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1. Classical SF-Instability
• N.D’ Angelo [1],  pointed out an important 

low frequency shear flow instability in 1965, 
in plasmas

i). Without density gradient
ii). With density gradient

Using two fluid equations with
Similar instabilities were studied by many 
authors including drift waves, Alfven waves 
etc. both with fluid and kinetic approaches.

ie TT =
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• The basic dispersion relation of D’
Angelo has been analyzed in the limit            

as well in 2002 [2].
• Two important points are to be discussed 

here. Using fluid model
I. The contribution of the ion diamagnetic 

drift in the convective derivative of the 
polarization drift by the relevant collision-
less Stress Tensor part is cancelled.

{ This was unknown at early times when 
SF instability was discussed (1965) and 
followed by other authors as in 1972 [3] }

t iΩ∂ ∼
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II. A minor algebraic error in the calculations   
in Ref. [1] produced a physically incorrect 
result , in the case               Our aim is to 
follow an algebraically correct way to obtain 
the linear dispersion relation for SF-
Instabilities in the plasma with hot ions              
using two fluid equations in both cases  

i).                          ;       ii).
and to look at physics accordingly. The 
focus will be on the case 

jon 0 .∇ ≠

i(T 0 )≠

0 jn 0∇ = j0n 0∇ ≠

0
t i

i

e B
m

∂ < < Ω =
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2. Basic Equations And The Model

Assumptions
i).                       

Constant and 

ii).

iii). 

0 0B B z==

0 0j =

0 j j0 (x)v z,= υ
( j = e , i )

j 0n∇ =
j 0d n

-
d x

x
⎛ ⎞
⎜ ⎟
⎝ ⎠
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iv). 
v).
vi).

Steady state demands,
(2.0)

Perturbed Perpendicular Velocities for 

(2.1)

E = −∇ϕ
jT 0≠

( ) z
y z

y

0, , ; 1.kk k k
k

= <<

j
0 j jD0 j0

j 0

T
ln n

q B
v v z⊥

⎛ ⎞
= = − ∇ ×⎜ ⎟⎜ ⎟

⎝ ⎠
i

t i
i

e ,
m
B

∂ << Ω =

( ) ( )j j
j j

0 j 0 j 0 j

T .1 1- ln n -
B q B q B n

V E z z⊥ ⊥

⎛ ⎞∇ Π
= × ∇ × ⎜ ⎟⎜ ⎟

⎝ ⎠
( )t j j

j

1- .V . V z∂ ∇ ×
Ω
v v v vE Dj j pjΠ= + + +
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Since                the continuity equation 
becomes

(2.2)
In the linear limit,

(2.3)

Eq. (2.3) is the same as that of Eq. (2.41) of 
Ref. [2]. In Eq. (2.3), substitute,

Then Eq. (2.3) becomes,

. 0,VE∇ =

( ) ( )0. . 0  v v v vt j j E j p j j z j jzn n n n⊥ Π
⎡ ⎤∂ +∇ +∇ + +∂ =⎣ ⎦

( )0
11

. ) .(v v z vj
j pj j t j

j

n
n Π

⎡ ⎤
⎡ ⎤∇ + = ∇ ∂ ×⎢ ⎥⎣ ⎦ Ω⎢ ⎥⎣ ⎦

1 1 1v v vj E Dj= +
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(2.4)

Using (2.4) in Continuity Eq. (2.2), we obtain

(2.5)

( ) ( )0

1
0

. .v v Ej
j pj j t i

j

n
n

BΠ ⊥ ⊥
⎡ ⎤∇ + = ∂ ∇⎣ ⎦ Ω

02
0

0

( )j j
t ji jz z

j j j

T n
n v x

q B Ω Ω⊥− ∂ ∇ + ∂

2
1

0 0 0

1 . 1E j j

j j

T n
B q B n

⊥
⊥ ⊥

⎡ ⎤∇
∇ −⎢ ⎥

⎢ ⎥⎣ ⎦

( ) ( )0
0 1 0 1 0

0

.v j
t j z z j j E t j z z

j

n
v n n v

B
∂ + ∂ +∇ + ∂ + ∂

Ω

( ) ( ) 2
1 0 1 0 1

0

. 0E j
t j z z j j z jz

j j

T
v n n v

q B⊥ ⊥ ⊥∇ − ∂ + ∂ ∇ + ∂ =
Ω
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• Using the relation for hot ions,

