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1. Introduction

e Increasing evidence for the coupling of the physical processes for particle
acceleration and magnetic field generation in relativistic outflow sources
(jets of active galactic nuclei, gamma-ray bursts):

1) Numerical modelling of observed blazar SEDs (e.g. Dermer and RS
2002, Bottcher and Chang 2002) provides best agreement if equipartition
conditions are taken between energy densities of magnetic fields (Up =
B?/8) and relativistic electrons U (t) = [~ dpymec*N(p, t):

Introduction
Evolution of . ..
eg = Up (t)/Ue (t) = const. Instantaneous . . .
Optically thin . ..

_ . _ . . . .o Steady-state. . .
2) Similar equipartition assumption is made in nonthermal radiation mod- 4

els for gamma-ray burst afterglows (Meszaros and Rees 1997, Frail et al.
2000): fixed fraction €. of blast wave energy Ej goes into accelerating a
power law distribution of electrons above lower threshold ~,,, fixed frac-
tion ep of blast wave energy Ej is in magnetic field. Partition ratio then

IS e = EB/Ee 75 1.

Instantaneous . . .
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Summary and. ..




e Central role played by Weibel-type instabilities generating aperiodic mag-
netic fluctuations 6 B ox exp(tk - Z+T't), wr =0

Free energy reservoir for instability = kinetic relativistic outflow energy
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e These instabilities are best known in unmagnetized (By = 0) plasmas

but also occur in weakly magnetized (By < B.) plasmas (see talk by
M. Dieckmann). The instabilities are suppressed in strongly magnetized
plasmas (By > B.).




e counterstream plasma instabilities of dense outflow plasma in dilute am-
bient gas nj >> n; ("relativistic pick-up model”)

e By = 0: interstellar p™, e, neutrals enter as weak beam, beam excites
aperiodic magnetic fluctuations (0 B) perpendicular to counterstream di-
rection that isotropise incoming p*,e™ after time t,, i.e. pick-up of
interstellar ions and electrons in outflow

consequence 1: outflow picks up interstellar p* and e~ with

Ep,max = Fmp62 = 100F100 GeV Introduction

Evolution of . ..

Ee max = I'mec® = 0.05I' 190 GeV

Instantaneous. . .

Optically thin . ..

primary energy output at TeV energies in lab frame: Steady-state. ...
Instantaneous. . .

in p+ — e~ outflows E;max = QOF%OO TeV Steady-state. . .
Summary and. ..

in pair outflows E7 . = 0.01T'%,, TeV

consequence 2: equipartition conditions

Note: we use ultrarelativistic approximation in source frame v >~ p/mc




2. Evolution of radiating electrons under
equipartition conditions
Use Kardashev (1962) approach for time evolution of the volume-averaged

relativistic electron population inside the radiating source (n(v,t) is volume-
averaged differential number density)

P L bl 0)] = @t
subject to injection Q(~,t) and synchrotron radiation losses T ——c—
Evolution of. ..
¥ = DO'}/Qa Dy = %,::z; Up = 2.66 - 10_14 [%] 8_1 Instantaneous. . .
Optically thin . ..
2.1. Linear cooling Steady-state....

. . . . .. . . Instantaneous. . .
For constant energy density Up kinetic equation is linear with solution:

Steady-state. . .

Summary and. ..

nL(%t):/O d%/ dtoQ(v0,t0)G (7,70, t, to)

with Green's function

Yo

G(v,70,t,to) = H[yo — y|H[t — to]o(y — m)

(H [x] denotes Heaviside's step function)




2.2. Nonlinear cooling

(a) under partition conditions, U = egm.c? fooo dyyn(~,t), the synchrotron
cooling of relativistic electrons depends on the kinetic energy density of the
radiating particles,

4

= A(WQ/ dyyn(v,t), Ag= 360TeB
0

(b) moreover the magnetic field strength B(t) = \/8mepU.(t) is time-dependent,
changing not only the temporal behaviour of the relativistic electron energy
spectrum but, additionally, modifying the synchrotron photon emissivity.

