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Short wavelength ballooning mode in tokamaks

A. Hirose and N. Joiner

Plasma Physics Laboratory, University of Saskatchewan

Saskatoon, Saskatchewan, S7N 5E2, Canada

A skin size [k± < ujpe/c) plasma mode characterized by a dispersion relation cu ~

ck±k\\/k]je (k]je the electron Debye wavenumber), adiabatic ions, and LU <C k^v^e,

in a uniform plasma is destabilized in the tokamak geometry by a modest electron

temperature gradient rje and ballooning parameter ae. When unstable, a large elec-

tron thermal diffusivity emerges because of the cross-filed wavelength much longer

than that of the conventional electron temperature gradient (ETG) mode.

I. INTRODUCTION

The role played by plasma turbulence having cross-field wavelengths of the order of

the electron skin depth c/ojpe in anomalous transport has long been noticed in the past.

Mikhailovskii [1] made a detailed study of the so-called universal drift mode due to the

intrinsic electron Landau damping and found that the maximum growth rate

is reached in the wavenumber regime

where cs = ^/Te/Mi is the ion acoustic speed, Ln the density gradient scale length. Simple

mixing length estimate for particle diffusivity yields

jpe

As is well known, the universal drift mode in slab geometry with magnetic shear is absolutely

stable [2]. Subsequent studies revealed that in tokamaks, the toroidicity induced drift mode



may be unstable [3] and the diffusivity may prevail with some toroidicity corrections. Ohkawa

[4] proposed an electron thermal diffusivity in tokamaks,

Upe

(2)

where VTe/qR is the electron transit frequency with i>Te the electron thermal velocity and

qR the connection length of the helical magnetic structure. In the formula, the skin depth

plays the role of decorrelation length in the radial direction and the transit frequency plays

the role of decorrelation rate. It is noted that the derivation of the Ohkawa diffusivity was

heuristic. The presence of skin size instability (or turbulence) was assumed but the origin

of the turbulence was left unexplained. One feature of the thermal diffusivity which has

relevance to experimental observation is that it gives a somewhat natural explanation for

the empirical Alcator type scaling law for the energy confinement time [5],

TE OC 72,, ( 3 )

where n is the plasma density. More recently, it is becoming clear that the lower edge of the

unstable k±_ spectrum of the electromagnetic electron temperature gradient (ETG) mode is

in the regime k±_ ~ ojpe/c and the presence of skin size plasma turbulence appears to be

responsible for the anomalous electron thermal diffusivity.

In the past, electromagnetic dispersion relations involving the skin depth c/uope have been

considered largely in the limit of LO > k\\VTe (electron transit frequency). For example, in the

slab geometry, the well known dispersion relation for the electromagnetic drift mode

emerges in the limit uo > k\\VTe- Here r\e = d(lnTe) jd (lnn0) is the electron temperature

gradient relative to the density gradient. In tokamaks, this is modified as

-2 + = 0, (J > k\\VTe, (5)
^ - UJDe (CJ - uJDe) \Upe )

but this dispersion relation predicts stable modes unless r\e < 0 (electron temperature profile

opposite to that of the density). Here, uooe is the electron magnetic drift frequency due to the



magnetic curvature. In the same limit LO > k\\VTe, the dispersion relation of the predominantly

electrostatic ETG mode is subject to a small electromagnetic correction involving the electron

skin depth [6 Kim-Horton]

/ , \ 2 2

TH |-((^±Pe) ) (1 ) = 2 I 1 ) ~2 ( 7\2- (6)
LO V LO J V LO J LO V LO J fa -|- \LOpe Cj

To circumvent this problem, it has been suggested [7] that the nonlinear Doppler shift k • v^

due to the E x B drift v^ may exceed the electron transit frequency in strong turbulence,

and skin size electromagnetic turbulence may exist nonlinearly being driven by shorter wave-

length electrostatic ETG mode.

Finally, in a recent fully kinetic analysis of electromagnetic ETG mode in tokamaks [8],

the following electron thermal diffusivity,

V i \ L T e \LOpeJ

has been found where q is the safety factor, j5e is the electron beta factor and L^e is the

electron temperature gradient scale length. The ratio between Eq. (2) and (6) is

IT

which is of order unity in tokamaks.

