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1. Introduction

• Increasing evidence for the coupling of the physical processes for particle
acceleration and magnetic field generation in relativistic outflow sources
(jets of active galactic nuclei, gamma-ray bursts):

1) Numerical modelling of observed blazar SEDs (e.g. Dermer and RS
2002, Böttcher and Chang 2002) provides best agreement if equipartition
conditions are taken between energy densities of magnetic fields (UB =
B2/8π) and relativistic electrons Ue(t) =

∫ ∞
0 dpγmec

2N(p, t):

eB = UB(t)/Ue(t) = const.

2) Similar equipartition assumption is made in nonthermal radiation mod-
els for gamma-ray burst afterglows (Meszaros and Rees 1997, Frail et al.
2000): fixed fraction εe of blast wave energy E0 goes into accelerating a
power law distribution of electrons above lower threshold γm, fixed frac-
tion εB of blast wave energy E0 is in magnetic field. Partition ratio then
is eB = εB/εe �= 1.
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• Central role played by Weibel-type instabilities generating aperiodic mag-
netic fluctuations δB ∝ exp(ı�k · �x + Γt), ωR = 0

Free energy reservoir for instability = kinetic relativistic outflow energy

• These instabilities are best known in unmagnetized (B0 = 0) plasmas
but also occur in weakly magnetized (B0 < Bc) plasmas (see talk by
M. Dieckmann). The instabilities are suppressed in strongly magnetized
plasmas (B0 > Bc).
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• counterstream plasma instabilities of dense outflow plasma in dilute am-
bient gas n∗

b >> n∗
i (”relativistic pick-up model”)

• B0 = 0: interstellar p+, e−, neutrals enter as weak beam, beam excites
aperiodic magnetic fluctuations (δB) perpendicular to counterstream di-
rection that isotropise incoming p+, e− after time ts, i.e. pick-up of
interstellar ions and electrons in outflow

consequence 1: outflow picks up interstellar p+ and e− with

Ep,max = Γmpc
2 = 100Γ100 GeV

Ee,max = Γmec
2 = 0.05Γ100 GeV

primary energy output at TeV energies in lab frame:

in p+ − e− outflows E∗
γ,max = 20Γ2

100 TeV

in pair outflows E∗
γ,max = 0.01Γ2

100 TeV

consequence 2: equipartition conditions

Note: we use ultrarelativistic approximation in source frame γ � p/mc
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2. Evolution of radiating electrons under
equipartition conditions

Use Kardashev (1962) approach for time evolution of the volume-averaged
relativistic electron population inside the radiating source (n(γ, t) is volume-
averaged differential number density)

∂n(γ, t)
∂t

− ∂

∂γ
[γ̇n(γ, t)] = Q(γ, t)

subject to injection Q(γ, t) and synchrotron radiation losses

γ̇ = D0γ
2, D0 =

4
3

cσT

mec2
UB = 2.66 · 10−14

[
UB

mec2

]
s−1

2.1. Linear cooling

For constant energy density UB kinetic equation is linear with solution:

nL(γ, t) =
∫ ∞

0
dγ0

∫ ∞

−∞
dt0Q(γ0, t0)G(γ, γ0, t, t0)

with Green’s function

G(γ, γ0, t, t0) = H[γ0 − γ]H[t − t0]δ(γ − γ0

1 + D0γ0t
)

(H[x] denotes Heaviside’s step function)
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2.2. Nonlinear cooling

(a) under partition conditions, UB = eBmec
2
∫ ∞
0 dγγn(γ, t), the synchrotron

cooling of relativistic electrons depends on the kinetic energy density of the
radiating particles,

γ̇ = A0γ
2

∫ ∞

0
dγγn(γ, t), A0 =

4
3
cσT eB

(b) moreover the magnetic field strength B(t) =
√

8πeBUe(t) is time-dependent,
changing not only the temporal behaviour of the relativistic electron energy
spectrum but, additionally, modifying the synchrotron photon emissivity.
As a consequence of (1), the evolution of relativistic electron energy spectra
exhibits nonlinear behaviour because the cooling of an individual electron is
stronger with a larger kinetic energy density of the whole electron population.
Kinetic equation (1) then becomes nonlinear

∂n

∂t
− A0[

∫ ∞

0
dγγn]