As a consequence of (1), the evolution of relativistic electron energy spectra Evolution of ...
exhibits nonlinear behaviour because the cooling of an individual electron is Instantaneous . . .
stronger with a larger kinetic energy density of the whole electron population. Optically thin . . .
Kinetic equation (1) then becomes nonlinear Steady-state. ..
00 Instantaneous. ..
= ol [ vl 0P = Q) @ [
ot 0 0y

_ _ o _ Summary and. ..
Method of Green's function solution does not work. Have to do each injection

case separately.




3. Instantaneous injection of monoenergetic
electrons

Injection rate: Q(7,t) = qod(y — 70)d(t)

3.1. Linear solution:

nr(v,t) = qH[y — 0 (v —~c(t)), vo(t) = H+{)w

An electron starting with Lorentz factor v has cooled to the Lorentz factor v,
at later times. The half-life time is

1 3.76-10% [4.54 mGr ]

- —
127" Dovyo 70 B

depends inversely on the initial Lorentz factor and the magnetic field strength
but not on the injection rate q.
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3.2. Nonlinear solution:
Y0

nNL(fy’t) = qOH[’)/() — ’)/]5<f)/ - fYNL(t)>7 f}/NL(t) — \/1 i 2Aoth’Y2
0

implies modified synchrotron energy loss rate in equipartition conditions

. Up(0)
AnL = Domec? 0..(0) VXL

Here, an electron starting with Lorentz factor ~y cools to the Lorentz factor
vy at later times but vy, differs substantially from the linear Lorentz factor

’)/L(t). Now half-life time, ti\%’, IS Introduction

Evolution of . ..

3 9
tNL = = = 5.64 - 10136_1 q0 Cm_3 _1’)/_2 S Instantaneous . . .
V27 940072 8corepqoy? 5 L0/ I

Optically thin . ..
which depends on the initial kinetic energy of injected electrons (proportional Steady-state . ..
to goy0), and it depends differently than in the linear case on the initial electron e ————
Lorentz factor (inversely quadratic instead of inversely linear) and also inversely
on the value of the injection rate qp.

The more electrons are injected, the quicker each electron cools under equiparti-
tion requirements. Such a collective behaviour is new and completely
different from the linear case.

Steady-state. . .
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3.3. Timescale comparison:

The ratio of nonlinear to linear half-life time is much smaller than unity provided

N 3 B 1?2
W00 =~ 50 | 4.54 mG

Fulfilled in GRB sources and blazars:

Modelling of blazar flaring (e.g. Dermer and Schlickeiser 1992, 2002): about
go ~ 10° electrons per cm~3 with Lorentz factors 79 ~ 107 are injected in
sources with several Gauss (B ~ 10 G) magnetic fields, much below the initial

equipartition field strength. The nonlinear half-life is then more than four orders Introduction
of magnitude shorter than the standard linear half-life. Evolution of . ..
— dramatic reduction of the intrinsic radiation loss times due to equipartition Instantaneous . . .
conditions. Agreement with the observed short time variability from flaring Optically thin . ..
blazar jets, of order minutes as in PKS 2155-304 (Aharonian et al. 2007), of Steady-state.. . .
order seconds in GRBs, and of order days in case of the non-blazar radio galaxy Instantaneous . ..

M 87 (Aharonian et al. 2006).

It is easy to show that with assumed equipartition conditions U (0) = goyomec?en

the linear half-life time is comparable to the nonlinear half-life time, L =

1/2
(2/3)t]5.
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4. Optically thin synchrotron intensities, light curves
and fluences — Monoenergetic injection

For homogenous source of diameter L the optically thin synchotron intensity is

L

I(V,t) = E

/OOO dyn(y,t)P(v,v)

with synchrotron power

v 2v
P = Py—CS
(Vv 7) O’YQ [3V0’)/2]
with electron gyrofrequency vy = and C'S(z) = z72/3/(0.869 + z'/3¢%).

Instantaneous. . .

Normalized time coordinates: x; = t/tf/Q, TNL = Bt/t{% Optically thin. . .

. . Steady-state. . .
Normalized frequencies -

Instantaneous . . .

Steady-state. . .