(2.6)

The parallel ion equation of motion becomes,

where (2.7)

( )2 2 2 11
0 1

0

.vi
z i i y iD iz

i i

neφik c ρ k v
T n

⎛ ⎞
− + + ∇⎜ ⎟

⎝ ⎠

1

.1 Π i

i im n
⎛ ⎞∇

= − ⎜ ⎟
⎝ ⎠

( ) 1 1 0 ( )t ioz z iz ix x i zv v v υ x∂ + ∂ + ∂

2 2 20 11
1 1

0 0

i i i
z z i z i i y

i i i i i

q T neφE n ik c ρ k
m mn T n

⎛ ⎞
= − ∂ − +⎜ ⎟

⎝ ⎠
2

2 2
2; .i i i

i i
i i

γ T cc ρ
m Ω
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• Note:     Here     is ratio of specific heats.  

• The linear equations (2.5) & (2.7) for ions 
can be written as,

(2.8)

( ) ( ){1. . .z zi i iz
i

p υ⊥∇Π = ∇ × ∇ +
Ω

( ) ( )}. . .z v z vi z i i z ip p⊥ ⊥ ⊥ ⊥∇ ∂ × + ∂ −∇

2 *1
1

0

i
ω e ω

i

n ω
n

Ω − Ω Φ +

2 2 2 2 1
1 1

0

0i
s y i y ω z iz

i

nρ k ρ k k v
n

⎛ ⎞
Φ + Ω − =⎜ ⎟

⎝ ⎠

iγ
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and
(2.9)

where

2
1 0 1

1
ω iz x i z s y

i

v v c k
⎛ ⎞

Ω + ∂ Φ⎜ ⎟Ω⎝ ⎠
( )2 2 2 2 1

1
0

1 i
i y s z i z

i

nρ k c k c k
n

⎛ ⎞
= + Φ +⎜ ⎟

⎝ ⎠
( )0 0 0; ;ω z z i z zω ω ω υ kΩ = − =

* 0
0

0 0

1; ;k.V c e
e eD en y en

e

T dnω κ k κ
eB n dx

= = =

2
2 2 1

2 ; ;s e
s s i

i ei

c T eφρ c m T= = Φ =
Ω
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.  If                        we approximate (in drift 
wave regime)

(A)

when the hot ion case is considered. Then,

(2.10)

0 ,j 0v =

*
1 1

1
0 0

i e e

i e

n n ω
n n ω

Φ

( )
1

. i p i in v vΠ⎡ ⎤∇ +⎣ ⎦

( )2 2 *
0 1i s y iin ρ k ω ω− − Φ
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which is equation (2.43) of Ref. [2]. Then the 
electrostatic dispersion relation becomes,

(2.11)

It is important to stress that in the absence
of the shear flow                     the 
electrostatic dispersion relations obtained in  
several previous studies including Ref. [1] 
do not yield Eq. (2.11) as a limiting case.

2 * 2 2
e s zω ω ω c k− − =

( )2 2 *
s y iρ k ω ω ω− −

( )0 0 ,jv =
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• The reason is that the cancellation related to 
the diamagnetic / polarization and stress 
tensor drifts has not been taken into account 
in those investigations
Let, 

(2.12)
Eqs. (2.8), (2.9), (2.12) along with                  
yield,

(2.13)

1
1 0 0

e

eφ
T

e e e
e

eφn n e n
T

1 1i en n

( )2 2 2 2 2 * 21 s z i y ω e ω i s y zρ k ρ k ω Ac k k+ + Ω − Ω +

( )( )2 2 2 2 21 0i y s i zρ k c c k− + + =
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where                             

• Note : For                 Eq. (2.13) reduces to Eq. 
(2.11), when we use                               
during the derivation of  (2.10) used in (2.13).
Note that in deriving (2.13) we replace

and use Boltzmann density distribution for
Eqs. (A) has not been used. So the Eqs. 

(II) is not clearly seen in Eqs. (2.13) as a limit. If 
Eqs. (A) is used as an approximation for        in 
(2.6) assuming   

0 1
i

i

dυ
A

dx Ω
⎛ ⎞= ⎜ ⎟
⎝ ⎠

0 0 ,v =
*1

1
0

i
e

i

nω ω
n

Φ

1 1

0 0

i en n
n n

=

n

1en

1in
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that we are in drift wave regime, then hot ion 
contribution in the form of          appears as on 
the rhs of (2.11).