In this lecture, stability of toroidal drift modes in the wavelength regime k±_ ~ ojpe/c is

reviewed. In particular, it is shown that tokamak discharges are linearly unstable against

an electromagnetic mode (ballooning mode) characterized by adiabatic ions (k±pi) ^> 1

(Pi the ion Larmor radius) and adiabatic electrons with a phase velocity parallel to the

magnetic field smaller than the electron thermal speed LO < k\\VTe- I n these limits, a simple

hydrodynamic ballooning mode emerges which is symbolically described by the following

dispersion relation,

(UJ-UJ^)2 c2h\k\h\
(LJ - uj*e) (LJ - ujDe) + r)eLJ*eujDe — = — — 2 , (8)

where r = Te/Tj, kj)e = Lope/vTe is the electron Debye wavenumber, and k±(k\\) is the

wavenumber perpendicular (parallel) to the ambient magnetic field. The mode is destabilized



4

by a modest electron temperature gradient i]e and electron ballooning parameter denned by

a, — n2 (-[ _i_ n \ R (q)

The mode is intrinsically electromagnetic (because it is a ballooning mode, although there

is no resemblance to the ideal MHD ballooning mode), and is not a result of correction to

electrostatic modes such as the familiar electron temperature gradient (ETG) mode. The

right hand side of Eq. (8) may be approximated by

2

IJ2 h2 n n ^

which indicates the electron transit mode and skin depth are intimately related. It is noted

that the Debye screening factor (k±/k£>e) <C 1 manifests itself in the dispersion relation

even though charge neutrality holds.

II. REVIEW OF THE KINETIC BALLOONING MODE (KBM)

Since the electron ballooning mode to be discussed in this lecture is closely related to

the kinetic ballooning mode that has been revealed in [9], we briefly review this mode first.

In the analysis, ideal MHD approximation is avoided and the ion density perturbation is

evaluated numerically according to the gyro-kinetic formula,

U J to + ujDi (v) Ti

= - ^ ( 1 - / 0 no, (11)

where

h

is the non-adiabatic part of the ion density perturbation with

CJ» (V2) = cu« h + rii (^- - 0 , cu« = - ^ (Vlnn0 x B) • k, (12)



being the energy dependent ion diamagnetic drift frequency and velocity dependent ion

magnetic drift frequency, respectively. Eq. (11) is subject tow > k\\VTi as appropriate to the

ballooning mode which is essentially a destabilized Alfven mode.

For electrons, we assume uo <C k\\VTe- I n this limit, perturbed electron density and parallel

current are

nP. = / fPdv

v\\ \ \ e
AW f d v-LjDe(v) - k\\v\\ V c " / / T

ch " J Te

e^ | | T^o, (14)
\ CK\\

and

(v) - k\\v\\ V c

noe | (^ — w*eJ ^w - LJDB) + r]eLJ*eujDe

Then from charge neutrality condition rii = ne and parallel Ampere's law

we obtain the following mode equation,

/ / 2 / / \2

where

k\\ = —

(15)

= ~J\\e, (16)

kDe 1 + T (1 - h)

ifci = fee [1 + (s^ - a sin ^)2] , (19)
rr~i

(0) = -^-ke [cos 6 + sin 6 (sd - a sin 6)] . (20)

The mode equation has been analyzed in [9] and the existence of the kinetic ballooning

mode outside the stability boundary of the ideal ballooning mode demonstrated, including

the regimes of the so-called second stability and negative shear.



In short wavelength limit (k±pi) ^> 1, ions become adiabatic,

rii = -7fno, h -> 0,h

and the dispersion relation reduces to [8]

2ki\k2
Lki\ (UJ — uj*e)

2

C —-2 = — h {LJ ~ LJ*e) {LJ ~ LJDe) + r)eLJ*eLJDe. (21)

Ions constitute neutralizing background in this case and instability, if any, is due to electron

diamagnetic current coupled to the magnetic drift, i.e., ballooning effect.

III. LOCAL ANALYSIS

In a uniform plasma w*e = uj^e = 0, the dispersion relation

/ \ / \ | v *e/ || J_ || /'OO^

\Lu — UJ*e) \Lu — uJDe) \ ifpCu*eCU]Je ~ Z — To ) \^^J

reduces to the known form [10],

"" /rk"kX2 /r'h^2 ^ ^T' (23)
kDe ) \ujpej " me

The conditions of adiabatic ions (k±pi) 3> 1 and adiabatic electrons LJ < k\\VTe impose the

range in the cross field wavenumber k± such that

1 < k± < ^ , (24)

where c/ujpe is the collisionless electron skin depth. This is possible if the plasma /3 factor

exceeds the electron/ion mass ratio, /3 3> mejmi ~ 3 x 10~4, which is well satisfied in

tokamaks. However, the dispersion relation in Eq. (22) pertinent to tokamaks is not subject

to ck± < ojpe. The electron acoustic mode LJ = k\\ y/(Te + Tj) /me and the skin depth c/iI LJpe

are intimately related in this mode and the skin depth naturally appears as a characteristic

scale length. The mode can be destabilized in toroidal geometry through the ballooning effect

or through electron Landau damping when ae is subcritical.