1% 14 1% 14

fr = = ,  INL = =
vr(t=0) %V()’Yg vni(t=0) %C\/QeBQOTO/ﬂ-’VS/Q

Summary and. ..

Combined variables: s;, = fr.(1 4+ 21)?, sy = fvn(1+ CUNL)5/4




4.1. Intensities

Introduction
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Figure 1: Linear synchrotron intensity at four different times . ,
Optically thin . ..

Steady-state. . .

Instantaneous . . .

IL(fL; xL) = H()SLCS [SL] ~ Steady-state. . .
Summary and. ..

1.151Hys)/® = 1.151Ho f}/3 (1 + 1) for  fr(1+21)% << 0.282
Hoexp(—sp) = Hyexp(—fr(1 +x1)?) for fr(1+xr)* >> 0.282

Maximum intensity at the frequency fr maz = 0.282/(1+x1)?, which decreases
X 0.28290;2 for large times x; >> 1. However, the maximum intensity is
independent of time.




Figure 2: Nonlinear synchrotron intensity at four different times

Jo
14 CUNL)1/4

INL(fNL,ZNL) = ( sNi.CS [snr] ~

Jo 1/3
(T anp) /Aot

Jo
(1+2xn1)
Maximum intensity at fnrmar = 0.282/(1 + zn1)

(1 + xNL)5/12 for fNL(l + CUNL)5/4 << 0.282

77 exp(—=fyr (1 + enp)?Y) for  fnr(1+ann)t >> 0.282

5/4  which decreases o
0.282%_\5;/4 at large times. Also the maximum intensity itself decreases as

—1/4 .. .
X x5, with increasing time.
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4.2. Light curves

Figure 3: Linear synchrotron light curve at four different frequencies

At frequencies below f; << 0.282 transition from a power law increase to a
Gaussian decay at x;, = 0.53/+/fL:

IL(xL) 2/3 1/2
~ (1 f :
To(es = 0) (1+zp) or xy, << 0.53/f;
Ip(xr)

~ exp|— 1 (22 + 2 f 0.53/ /2
To(zp = 0) exp[—fr(x7 + 2xp)] for xp >> /I

The width of the Gaussian increases o fL_1/2 with decreasing frequency.
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Figure 4: Nonlinear synchrotron light curve at four different frequencies

At frequencies below fxn1 << 0.282, there is a transition from a weaker power
law increase to a non-Gaussian decay at zy7, = (0.282/f1)%/5

Inp(zNL)

~ (1 1/6 ¢ << 0.363 f59-8
Inp(xnp =0) (+ewr) o ENL Int

Ini(x - N
Ll Ni) ~ xN2/4 eXp[_fNLCU?\{?;] for wnp >> 0'363‘]6]\7%8
Inr(znr =0)
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4.3. Synchrotron fluences

Time-integrated synchrotron fluence F(f) = [~ dt I(f,t):

At large normalized frequencies f;, >> 1 and fn, >> 1 both fluences exhibit
the same exponential cut-off

Hgtf2
Fr(fr >>1) ~ 5 / f]-jle_fL
4JotY5
FNL(fNL >> 1) ~ 1—5/f];i€_fNL

At small normalized frequencies the nonlinear fluence shows a steeper (by Aa =
0.1) power law behaviour (o< f57°) than the linear fluence (o< f; %)

HotL Co
FL(f, << 1)~ —2 ¢ 12

9 L
4J061t]1\[é’ .
Fnp(fvn <<1) ~ 12 3/

15 NL
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5. Steady-state solution for monoenergetic injection

Differences also in steady-state solution for monoenergetic injection Q(7v) =
Qod(y —"0), 70 >>1:

Linear solution N (vy) = %—37_1[72 — 1]_1/2H[’Yo — 7]

Nonlinear solution Ny, () = \/Ao[ln,y?i(w/g)] vy = 172 Hy — ]

|dentical energy dependence but different dependences on injection rate () and
initial Lorentz factor ~y.
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6. Instantaneous power law injection

Injection rate: Q(7,t) = qoy *0(t) for 1 << 1 < v <o

6.1. Linear solution:

quenched cooled power law

nz(v,t) = qoy~°[1 — Doyt]*~?
for v1(t) < v < »(t) with

ga! 72

SR ¢ — +
1+ Dot 72(t)

Y1(t)

Exhibits Kardashev-pile up for values s < 2.