∂

∂γ
(γ2n) = Q(γ, t) (2)

Method of Green’s function solution does not work. Have to do each injection
case separately.
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3. Instantaneous injection of monoenergetic
electrons

Injection rate: Q(γ, t) = q0δ(γ − γ0)δ(t)

3.1. Linear solution:

nL(γ, t) = q0H[γ0 − γ]δ (γ − γL(t)) , γL(t) =
γ0

1 + D0γ0t

An electron starting with Lorentz factor γ0 has cooled to the Lorentz factor γL

at later times. The half-life time is

tL1/2 =
1

D0γ0
=

3.76 · 1013

γ0

[
4.54 mG

B

]2

s

depends inversely on the initial Lorentz factor and the magnetic field strength
but not on the injection rate q0.
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3.2. Nonlinear solution:

nNL(γ, t) = q0H[γ0 − γ]δ (γ − γNL(t)) , γNL(t) =
γ0√

1 + 2A0q0tγ2
0

implies modified synchrotron energy loss rate in equipartition conditions

γ̇NL = D0mec
2 UB(0)

Ue(0)
γ3

NL

Here, an electron starting with Lorentz factor γ0 cools to the Lorentz factor
γNL at later times but γNL differs substantially from the linear Lorentz factor
γL(t). Now half-life time, tNL

1/2 , is

tNL
1/2 =

3
2A0q0γ2

0

=
9

8cσT eBq0γ2
0

= 5.64 · 1013e−1
B [q0/cm−3]−1γ−2

0 s

which depends on the initial kinetic energy of injected electrons (proportional
to q0γ0), and it depends differently than in the linear case on the initial electron
Lorentz factor (inversely quadratic instead of inversely linear) and also inversely
on the value of the injection rate q0.
The more electrons are injected, the quicker each electron cools under equiparti-
tion requirements. Such a collective behaviour is new and completely
different from the linear case.
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3.3. Timescale comparison:

The ratio of nonlinear to linear half-life time is much smaller than unity provided

q0γ0 >
3

2eB

[
B

4.54 mG

]2

Fulfilled in GRB sources and blazars:
Modelling of blazar flaring (e.g. Dermer and Schlickeiser 1992, 2002): about
q0 � 105 electrons per cm−3 with Lorentz factors γ0 � 107 are injected in
sources with several Gauss (B � 10 G) magnetic fields, much below the initial
equipartition field strength. The nonlinear half-life is then more than four orders
of magnitude shorter than the standard linear half-life.
→ dramatic reduction of the intrinsic radiation loss times due to equipartition
conditions. Agreement with the observed short time variability from flaring
blazar jets, of order minutes as in PKS 2155-304 (Aharonian et al. 2007), of
order seconds in GRBs, and of order days in case of the non-blazar radio galaxy
M 87 (Aharonian et al. 2006).
It is easy to show that with assumed equipartition conditions UB(0) = q0γ0mec

2eB

the linear half-life time is comparable to the nonlinear half-life time, tL1/2 =
(2/3)tNL

1/2 .
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4. Optically thin synchrotron intensities, light curves
and fluences – Monoenergetic injection

For homogenous source of diameter L the optically thin synchotron intensity is

I(ν, t) =
L

4π

∫ ∞

0
dγ n(γ, t)P (ν, γ)

with synchrotron power

P (ν, γ) = P0
ν

γ2
CS

[
2ν

3ν0γ2

]

with electron gyrofrequency ν0 = and CS(x) = x−2/3/(0.869 + x1/3ex).

Normalized time coordinates: xL = t/tL1/2, xNL = 3t/tNL
1/2

Normalized frequencies

fL ≡ ν

νL(t = 0)
=

ν
3
2ν0γ2

0

, fNL ≡ ν

νNL(t = 0)
=

ν
3
2c

√
2eBq0r0/πγ

5/2
0

Combined variables: sL ≡ fL(1 + xL)2, sNL = fNL(1 + xNL)5/4
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4.1. Intensities

Figure 1: Linear synchrotron intensity at four different times

IL(fL, xL) = H0sLCS [sL] �
1.151H0s

1/3
L = 1.151H0f

1/3
L (1 + xL)2/3 for fL(1 + xL)2 << 0.282

H0 exp(−sL) = H0 exp(−fL(1 + xL)2) for fL(1 + xL)2 >> 0.282

Maximum intensity at the frequency fL,max = 0.282/(1+xL)2, which decreases
∝ 0.282x−2

