(for i = x, y). In this case the field-line equation takes the nonlinear form

dx(z) = δB(slab)
x (z)

B0
dz +

δB(2D)
x (x, y)

B0
dz, (5)

and an analogous relation holds for the y-component.
In our knowledge, at least three different theories have been developed to describe FLRW

analytically:

(i) Quasilinear theory (QLT, Jokipii (1966)) consists in replacing the field-line equation on
the right-hand side of equation (5) by the unperturbed lines (i.e. the rectilinear magnetic
field topology in the absence of turbulence), say at x = y = 0. For pure slab geometry(
δB(2D)

x (x, y) = 0
)
, the QLT for FLRW is exact. However, for pure 2D turbulence we

have within the QLT

dx(z) = δB(2D)
x (0, 0)

B0
dz = δB(2D)

x

B0
dz (6)

and thus we find for the MSD,

〈(�x)2〉 = δB2
x

B2
0

z2. (7)

This result is also obtained for slab/2D composite geometry within the QLT, since the
second term in equation (5) is dominant.

(ii) Matthaeus et al (1995) proposed a non-perturbative approach based on three ad hoc
assumptions (namely, the so-called Corrsin hypothesis, Gaussian statistics for the field
lines and diffusive FLRW behavior). The following form of the field-line diffusion
coefficient

κFL =
κFL,slab +

√
κ2

FL,slab + 4κ2
FL,2D

2
(8)

is thus deduced. Here, κFL,slab is the pure slab field-line diffusion coefficient and κFL,2D is
the pure 2D field-line diffusion coefficient.

(iii) An improved nonlinear theory for field-line wandering has recently been proposed by
Shalchi and Kourakis (2007). In comparison to the Matthaeus et al (1995) approach,
the authors still rely on the validity of the Corrsin hypothesis and on field-line Gaussian
statistics. However, instead of applying a diffusion model as used by Matthaeus et al
(1995), an ordinary differential equation (ODE) is derived for the field-line MSD. By
solving this ODE analytically in the limit |z| → ∞, it is deduced, for slab/2D composite
turbulence geometry,

〈(�x)2〉 =
[

9C(ν)

√
π

2
l2D

]2/3

|z|4/3, (9)

which is clearly a superdiffusive result. Here C(ν) is a normalization function which
depends on the inertial range spectral index 2ν, l2D is the 2D bendover scale of the
turbulence (this parameter indicates the turnover from the energy range to the inertial range
of the spectrum), and δB2

2D

/
B2

0 denotes the relative strength of the turbulent magnetic
fields. The theory recently presented by Shalchi and Kourakis (2007) is essentially a
generalization of the Matthaeus et al (1995) approach, yet relies on minimum physical
assumptions, thus the description of turbulence by equation (9) may be considered to be
more reliable than the diffusive result (8).
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In principle we know three different results of FLRW:

• 〈(�x)2〉 ∼ z2: this result can be found in the initial free-streaming regime and within the
QLT for two-component (composite) turbulence.

• 〈(�x)2〉 ∼ |z|: the diffusive result can be derived exactly for slab geometry and a constant
spectrum at large turbulence scales. Furthermore, Matthaeus et al (1995) have claimed
that FLRW also behaves diffusively for slab/2D composite geometry.

• 〈(�x)2〉 ∼ |z|4/3: according to Shalchi and Kourakis (2007), the field lines behave
superdiffusively in the two-component model.

In the following, we shall combine these different results of FLRW with the guiding-center
approximation and various transport models, in view of a critical comparison among different
models.

3. The guiding-center approximation

In several previous papers it has been assumed that charged particles follow magnetic field
lines (Jokipii 1966, Kóta and Jokipii 2000, Matthaeus et al 2003):

ṽx = vz

δBx(�x)

B0
, (10)

where vz is the parallel velocity of the charged particle and ṽx the perpendicular velocity of its
guiding center. This equation can easily be deduced from the field-line equation which reads
dx = dz δBx/B0. A formula which is equivalent to equation (10) is

σ⊥(t) =
∫ +∞

−∞
dz σFL(z)f‖(z, t). (11)

Here we have defined the mean-square deviation (MSD) of the particle displacement in the
perpendicular direction

σ⊥(t) = 〈(�x(t))2〉, (12)

the MSD of the field lines

σFL(z) = 〈(�x(z))2〉FL (13)

and the parallel particle distribution function f‖(z, t). It should be noted that an equivalent
formula is given by Krommes et al (1983). In the following we discuss two models for f‖(z, t).