" 1+ Dot
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Figure 5: Electron distribution function n LV% & /qo as a function of the nor-
malized Lorentz factor g = /1 for s = 1.5 and gg = v2/v1 = 10*
in the linear cooling case at different times 7 = t/t); = 0 (dotted-
dashed curve), 1072 (dashed curve), 0.1 (thin full curve) and 1

(thick full curve). Here tj; = Dovyy. Instantaneous. . .

Steady-state. . .
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6.2. Nonlinear solution:
—s 5— 2
nnL(v,t) = gy *[1 — 7T (y)]* *H]|

71 ]
1+ T

1 4+mnT(y)

O Y H |y

Variable T'(y) is related to the time y = Agt through the first-order nonlinear
differential equation (z1 = 1/71, x3 = 1/72)

dT x1/T s—2
T?5— = q()/ v
dy xo /T v+1

This nonlinear differential equation can be solved approximately in the small
time (T < 9 << x1), the intermediate time (xo < T < x7), and the late time
(zo << x1 < T) limits, respectively.

Instantaneous. . .

Steady-state. . .

Summary and. ..




For flat spectral index values 1 < s < 2 we obtain approximately

TO0<y<yss<2)~ Sq_o2gg§—2y
3—s 2(2—35) 5.4

1/2
20 44 s—1, 4(2 — 5)2 3—s 3—1} /

T(y2y1,5<2)~[

1 YT TN T B g ™
with
(2 B S)(S T 1) [ 3—s 2(2 — S) 33] 2—s 3—s
= x + —2 , = x
CE T RS T R

For steep spectral index values s > 2 we find approximately

q Instantaneous. . .
0 _
T(O <y<uys,s> 2) ~ . 2:6‘; 2y Steady-state. . .
Summary and. ..
1/2
2q0 -1 3 — S 2
TO<y>wys,8>2)~ x] x
0<y>uys ) Lll y+
with
s—2 3—s

Y3z = Iy

qo




Figure 6: Electron distribution function nNLfyf/ 2 /qo as a function of the
normalized Lorentz factor g = /1 for s = 1.5 and go = v2 /71 =
10* in the nonlinear cooling case at different times 7 = t/t); = 0
(dooted-dashed curve), 10? (dashed curve), 10* (thin full curve)
and 10° (thick full curve).
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6.3. Electron fluence distribution

Electron fluence N(v) = [,° dtn(v,t)

For radiation processes not subject to equipartition conditions (inverse Compton
scattering, relativistic bremsstrahlung) direct relation to corresponding radiation
frequency fluences.

6.3.1. Linear fluence

40 -2 7. 1—s 1—s
N < —_ —
L(y <m) Do(s 1)7 [71 T2 ]
q —(S S—
i'L(ryl <7< ,72) D()(SO 1)7 (s+1) [1 (,.,;/2) 1]

This broken power law exhibits a spectral break by As = s — 1 at ;.

6.3.2. Nonlinear fluence for s > 2

Instantaneous. . .
_ Steady-state. . .
(9="/m)
Summary and. ..
QoL _s— _
Nyr(m <7y <72,8>2) = S_Z o [1—(%)8 1],

Nni( <y<m,8>2)=

. QOtL/Y%_S 7—2 1 — (ﬂ)s—l
1+ 79 s—1 ’




71 72 —38 1 s—1 s—1
Nyr( L <~ < 5> 2) = qot S (-
vl <7< 5 ) = qotLY g(s_m[g (1—9)""]
s—1 (1 . g>s—1 . gs—lg%—s (1 . g)s . 9592—5
. ] |
g*(s —2) s—1 s
ty3 s —1
Nyp(v < ﬂ,s > 2) = Mv“g (1 — (ﬂ)s—1 _ 5 Ty s])
2 s—2 V2 s m V2

For v > ~1 the nonlinear fluence distribution agrees with the linear steepened
power law behaviour.