• Let

• Eq. (2.13) becomes, 
(2.14) 

*
iω

( )2 2 2 2 2 21 s y i y s yg ρ k ρ k h ρ k= + + = +

( )2 21 i yh ρ k= +

2 * 2
ω e ω i s y zg ω A c k kΩ − Ω +

( )2 2 2 0s i zh c c k− + =
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with roots,

(2.15)

The instability criterion becomes,
(2.16)

In the homogeneous limit, the condition for               
purely growing instability becomes,

(2.17)

The instability condition is modified mainly due to           
- term in h.

({ * *2 21 4
2ω e e i s y zω ω g A c k k
g

⎡Ω = ± −⎣

( ) )
1

2 2 2 2
s i zh c c k

⎫⎪⎤− + ⎬⎦ ⎪⎭

( )*2 2 2 2 24 ( )e i s y z s i zω g Ac k k h c c k< − +

1 i z
i

e y

T kh A
T k

⎛ ⎞
+ <⎜ ⎟

⎝ ⎠

2 2
i yρ k
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3. Role Of The Collision-Less ion 
Stress Tensor

• For                ,
• We note that                           term cancels with 

a part of collision-less ion stress tensor.
• Therefore, ion drift frequency in the linear 

dispersion relation does not appear because of
term. In the basic paper on 

shear flow instability (D. Angelo mode 1965), 
the mathematical treatment does not take into 
account this fact. The reason is that, this 
cancellation (probability) was not known. 

0iT ≠
( )0 .v vD i i∇ −

( )0 .v vt D i i∂ + ∇ −
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4. Drift Wave Instability

• For                        Eq. (2.13)  becomes ,

(4.1)

(4.2)

,i eT T<<

( )2 2 2 *1 s y ω e ωρ k ω+ Ω − Ω

2 2 2 0i s y z s zA c k k c k+ − =

{ * *21 4
2ω e eω ω a
a

⎡Ω = ± −⎣

( )
1

22 2 2
i s y z s zA c k k c k ⎫⎤− ⎬⎦ ⎭
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Here             is Doppler shifted 
frequency. Eq. 4.2 gives,

(4.3)

Shear flow drift wave (SFDW) instability 
condition becomes

(4.4)
With real frequency

(4.5)
In the homogeneous case the instability 
condition for purely growing mode is

( )2 21 .s ya ρ k= + ωΩ

* *2
0

1 { [
2z e eω ω ω ω
a

= + ±
12 2 2 24 ( )] }i s y z s za A c k k c k− −

( )*2 2 2 24e i s y z s zω a A c k k c k< −

y
i

z

k
A

k
<

*

0 2
e

γ z
ωω ω
a

⎛ ⎞
= +⎜ ⎟
⎝ ⎠
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5. Comparison with Previous Works

For                  the dispersion relation (2.13) 
becomes,

(5.1)

where,

The equivalent dispersion relation in Ref. [1] is
(5.2) 

( )2 2 2 *1 2 i y ω e ωρ k ω+ Ω − Ω

( )2 2 2 2 21 2 0i i z y i y i zA c k k ρ k c k+ − + =

e iT T=

( )0 .ω zω ωΩ = −

( )( )2 2 ne i i yκ ρ c kΩ − Ω +

2 2 22 2 0i i z y i zA c k k c k− =
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• where, 

• The Eq. 48 of Ref. [3] , similar to (5.2) is 
(5.3)

where                                          has been 
used for the isothermal case .

Note:
I. Both (5.2) & (5.3) are different from (5.1), 

and both can not reduce to (2.11) in the limit  

( )0 0 .D i y zω υ k ωΩ = − −

( )2 * * 2 2 22 0e i i s z y i zω ω Ac k k c kΩ − + Ω+ − =
( )2 22i i e e i

s i
i i

γT γ T Tc c
m m
+

= = =

0 0zν =
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II. Even in the homogeneous limit
our result is different from Ref. [1].
The roots of (5.1) are 

(5.4)