4. A Gaussian transport model for parallel scattering

We may assume a Gaussian particle distribution function

f‖,G(z, t) = 1√
2πσ‖(t)

e−z2/(2σ‖(t)), (14)

where we have employed the particle MSD in the parallel direction

σ‖ = 〈(�z(t))2〉. (15)

Equation (11) thus becomes

σ⊥(t) = 1√
2πσ‖(t)

∫ +∞

−∞
dz σFL(z) e−z2/(2σ‖(t)). (16)



Generalized compound transport 11195

4.1. General results

To proceed with, we may assume the form

σFL(z) = αFL|z|βFL (17)

to obtain

σ⊥(t) = αFL√
2πσ‖(t)

∫ +∞

−∞
dz|z|βFL e−z2/(2σ‖(t)). (18)

This integral can easily be solved (Gradshteyn and Ryzhik 2000), so one gets

σ⊥(t) = αFL√
π

	

(
βFL + 1

2

)
(2σ‖(t))βFL/2, (19)

where we used the gamma function 	(x). Furthermore, we assume the forms

σ‖(t) = α‖tβ‖ , σ⊥(t) = α⊥tβ⊥ . (20)

By comparing with equation (19) we obtain

α⊥ = αFL√
π

	

(
βFL + 1

2

)
(2α‖)βFL/2 (21)

and, more important by,

β⊥ = β‖βFL

2
(22)

for consistency. We see that the independent parameters appearing in (21) and (22) can be
used to fine-tune and distinguish different versions of the statistical theory of turbulence,
and possibly explain the different results obtained via different assumptions. Our ambition
in the following is to pin-point this possibility, by employing specific paradigms. For this
purpose, we shall distinguish three different cases, for the field-line statistics, in the following
paragraphs.

4.2. Diffusive behavior of FLRW and parallel transport

For pure slab geometry and assuming a constant spectrum in the energy range, it can be shown
that field-line wandering behaves diffusively, and thus βFL = 1. If we additionally assume
that parallel transport also behaves diffusively, namely β‖ = 1, we find

α⊥ = αFL

√
2α‖
π

(23)

and

β⊥ = 1
2 . (24)

For the diffusive field-line behavior we may introduce the field-line diffusion coefficient κFL

via

σFL(z) = 2κFL|z| (25)

and thus αFL = 2κFL, and the parallel diffusion coefficient κ‖ of the particle position
displacement via

σ‖(t) = 2κ‖t; (26)

hence α‖ = 2κ‖. Therefore we find

α⊥ = 4κFL

√
κ‖
π

. (27)
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Obviously one gets

σ⊥(t) = 4κFL

√
κ‖t
π

(28)

which is clearly a non (classical) diffusive result.
Concluding this paragraph, we have seen that a direct consequence of having assumed

diffusive field-line wandering and diffusive particle propagation in the parallel direction is
a subdiffusive result for perpendicular particle transport, in the form σ⊥(t) ∼ √

t . This
coincides with the result(s) obtained by Krommes et al (1983), also within the compound
diffusion model of Kóta and Jokipii (2000), and via the extended nonlinear guiding-center
theory (Shalchi, 2006).

4.3. Free streaming of field lines

For small length scales the field-line mean-square deviation reads

σFL(z) = δB2
x

B2
0

z2 (29)

and thus

αFL = δB2
x

B2
0

and βFL = 2. (30)

Substituting into equations (21) and (22), we find in this case

α⊥ = δB2
x

B2
0

α‖, β⊥ = β‖. (31)

Parallel and perpendicular charged particle transport therefore present the same time behavior
if the field lines can be described by equation (29).

4.4. The 4/3-result of Shalchi and Kourakis (2007)

According to the results of an improved theory for field-line wandering, recently proposed by
Shalchi and Kourakis (2007), we find, for slab/2D turbulence:

βFL = 4/3. (32)

As a consequence, we find from (22)
β⊥
β‖

= 2

3
. (33)

It has been argued in several previous papers (see Qin et al 2002a, 2002b), by using test-
particle simulations, that parallel and perpendicular transport behave diffusively in the case of
the two-component (composite) model. The question of how this recovery of diffusion can be
explained remains unanswered. However, by assuming a symmetric deviation of the diffusive
regime of parallel and perpendicular transport

β⊥ = 1 − ε, β‖ = 1 + ε (34)

(here we assumed a weak subdiffusive behavior of perpendicular transport and a weak
superdiffusive behavior of parallel transport), it can easily be shown that

ε = 2 − βFL

2 + βFL
(35)

from (22), and thus for βFL = 4/3 this becomes

ε = 0.2. (36)