The quadratic dispersion relation in Eq. (22) may be solved if the norm of the parallel

gradient k\\ is specified. As a rough estimate, we assume k\\ ~ \/{2qR). Then the root is

given by

— = 1 - ^ ( 1 -2en)+i^, (25)

where j/oj*e is the normalized growth rate

£nVe 7. I - I 1 - l£n) • (26)
2a J

w*e IT y 1 + r \ 2a

The condition for instability is given

j > 2 e n I ^ (1 + r,B) • (27)

The source of instability is in the interchange drive term (1 + r)e) Lu*eujDe due to the combina-

tion of unfavorable magnetic curvature and electron pressure gradient. The mode described

by Eq. (22) may thus be called an electron ballooning mode. When compared with the ideal

MHD ballooning mode symbolically described by

U (UJ + LJ*i) {k±pi}
2 = {k±pi}

2 (k\\VA) ~ (1 + Ve) WDeW« ~ (1 + Vi) ̂ Di^*i, (28)

where VA is the Alfven speed, the role of stabilizing Alfven frequency term k^p^VA in MHD

ballooning mode is played by the modified electron transit frequency (ck±/ojpe) k\\VTe- As is

well known, the growth rate of the ideal MHD ballooning mode is practically independent of

the ion finite Larmor radius parameter k±p{ since ujue^*i ^ (h±Pi) J while the growth rate

of the electron ballooning mode is proportional to k±.

The condition for the instability given in Eq. (27) is for hydrodynamic ballooning mode

and may be relaxed if kinetic effects (electron kinetic resonance) are implemented. Fully

kinetic analysis has revealed that the instability persists even in electrostatic limit although

the growth rate is small [8]. The compressive magnetic perturbation B\\ has little influence

on the instability [11].

In the mode described by Eq. (23) for a uniform plasma, energy equipartition holds

between the magnetic energy and thermal potential energy. They are out of phase and the
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sum of the two energy forms is constant, consistent with the general constraint on energy

relationship in plasma waves [12]. The magnetic energy density associated with the wave is

l,2A* 1 (l+T)2C2^fci
Um = ^k\A\ = — ^ < / > 2

8vr " 8vr UJ1

= i - r (1 + r) kU2 = i - (1 + r) k2
D^2, (29)

while the potential energy density is

UJ

8vr UlT 2 Te V ck

= ^(l+r)k2
Dlcf>2, (30)

in agreement with the magnetic energy density. Here the charge neutrality relationship

(1 + T) ck\\(j) = OJA\\ has been substituted. It is noted that the dispersion relation is in-

dependent of electron and ion masses and thus no kinetic energy is involved in the wave

described by Eq. (22).

IV. NONLOCAL ANALYSIS

In order to confirm destabilization of the mode by the ballooning effect in a more rigorous

manner, a fully kinetic, electromagnetic integral equation code [13] has been employed to find

the mode frequency and growth rate. We consider a high temperature, low /3 tokamak dis-

charge with eccentric circular magnetic surfaces. Trapped electrons are ignored for simplicity.

Also, the magnetosonic perturbation (Aj_) is ignored in light of the low /3 assumption and

we employ the two-potential (</> and A\\) approximation to describe electromagnetic modes.

As in the preceding section, the basic field equations are the charge neutrality condition

(subject to k2 <C k2
De)

nl(cf>,All) = ne(cf>,All), (31)

and the parallel Ampere's law,

^ (32)
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where the density perturbations are given in terms of the perturbed velocity distribution

functions f\ and fe by
f f

idv, ne= fedv, (33)

and the parallel current by

dv. (34)

The perturbed distribution functions f\ and fe can be found from the gyro-kinetic equation

in the form

fi = -($IM1 + gi{v, 9)J0{Ai), (35)

cd>fe = 7frfMe + gB(v,d)J0{
-L e

where gi>e are the nonadiabatic parts that satisfy

(36)

^ M e . (38)