L for large times xL >> 1. However, the maximum intensity is
independent of time.
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Figure 2: Nonlinear synchrotron intensity at four different times

INL(fNL, xNL) =
J0

(1 + xNL)1/4
sNLCS [sNL] �

J0

(1 + xNL)1/4
1.151f

1/3
NL(1 + xNL)5/12 for fNL(1 + xNL)5/4 << 0.282

J0

(1 + xNL)1/4
exp(−fNL(1 + xNL)5/4) for fNL(1 + xNL)5/4 >> 0.282

Maximum intensity at fNL,max = 0.282/(1 + xNL)5/4, which decreases ∝
0.282x

−5/4
NL at large times. Also the maximum intensity itself decreases as

∝ x
−1/4
NL with increasing time.



Introduction

Evolution of . . .

Instantaneous . . .

Optically thin . . .

Steady-state . . .

Instantaneous . . .

Steady-state . . .

Summary and . . .

4.2. Light curves

Figure 3: Linear synchrotron light curve at four different frequencies

At frequencies below fL << 0.282 transition from a power law increase to a
Gaussian decay at xL = 0.53/

√
fL:

IL(xL)
IL(xL = 0)

� (1 + xL)2/3 for xL << 0.53/f
1/2
L

IL(xL)
IL(xL = 0)

� exp[−fL(x2
L + 2xL)] for xL >> 0.53/f

1/2
L

The width of the Gaussian increases ∝ f
−1/2
L with decreasing frequency.
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Figure 4: Nonlinear synchrotron light curve at four different frequencies

At frequencies below fNL << 0.282, there is a transition from a weaker power
law increase to a non-Gaussian decay at xNL = (0.282/fL)4/5

INL(xNL)
INL(xNL = 0)

� (1 + xNL)1/6 for xNL << 0.363f−0.8
NL

INL(xNL)
INL(xNL = 0)

� x
−1/4
NL exp[−fNLx

5/4
NL] for xNL >> 0.363f−0.8

NL
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4.3. Synchrotron fluences

Time-integrated synchrotron fluence F (f) =
∫ ∞
0 dt I(f, t):

At large normalized frequencies fL >> 1 and fNL >> 1 both fluences exhibit
the same exponential cut-off

FL(fL >> 1) �
H0t

L
1/2

2
f−1

L e−fL

FNL(fNL >> 1) �
4J0t

NL
1/2

15
f−1

NLe−fNL

At small normalized frequencies the nonlinear fluence shows a steeper (by ∆α =
0.1) power law behaviour (∝ f−0.6

NL ) than the linear fluence (∝ f−0.5
L )

FL(fL << 1) �
H0t

L
1/2c0

2
f
−1/2
L

FNL(fNL << 1) �
4J0c1t

NL
1/2

15
f
−3/5
NL
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5. Steady-state solution for monoenergetic injection

Differences also in steady-state solution for monoenergetic injection Q(γ) =
Q0δ(γ − γ0), γ0 >> 1:

Linear solution NL(γ) = Q0

D0
γ−1[γ2 − 1]−1/2H[γ0 − γ]

Nonlinear solution NNL(γ) =
√

Q0

A0[ln γ0+(π/2)]γ
−1[γ2 − 1]−1/2H[γ0 − γ]

Identical energy dependence but different dependences on injection rate Q0 and
initial Lorentz factor γ0.
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6. Instantaneous power law injection

Injection rate: Q(γ, t) = q0γ
−sδ(t) for 1 << γ1 ≤ γ ≤ γ2

6.1. Linear solution:

quenched cooled power law

nL(γ, t) = q0γ
−s[1 − D0γt]s−2

for γ1(t) ≤ γ ≤ γ2(t) with

γ1(t) =
γ1

1 + D0γ1t
, γ2(t) =

γ2

1 + D0γ2t

Exhibits Kardashev-pile up for values s < 2.
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Figure 5: Electron distribution function nLγ
3/2
1 /q0 as a function of the nor-

malized Lorentz factor g = γ/γ1 for s = 1.5 and g2 = γ2/γ1 = 104

in the linear cooling case at different times τ = t/tM = 0 (dotted-
dashed curve), 10−2 (dashed curve), 0.1 (thin full curve) and 1
(thick full curve). Here tM = D0γ1.
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6.2. Nonlinear solution:

nNL(γ, t) = q0γ
−s[1 − γT (y)]s−2H[

γ2

1 + γ2T (y)
− γ]H[γ − γ1

1 + γ1T (y)
]