This very weak deviation from the diffusive regime cannot be excluded by test-particle
simulations.
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5. A ballistic transport model for parallel scattering

An alternative to the Gaussian distribution hypothesis adopted in the previous section is a
ballistic model of the form:

f‖,B(z, t) = δ (z − z0(t)) (37)

where we have denoted the unperturbed orbit z0(t) = vµt , defining the particle trajectory’s
pitch-angle cosine µ. In the unperturbed system (δBx = δBy = 0) the pitch angle and therefore
the parameter µ are conserved. Equation (11) with equation (37) for f‖(z, t) becomes

σ⊥(t) = σFL(z = z0(t)) ≡ σFL(z = vµt). (38)

5.1. General results

Again we assume the form of equation (17) for σFL to find

σ⊥(t) = αFL(vt |µ|)βFL . (39)

By assuming the form of equation (20) for σ⊥ we can deduce

α⊥ = αFL(v|µ|)βFL,

β⊥ = βFL.
(40)

Therefore, within the ballistic model, the time exponent of the perpendicular MSD and the
length exponent of the field-line MSD are the same.

In the following, we shall consider, two of the three examples exposed above, for the sake
of comparison.

5.2. Diffusive behavior of field-line wandering

Applying equations (25) and (37) we get

σ⊥ = 2κFLvt |µ|. (41)

Because µ itself is a statistic quantity with −1 � µ � +1, the formula can be averaged by
integrating with respect to µ, setting

σ⊥ = 2κFLvt

(
1

2

∫ +1

−1
dµ|µ|

)
; (42)

hence

σ⊥ = κFLvt. (43)

Therefore, within the ballistic model and for a diffusive behavior of FLRW we find the well-
known quasilinear result for perpendicular transport often referred to as FLRW limit (Jokipii
1966). For the perpendicular diffusion coefficient κ⊥ we thus find

κ⊥ = v

2
κFL, (44)

so the perpendicular particle transport coefficient κ⊥ is efficiently associated with the field-line
diffusion coefficient κFL.
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5.3. Free streaming of field lines

Here, we combine equation (29) with equation (38) to find

σ⊥ = (vµt)2 δBx

B0
(45)

and thus

σ⊥ = 1

3

δB2
x

B2
0

v2t2, (46)

where the pitch-angle cosine variable µ was again averaged out. Equation (46) corresponds
to a ballistic motion of charged particles. Furthermore, this formula is in agreement with the
quasilinear result for perpendicular transport obtained by Shalchi and Schlickeiser (2004) for
two-component turbulence.

6. General results in the compound transport formulation

In the last two sections, we have discussed two specific models for the parallel particle
distribution function, namely the Gaussian model and the ballistic model. In this section,
we shall discuss some general properties of the compound transport model, that is, without
specifying the form of the parallel distribution function.

6.1. The initial free-streaming regime

A free-streaming-like behavior of field lines is found in some cases (e.g., for small length
scales, or if QLT for FLRW is applied for slab/2D composite geometry). In this case we can
combine equations (29) and (11) to get

σ⊥(t) = δB2
x

B2
0

∫ +∞

−∞
dz z2f‖(z, t)

= δB2
x

B2
0

σ‖(t) (47)

regardless of the form of f‖(z, t). Therefore, for free-streaming of field lines we find

σ⊥(t)

σ‖(t)
= δB2

x

B2
0

. (48)

In this case the temporal behavior of parallel and perpendicular transport are the same. In the
solar wind at a 1 AU heliocentric distance, we have δB2

x ≈ B2
0 . Thus, the mean free path

perpendicular to the mean field becomes comparable to the parallel mean free path. For length
scales where we have free-streaming of field lines we thus find strong perpendicular scattering
of charged cosmic rays.

6.2. Diffusive behavior of FLRW and parallel transport

In section 4.2 we combined the Gaussian model with a diffusive behavior of parallel transport
and FLRW to demonstrate that we obtain subdiffusion in the form σ⊥ ∼ √

t . In the
following, we shall show that the assumption of Gaussian statistics is not necessary to get
the subdiffusive perpendicular transport of charged particles. Upon differentiating the basic
compound transport relation (11), one gets

∂

∂t
σ⊥(t) =

∫ +∞

−∞
dz σFL(z)

∂f‖(z, t)
∂t

. (49)
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Diffusion in the parallel direction may be assumed, for tractability. Thus, the function f‖(z, t)
satisfies the diffusion equation

∂f‖(z, t)
∂t

= κ‖
∂2f‖(z, t)

∂z2
. (50)

Furthermore, running diffusion coefficients can be introduced by

d⊥(t) ≡ 1

2

∂

∂t
σ⊥(t),

dFL(t) ≡ 1

2

∂

∂z
σFL(z).