The instability condition for 
inhomogeneous case is 

(5.5)
where, 

( )0 0 ;jn∇ =

* *21 { [
2ω e eω ω
p

Ω = ± −
12 2 2 2 2 24 ( (1 ) 2 ] }i i z y i y i zp A c k k ρ k c k− +

2 2(1 2 ).i yp ρ k= +

*2 2 2 2 2 24 [ (1 )2 ]e i i z y i y i zω p A c k k ρ k c k< − +
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This is basically the drift wave instability due 
to shear flow and it was not clear in Ref. [1]. 
In case of homogeneous plasma, there 
exists a purely growing shear flow instability 
in the limit,

(5.6)
Note that (5.6) is slightly different from the 
original work of Ref. [1].  Now a minor error 
is pointed out. in the derivations  after the 
set of equations (11) of Ref. [1], the term  

( )2 22 1 z
i y i

y

kρ k A
k

+ <

1 0 1 0 1 0( / ) / [ ( ) / ] / /d N n dx dN x dx n λN n≡ +
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has been omitted. Here,         is the x-
dependent mode amplitude and 

In the local approximation, the first term may 
be omitted but the second one should be 
kept as in the other steps in the derivations. 
Using the notation from Ref. [1], this will give 
in the dispersion equation

1N

0 0( ) exp( ).n x N λx= −

2 3 2 ( ) 0,ς βς γ γ aβ− Λ − − =
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• which has a factor 3 in the second term 
instead of the factor 2 in Ref. [1], Here

• Although the instability condition is modified 
to read

0 0( ) / .y y z z iς ω k υ k υ= − − Ω

z iγ k ρ=

i n iλρ κ ρΛ = =

y iβ k ρ=
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instead of 

as given in Ref. [1], the correction is not only 
the matter of numbers. More importantly, 
using the equilibrium conditions the 
dispersion equation in Ref. [1], should yield 
the real part of the frequency

( )2 2 2 2( / )[1 9 / 8 ]z y y i zA k k k ρ λ k> +

( )2 2 2 2( / ) [1 9 / 2 ]z y y i zA k k k ρ λ k> +

0 0/ 2r y y z zω k υ k υ= − +

0[3 /(2 )]( / ).i ie m dφ dx+ Ω
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• The first term here, which survives even in 
the absence of equilibrium potential         
indicates the presence of drift mode, and it 
is missing in Eq. (18) of Ref. [1]. But the 
expression given above is still different 
compared to our result, which is due to the 
cancellation of the terms, explained in the 
previous text. Note that in the later work [3]       

and          appear in dispersion relation 
[Eq. (48) of this reference], but this 
expression does not reduce to Eq. (11) 
either.

0φ

*
eω *

iω
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6. SF Instability in EPI Plasmas
• The ion equations remain the same as in 

case of the EI Plasma.
Electrons and positrons follow Boltzmann 
distributions

(6.1)
and 

(6.2)
Then poisson eq. yields

(6.3)

1
1

1 0 0
e

eφ
T

e e e
e

eφn n e n
T

1
1

1 0 0
ip

eφ
T

p p p
p

eφn n e n
T

−

= −

1
1

0

i

i

n η
n

Φ
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where

Then using (6.3) in the ion continuity 
equation (2.8) along with ion parallel eq. 
(2.9), we obtain  

(6.4)

2 2 01
1

0

, (1 ) ,e
De

e i

neφ η σ λ k
T n

Φ = = + +

2 00
2

0 0

, ep e
D e

e p e

ε Tn Tσ λn T n e
= =

2 2 2 2 2(1 )( ) 0i y s i zρ k c ηc k− + + =

2 * 2
ω e ω i s y zλ ω A c k kΩ − Ω +
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where
Note in Eq. (6.4),

and 
(6.5) 

For                and                     we have            
and hence              which is the EI case.

The instability criteria for homogeneous and 
inhomogeneous plasmas are similar to EI-
case

Note: Our   is different from    of Ref. [1] as 
estimated above in section 5.

2 2 2 2(1 )i y s yλ ρ k η ρ k= + +

* 0

0 0

1e i
e

i

T d nω
e B n d x

=

0 0 0( )i e pn n n= −

0 0,pn =
1η =

2 2
0 1,Dλ k << 0σ =
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• We find 

(6.6)
The instability condition in this case reads

(6.7)

For homogeneous plasmas it becomes
(6.8)

we conclude that the presence of positrons 
has a stabilizing effect.