Variable T (y) is related to the time y = A0t through the first-order nonlinear
differential equation (x1 = 1/γ1, x2 = 1/γ2)

T 2−s dT

dy
= q0

∫ x1/T

x2/T
dv

vs−2

v + 1

This nonlinear differential equation can be solved approximately in the small
time (T ≤ x2 << x1), the intermediate time (x2 ≤ T ≤ x1), and the late time
(x2 << x1 ≤ T ) limits, respectively.
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For flat spectral index values 1 < s < 2 we obtain approximately

T (0 ≤ y ≤ y2, s < 2) � q0

s − 2
xs−2

2 y

T (y2 ≤ y ≤ y1, s < 2) �
[

3 − s

(2 − s)(s − 1)
q0y − 2(2 − s)

s − 1
x3−s

2

]1/(3−s)

T (y ≥ y1, s < 2) �
[

2q0

s − 1
xs−1

1 y +
s − 1
3 − s

x2
1 −

4(2 − s)2

(3 − s)(s − 1)
x3−s

2 xs−1
1

]1/2

with

y1 =
(2 − s)(s − 1)

(3 − s)q0

[
x3−s

1 +
2(2 − s)
s − 1

x3−s
2

]
, y2 =

2 − s

q0
x3−s

2

For steep spectral index values s > 2 we find approximately

T (0 ≤ y ≤ y3, s > 2) � q0

s − 2
xs−2

1 y

T (0 ≤ y ≥ y3, s > 2) �
[

2q0

s − 1
xs−1

1 y +
3 − s

s − 1
x2

1

]1/2

with

y3 =
s − 2
q0

x3−s
1
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Figure 6: Electron distribution function nNLγ
3/2
1 /q0 as a function of the

normalized Lorentz factor g = γ/γ1 for s = 1.5 and g2 = γ2/γ1 =
104 in the nonlinear cooling case at different times τ = t/tM = 0
(dooted-dashed curve), 102 (dashed curve), 104 (thin full curve)
and 106 (thick full curve).
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6.3. Electron fluence distribution

Electron fluence N(γ) =
∫ ∞
0 dt n(γ, t)

For radiation processes not subject to equipartition conditions (inverse Compton
scattering, relativistic bremsstrahlung) direct relation to corresponding radiation
frequency fluences.

6.3.1. Linear fluence

NL(γ ≤ γ1) =
q0

D0(s − 1)
γ−2

[
γ1−s

1 − γ1−s
2

]

NL(γ1 ≤ γ ≤ γ2) =
q0

D0(s − 1)
γ−(s+1)

[
1 − (

γ

γ2
)s−1

]

This broken power law exhibits a spectral break by ∆s = s − 1 at γ1.

6.3.2. Nonlinear fluence for s > 2

(g = γ/γ1)

NNL(γ1 < γ ≤ γ2, s > 2) =
q0tLγ1

s − 1
γ−s−1

[
1 − (

γ

γ2
)s−1

]
,

NNL(
γ2

1 + γ2
< γ ≤ γ1, s > 2) =

q0tLγ2−s
1

s − 1
γ−2

[
1 − (

γ1

γ2
)s−1

]
,
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NNL(
γ1

2
< γ ≤ γ2

1 + γ2
, s > 2) = q0tLγ−s

[ 1
g(s − 1)

[gs−1 − (1 − g)s−1]

+
s − 1

g2(s − 2)

[
(1 − g)s−1 − gs−1g1−s

2

s − 1
− (1 − g)s − gsg−s

2

s

]]
,

NNL(γ ≤ γ1

2
, s > 2) =

q0tLγ3−s
1

s − 2
γ−3

(
1 − (

γ1

γ2
)s−1 − s − 1

s

γ

γ1
[1 − (

γ1

γ2
)s]

)

For γ ≥ γ1 the nonlinear fluence distribution agrees with the linear steepened
power law behaviour.
Different behaviour at lower Lorentz factors: much below the transition region
γ � γ1/2 the nonlinear fluence approaches a power law ∝ γ−3 whose spectral
index is larger by unity than in the linear case.
Consequently, we also obtain a broken power law behaviour for the nonlinear
fluence, however with a smaller spectral break by ∆s = s − 2 around γ1 than
in the linear case.