(51)

Thus equation (49) becomes

d⊥(t) = κ‖
∫ ∞

0
dz σFL(z)

∂2f‖(z, t)
∂z2

= −2κ‖
∫ ∞

0
dz dFL(z)

∂f‖(z, t)
∂z

= 2κ‖
∫ ∞

0
dz

∂dFL(z)

∂z
f‖(z, t), (52)

where we applied dFL(z = 0) = 0. Now we assume diffusion of field lines, so we have

dFL(z) = κFL − ε(z) (53)

with

ε(z = 0) = κFL, ε(z → ∞) → 0. (54)

Because of ∂dFL(z)/∂z = −ε′(z) (the prime denotes differentiation) we have

d⊥(t) = −2κ‖
∫ ∞

0
dz ε′(z)f‖(z, t). (55)

However, if the field lines behave diffusively, the function ε(z) (and therefore also ε′(z)) must
decay rapidly with increasing z. Thus one gets

d⊥(t) = −2κ‖f‖(z = 0, t)

∫ ∞

0
dz ε′(z)

= 2κ‖[ε(z = 0) − ε(z = ∞)]f‖(z = 0, t). (56)

Combining with equation (54), we deduce

d⊥(t) = 2κ‖κFLf‖(z = 0, t). (57)

As an example, we may consider again the Gaussian transport model. Evaluating equation (14)
at z = 0, one can easily recover equation (28) as a special limit of equation (57). However,
equation (57) is more general, and can also be applied on non-Gaussian statistics. In real
physical systems, one expects that the probability to find the particle at z = 0 decreases with
time (f‖(z = 0, t → ∞) → 0), so consequently

d⊥(t) → 0, (58)

which is interpreted as subdiffusion. Thus, for parallel diffusion of charged particles in
combination with a diffusive behavior of FLRW, we find subdiffusion in the perpendicular
direction.
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7. Summary and conclusion

In this paper we have discussed the generalized compound diffusion mechanism, which relates
field-line statistics (wandering) to charged particle random walk in real (position) space. By
applying the guiding-center approximation (equation (11)) and a Gaussian transport model for
parallel scattering (equation (14)) we deduced the general relation

β⊥ = β‖βFL

2
. (59)

Here β⊥ and β‖ are the time exponents of the perpendicular and parallel MSD’s of the particles
whereas βFL is the length exponent of the field-line MSD.

For diffusive FLRW (βFL = 1) and diffusive parallel motion of charged particles (β‖ = 1),
we always find subdiffusion in the form σ⊥(t) ∼ √

t . This relation was derived in several
previous papers (e.g. Krommes et al (1983), Kóta and Jokipii (2000), Shalchi (2006)).
However, as demonstrated in this paper, we always get this subdiffusive behavior if FLRW
and parallel transport behave diffusively. Perpendicular diffusion and parallel diffusion can
only be obtained for βFL = 2—see equation (59)—which corresponds to free-streaming of
field lines.

By replacing the Gaussian transport model by a ballistic model, and by assuming diffusive
behavior of FLRW one can easily recover the well-known quasilinear result often referred to
as FLRW limit (Jokipii 1966). By combining the quasilinear FLRW result for two-component
turbulence—see equation (7)—with the ballistic model we find superdiffusion of charged
particles in the perpendicular direction. Thus, the generalized compound transport model
discussed in this paper is able to obtain the well-known QLT results in appropriate special
limits.

By applying the relation σFL(z) ∼ |z|4/3, i.e. the superdiffusive result obtained by Shalchi
and Kourakis (2007), and by assuming a weakly superdiffusive behavior of parallel transport
(e.g. β‖ = 1.2), we find that perpendicular diffusion is nearly recovered (e.g. β⊥ = 0.8). This
recovery of perpendicular diffusion is an effect which can be found in test particle simulations
(e.g. Giacalone and Jokipii (1999), Qin et al (2002b)). For diffusive behavior of field lines and
parallel diffusion of charged particles these simulations cannot be reproduced theoretically.
However, the combination of the Shalchi and Kourakis (2007) theory for field-line wandering
with the generalized compound transport model is able to describe this effect.

Our results are important in the theoretical interpretation of cosmic ray transport, following
(and interpreting) measurements provided by space observations. It will be the subject of future
work to compare these new results with test-particle simulations and solar wind observations.
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