* *2 2
0

1 { [ 4 (
2z e e i s y zω ω ω ω λ A c k k
λ

= + ± −
1

2 2 2 2 2 2(1 )( ) ] }.i y s i zρ k c ηc k− + +

*2
2 2

2 (1 )(1 ) ,
4

e i i z
i i y

s y z e y

ω γT kA ρ k η
λc k k T k

> + + +

2 2(1 ) (1 )i i z
i i y

e y

γ T kA ρ k η
T k

> + +
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7. SF Instability in Dusty Plasmas

• Let us assume now that apart from electrons 
and ions, the plasma contains negatively 
charged dust grains as the third component, 
which take the role of ions from the previous 
case. Then the equilibrium demands

(7.1)
where                 and                     . Since 

therefore we assume,
(7.2) 

0 0 0i e d dn n z n= +
, ,j e i d= d dq ez= −

i dm m<<
1

1
1 0 0

i

eφ
T

i i i
i

eφn n e n
T

−

−
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• Electrons also follow Boltzmann density 
distribution then Poisson Eq. Yields

(7.3)

where

and  
The dust continuity equation can be written 
as 

(7.4)

1
1

0

d

d

n µ
n

= − Φ

2 2
1 11 , / ,D e d e ffµ λ k e z φ T= + Φ =

0 0 0/ ( ) ,e f f d d i e e i i eT z n T T n T n T= +
2 2 2

0 0/ ( ) .D e e f f d dλ ε T n e z=

* 20
1 0 1 1

0

effd
ω d d d ω y

d d

Tnn n ω k
B ez

Ω + Φ − Ω Φ
Ω

2

1 0 1
0

0d y
ω d d z dz

d d

T k
n n k υ

ez B
+ Ω − =

Ω
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where
and
The parallel component of the equation of 
motion gives

(7.5)

The linear dispersion relation can be written 
as

(7.6)  

*
0 0, /( ) 0ω dz z d eff nd y dω υ k ω T k k ez BΩ = − = >

0 0/( ).nd d dκ dn n dx=

1 0 1
0

( )e ff
ω d z y x d x

d

T
υ k d υ

e z B
Ω + Φ =

2 2 0 1
1

0

(1 )( )eff d d
d y z z

d d d

T T nρ k k k
m m n

+ − Φ +

2 * 2 2 2(1 )ω d ω d z y d d yχ ω c k k A ρ kΩ − Ω − − +
2 20(1 ) 0d
d z

eff

Tµ c k
T

+ =
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where

and
Eq. (7.6) has the roots 

(7.7) 

The instability sets in provided that               
and 

2 2 0 01(1 ), ,d d
d y d

e ff d

T d υχ µ ρ k µ A
T d x

= + + =
Ω

2 ,e f f
d

d

T
c

m
= .d

d
d

cρ =
Ω

* *2 2
0

1 [ { 4 (
2z d d d z y dω ω ω ω χ c k k A
χ

= + ± +

12 2 2 20 2(1 )(1 ) )} ]d
d y d z

e ff

Tρ k µ c k
T

+ + +

0,dA <
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(7.8)

Thus the dust drift  wave can become 
unstable if the shear flow gradient is 
negative. 
Note that  SF instability for EI , and EPI  
plasmas appear in the case of positive 
shear flow

2 2 2 20(1 ) (1 )d
d d y d z

e f f

TA ρ k µ c k
T

> + +

0 .iA<
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8. Conclusions [4]

1.The shear flow instability has been revisited 
taking into account the effects of the 
cancellation of the zeroth-order  diamagnetic 
drift term  in the linear polarization drift 
against a part of the collision-less stress 
tensor. This cancellation perhaps was 
unknown at the time when the shear flow 
instability was discussed for the first time in 
Ref. [1]. It was a real pioneering work and it 
was followed by many authors in subsequent 
years. 
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2. The dispersion relation Eq. (18) of Ref. [1] 
needs to be corrected to understand the 
physical mechanism in detail.

3. It is also necessary to note  that in the limit
the contribution of  Eq. (2.10) can not be 

neglected even in the case of homogeneous 
plasma. The factor            appears in the 
dispersion relations and in the instability 
conditions as well.

4. Furthermore, the shear flow case has been 
discussed for the electron-positron-ion and 
dusty plasmas. 

0iT ≠

2 2
i yρ k
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5. In case of the dust drift wave coupled with 
dust acoustic wave the instability can appear 
if the shear flow is negative i.e. 0.dA <
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