6.3.3. Nonlinear fluence for 1 < s < 2

At all energies γ ≤ γ2/2 we obtain an unbroken power law with spectral index
3 independent of the injected flat power law value 1 < s < 2.
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Figure 7: Linear (lower curve) and nonlinear (upper curve) electron fluence
distribution function NLγ3

1/q0tL as a function of the normalized
Lorentz factor g = γ/γ1 for s = 3 and g2 = γ2/γ1 = 104 calculated
for tL = (D0γ1)−1.
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7. Steady-state solution for power law injection

Steady-state solution for power law injection Q(γ) = Q0γ
−s, for 1 ≤ γ1 ≤ γ ≤

γ2:

Linear solution

NL(γ ≤ γ1) =
Q0

D0(s − 1)γ(γ2 − 1)1/2
γ1−s

1 [1 − (γ1/γ2)s−1]

NL(γ1 ≤ γ ≤ γ2) =
Q0

D0(s − 1)γ(γ2 − 1)1/2
γ1−s[1 − (γ/γ2)s−1]

Nonlinear solution

NNL(γ ≤ γ1) =
Q

1/2
0 γ

(s−1)/2
1

[A0(s − 1) ln γ1]1/2
γ−1(γ2 − 1)−1/2[γ1−s

1 − γ1−s
2 ]

NNL(γ1 ≤ γ ≤ γ2) =
Q

1/2
0 γ

(s−1)/2
1

[A0(s − 1) ln γ1]1/2
γ−1(γ2 − 1)−1/2[γ1−s − γ1−s

2 ]

Identical energy dependence but different dependence on injection rate Q0 and
on the initial cut-offs γ1 and γ2.
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8. Summary and conclusions

• In powerful cosmic nonthermal radiation sources with dominant magnetic
field self generation, the generation of magnetic fields at almost equipar-
tition stength by relativistic plasma instabilities operates as fast as the
acceleration or injection of ultra-high energy radiating electrons in these
sources.

• The magnetic field strength then is time-dependent and adjusts itself to
the actual energy density of the radiating electrons in these sources.

• As a consequence the synchrotron radiation cooling of individual relativis-
tic electrons exhibits a nonlinear behaviour because of the dependence of
the magnetic energy density on the particle energy density which itself
decreases due to the time evolution of the electron number density.

• For different injection conditions we have solved this nonlinear kinetic
equation for the intrinsic temporal evolution of relativistic electrons.

• In the case of instantaneous monoenergetic injection we calculate the
corresponding optically thin synchrotron radiation intensity taking into
account also the time-dependence of the magnetic field strength under
equipartition conditions. The comparison with the synchrotron intensity
from the standard solution of the linear kinetic equation shows significant
differences both in the spectral distributions at different times and the
synchrotron light curves at different frequencies. Spectral differences also
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occur in the frequency distribution of the linear and nonlinear synchrotron
fluences.

• For power law injection the differential electron fluence as a function of
electron energy differs from the linear electron fluence. For large spectral
indices s > 2 of the injected power law the nonlinear fluence exhibits
a weaker break at the lower injected electron cut-off γ1 than the linear
fluence. For small spectral indices 1 < s < 2 the nonlinear fluence shows
no break at all and approaches the ∝ γ−3 power law at all energies below
γ2/2.

• Under steady-state conditions for monoenergetic and power law injection
the nonlinear and linear electron distribution functions exhibit the same
dependence on the Lorentz factor of the electrons but their absolute values
are different and depend differently on the injection rate Q0.

• Predictions of spectral behaviour with energy, time and frequency provide
tests for the presence or absence of linear or nonlinear cooling in flaring
nonthermal sources.

• Hadrons are also subject to nonlinear synchrotron cooling in large mag-
netic field values, exactly what is expected under partition conditions.
Offers potential method to test for hadron-induced radiation processes.
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Figure 8: Last but not least ...