Here, 9 is the extended poloidal angle in the ballooning space, Jo is the Bessel function with

argument Ai)6 = k±v±/iocite,

k\ = k2
e [1 + (sd - a sin 6)2] ,

[cos 9 + (s9 — a sin 9) sin 9] I —v]_ + "On I ,

and qR is the connection length. For circulating particles, Qj (j = i, e) can be integrated as

v\\ > 0, g? = -i-
T3 -J -oo

- cD^)^o(A') 4>{9') -

v\\

(39)

(4O)

where

v\\
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Substitution of perturbed distribution functions into charge neutrality and parallel Ampere's

law yields

e, ( -

4vr

c " 97 (42)

where J dv = 2vr Jo°° v±dv± Jo°° dvy. This system of inhomogeneous integral equations can be

solved by employing the method of Fredholm in which the integral equations are viewed as a

system of linear algebraic equations [14]. In the numerical code, the velocity space integration

is executed using Gauss-Hermite approximation.
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FIG. 1: The normalized mode frequency ujr/uj*e and growth rate 7/cj*e as functions of the electron

beta /3e when ckQ/ujpe = 0.3, Ln/R = 0.2, r/e = 2, q = 2, s = 1.

Figure 1 shows the j3e dependence of the normalized eigenvalue oj/oj*e (frequency w r /w w

and growth rate 7/w*e) when cko/ujpe = 0.3, Te = Tj, Ln/R = 0.3, r\e = 2, s = 1, q = 2,

mij'me = 1836 (hydrogen). The growth rate increases rapidly with the electron pressure (/3e)

indicating that the instability is indeed driven by the ballooning effect. The growth rate



11

found in the numerical analysis qualitatively agrees with the analytic expression presented

in Eq. (26).

The mixing length electron thermal diffusivity xe
 = 7/^1 normalized by the Ohkawa

diffusivity

XOhkawa = ^ § ( "f- ) , (43)

qti \ujpej

is shown in Fig. 2 as a function of k2 = (cko/ujpe) when Ln/R = 0.2, r\e = 2, s = 1, q = 2,
and j3e = 0.4 %. The maximum diffusivity occurs at ck±/ojpe ~ 0.3.

In light of the analytic dispersion relation found in this study, it may be concluded that

a tokamak discharge can be strongly unstable in the wavelength regime k± ~ wpe/c which is

the lower end of unstable k± spectrum. The growth rate is of the order of 7 ~

Therefore, for the electron thermal diffusivity, the following estimate emerges,

~ k2 /EL \w /

where L^ is the temperature gradient scale length. The proportionality of the diffusivity

to the safety factor, \e ^ <?> stems from the condition of most active thermal transport,

7 ~ k\\VTe, which yields k± oc \/q [15].

V. CONCLUSIONS

The local dispersion relation

{LO — UJ^) {uj — (jJDe) + 1JeUJ*eUJDe ~— = 7^ )

describes the short wavelength electron ballooning mode subject to the adiabatic electron

response LO < k\\VTe- The mode is intrinsically electromagnetic while the conventional ETG

mode is subject to LO > k\\VTe for which electromagnetic effects appear only as a small cor-

rection. Because of the long wavelength nature of the instability (c/ujpe ^> pe), large electron

thermal transport emerges even in simple mixing length estimate. The following formula for

the electron thermal diffusivity has been found,
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FIG. 2: Xe/XohkaWa vs. k2 = (cke/ujpe)
2 when Ln/R = 0.2, Ve = 2, s = 1, q = 2, and /3e = 0.004.

In the previous investigations [3], it was proposed skin size plasma turbulence may exist

if the nonlinear Doppler shift k • VEXB (VEXB being the E x B drift) exceeds the electron

transit frequency k • VEXB > k\\VTe- The main finding in the present investigation is that the

skin depth manifests itself even in the adiabatic limit and governs the lower end of the k

spectrum of the ETG mode. It is noted that in the limit of large ballooning parameter ae,

the dispersion relation reduces to

\ 2

~ LJDe) = 0,
1 + T

which resembles that of the electrostatic ETG mode in the limit UJ >

UJ£)e T]eUJ*eUJ
T — = 0.

UJ - ujDe (UJ - UJDe

In summary, an electromagnetic ballooning instability having cross-field wavelengths of

the order of electron skin depth has been identified analytically and confirmed with an in-

tegral equation code which is fully kinetic and electromagnetic. In tokamaks, the mode is

destabilized by a modest electron ballooning parameter ae. A large electron thermal diffu-

sivity emerges because of the long wavelength nature of the instability.
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