Different behaviour at lower Lorentz factors: much below the transition region
v ~ 71 /2 the nonlinear fluence approaches a power law oc v~2 whose spectral
index is larger by unity than in the linear case.

Consequently, we also obtain a broken power law behaviour for the nonlinear
fluence, however with a smaller spectral break by As = s — 2 around ~; than
in the linear case.

6.3.3. Nonlinear fluence for 1 < s < 2

At all energies v < 72/2 we obtain an unbroken power law with spectral index
3 independent of the injected flat power law value 1 < s < 2.
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Figure 7: Linear (lower curve) and nonlinear (upper curve) electron fluence
distribution function N L”yf’ /qotr, as a function of the normalized
Lorentz factor g = v/, for s = 3 and g2 = v2 /71 = 10* calculated
for t;, = (Do’yl)_l.
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7. Steady-state solution for power law injection

Steady-state solution for power law injection Q(7y) = Qoy ™%, for 1 <~ <~y <
2:

Linear solution

Nip(y <m) = Dols — 1)3?72 — 1)1/27%—8[1 — (m/72)""]
Np(m <y <) = Do(s — 1)3&2 — 1)1/271_8[1 — (v/72)° Y]

Nonlinear solution

(1)/2,}/(3—1)/2

1 —1/.2 —1/27. 1-—s 1-—s

Qé/2,y£s—1)/2 1.2
- —1
[Ag(s — 1) Inyp]2 =1

Nyr(y <m) =

1-s

_1/2[’71_8 — 7

Nynp(1 <y <) =

|dentical energy dependence but different dependence on injection rate )y and
on the initial cut-offs v; and ~s.
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8.

Summary and conclusions

In powerful cosmic nonthermal radiation sources with dominant magnetic
field self generation, the generation of magnetic fields at almost equipar-
tition stength by relativistic plasma instabilities operates as fast as the
acceleration or injection of ultra-high energy radiating electrons in these
sources.

The magnetic field strength then is time-dependent and adjusts itself to
the actual energy density of the radiating electrons in these sources.

As a consequence the synchrotron radiation cooling of individual relativis-
tic electrons exhibits a nonlinear behaviour because of the dependence of
the magnetic energy density on the particle energy density which itself
decreases due to the time evolution of the electron number density.

For different injection conditions we have solved this nonlinear kinetic
equation for the intrinsic temporal evolution of relativistic electrons.

In the case of instantaneous monoenergetic injection we calculate the
corresponding optically thin synchrotron radiation intensity taking into
account also the time-dependence of the magnetic field strength under
equipartition conditions. The comparison with the synchrotron intensity
from the standard solution of the linear kinetic equation shows significant
differences both in the spectral distributions at different times and the
synchrotron light curves at different frequencies. Spectral differences also
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occur in the frequency distribution of the linear and nonlinear synchrotron
fluences.

For power law injection the differential electron fluence as a function of
electron energy differs from the linear electron fluence. For large spectral
indices s > 2 of the injected power law the nonlinear fluence exhibits
a weaker break at the lower injected electron cut-off v than the linear
fluence. For small spectral indices 1 < s < 2 the nonlinear fluence shows
no break at all and approaches the oc v~3 power law at all energies below

72/2.

Under steady-state conditions for monoenergetic and power law injection
the nonlinear and linear electron distribution functions exhibit the same
dependence on the Lorentz factor of the electrons but their absolute values
are different and depend differently on the injection rate ().

Predictions of spectral behaviour with energy, time and frequency provide
tests for the presence or absence of linear or nonlinear cooling in flaring
nonthermal sources.

Hadrons are also subject to nonlinear synchrotron cooling in large mag-
netic field values, exactly what is expected under partition conditions.
Offers potential method to test for hadron-induced radiation processes.
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Manche Ménner bemihen sich lebenslang,
das Wesen einer Frau zu verstehen.
Andere befassen sich mit weniger schwierigen

Dingen, z.B. der Relativitétstheorie!
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Figure 8: Last but not least ...






