The Abdus Salam
International Centre for Theoretical Physics

THO~

SMR/1856-9

2007 Summer College on Plasma Physics

30 July - 24 August, 2007

On Shear Flow Instabilities
and its Applications.

H. Saleem

PINSTECH
Islamabad, Pakistan

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 |1 |; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it



ON SHEAR FLOW INSTABILITIES
AND ITS APPLICATIONS

H. Saleem®<, J. Vranges?, and S. Poedts?
1. AS-ICTP, Trieste, Italy.

2. Theoretical Plasma Physics Division,
(TPPD),

PINSTECH, P.O. Nilore, Islamabad,
Pakistan

3. Centre for Plasma Astrophysics
Celestijnenlaan 200B, 3001 Leuven,
Belgium.



© 0N A LDdhPE

Plan Of The Talk

Classical Shear Flow Instability (1965)
Basic Equations And The Model

Role Of Collision-less lon Stress Tensor
Drift Wave Instability

Comparison With Previous Works

SF Instabilities In EPI Plasmas

SF Instabllities In Dusty Plasmas
Conclusions

References




1. Classical SF-Instability

 N.D’ Angelo [1], pointed out an important
low frequency shear flow instability in 1965,
In plasmas

). Without density gradient
). With density gradient
Using two fluid equations with T. = T,

Similar instabilities were studied by many
authors including drift waves, Alfven waves
etc. both with fluid and kinetic approaches.




The basic dispersion relation of D’
Angelo has been analyzed in the limit
5 - o aswellin2002 (2]

t I

Two Important points are to be discussed
here. Using fluid model

The contribution of the 1on diamagnetic
drift in the convective derivative of the
polarization drift by the relevant collision-
less Stress Tensor part is cancelled.

{ This was unknown at early times when
SF instability was discussed (1965) and
followed by other authors as in 1972 [3] }
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Il. A minor algebraic error in the calculations

In Ref. [1] produced a physically incorrect
result, in the case vn , = 0.0ur aim Is to

follow an algebraically correct way to obtain

the linear dispersion relation for SF-
Instabilities in the plasma with hot ions (T, = 0)

using two fluid equations in both cases

). Vn, =0 ; i). vn,, =0
and to look at physics accordingly. The
focus will be on the case

eB,

m

0, |<< Q, =
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2. Basic Equations And The Model

Assumptions Z /I BoN(X)
). B, =Byz=
Constant and k.
jo =0
i). Voj =Vj0(X)z, k.
| 5

d x

(J=e,1)
). vn,, = . y
_X(dnmj \Ajﬂ Fig. 1
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V), E=-V
Vi). k:(O,k (lgz);£<<1.

y? ky
Steady state demands,
T (2.0)
Voii = Vipg = — é vVinn xz
Perturbed Perpen icular Velocities for
eB.
8t <L Qi :m—l, .
i T. V.11,
Vlj:i(Esz)- J (Vlnnsz)- L J
B, q,B, q,B,( N,
- (0,-V,-V)V,xz
Q.
’ (2.1)



Since v.v, =0, the continuity equation
becomes

on;, +Vn, v, +VL.[nj (ij +VH].)]+8Z (njvjz) =0
(2.2)
In the linear limit,

V.[nj(vpj + VH].):|1 =V. %@t (zx le)

Eq. (2.3) is the same as that of Eq. (2.41) of
Ref. [2]. In Eg. (2.3), substitute,

(2.3)

le

Then Eqg. (2.3) becomes,

= Vg1 T Vpi



V.|:nj (ij T VHj ):|1 — nj0 at (VL-EM)

. B€2, (2.4)
— B]Q 8tVinﬁ+Q40vjzo(x)8Z
4iPo>=; i
LV S r, vin,
1" 11
B, quo "o

U_sing (2.4) in Continuity Eq. (2.é), we obtain

(8, +v,0,0, ) + VgV + e (8, +v,0.0.)

j0z> z BOQ]. j0z> z
1 :
(VL.EH) 20 (Q+vj0282)VLnj1+njoﬁzvjﬂ=
4502 (2.5)



e Using the relation for hot ions,

—ik c plk’ (e;?l + Z—ﬂ) +(Vipo-V ) Vis
' i0

l

_1(V.Hi) (2.6)

m no.
The parallel ion equation of motion becomes,

(8t+v. 0 )v. +v..0 0,4 (X)

oz z izl ix1~ x~i0z
_ 4 Ly g 2 2,2 €0y Ny
T Ezl_ aZnil_lkzci pi ky 7+
m, m.;n, i T
y. T, ¢’
where o2 = fii-,2 o Zi (2.7)
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 Note: Here 7, Is ratio of specific heats.

(VIL,).z =Qi{(vL p,xz).Vo, +

l

V. po. (vall) -I-pl.Z@Z.(—VL.ViL)}

 The linear equations (2.5) & (2.7) for ions
can be written as,

n;q

Q2 -—w.Q O, +

o (2.8)
(pfk)%q)l p12k§ nil ]Qa) - kzvizl — O

n;q
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and 1 :
Qa)vlzl [Q_ngmzjcs kyq)l (29)
— (1+ p. ky2 )(cSkZCDl +c’k, n_llj

Mo

where Q = (w-w,,);0,, =0v,.k.;

10z°vz1

T 1dn

n

e0

VRTINS

" =k.V_,
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. f Vi = 0, we approximate (in drift
wave regime)

nilz nelza)e ch (A)

n;o n.,o a)

when the hot 1on case Is considered. Then,

V.[nl. (vpl. + vni)]l
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which Is equation (2.43) of Ref. [2]. Then the
electrostatic dispersion relation becomes,

w’—w w—-c’k’ =
—pfky2 (a) — a)l*)a)
It IS Important to stress that in the absence

of the shear flow (vjo = 0), the
electrostatic dispersion relations obtained In
several previous studies including Ref. [1]
do not yield Eqg. (2.11) as a limiting case.

(2.11)
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e The reason Is that the cancellation related to
the diamagnetic / polarization and stress

tensor drifts has not been taken into account
In those Investigations

Let, e
e
n,=n,e % =n, P

el

(2.12)

Egs. (2.8), (2.9), (2.12) along with n,, = n,
yield,

(1+pSkZ +p2k2)Q —wQ +Ac’k k

sy z

(2.13)
—(1+ pZk2)(cZ+c? )k =0
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where A.=(dvoj 1
’ dx | Q.

» Note : For v, = 0, Eq. (2.13) reduces to Eq.
1 =~ w CD

ni
durlng the derivation of (2.10) used in (2.13).

Notenthat i’[) deriving (2.13) we replace
i1 el

n n
and use Boltzmann density distribution for
n ., Egs. (A) has not been used. So the Egs.
(11) 1s not clearly seen in Egs. (2.13) as a limit. If
Egs. (A) Is used as an approximation for 7., In
(2.6) assuming
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that we are In drift wave regime, then hot ion
contribution in the form of @, appears as on
the rhs of (2.11).

* Let
g= (1+ pfki + pfki) =N+ pfki

27 2
h=(1+plk?)
 Eg. (2.13) becomes,
ngO—a):Qw+AicfkykZ (2.14)

— h (CSZ + (:l.z)kz2 =0
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with rooti,
Qw = g{a): T |:6():2 - 4§§Aicfkykz (2.15)
—h (cg2 = cl.z)kz2 )JZ >

The Instability criterion becomes,
*2 2 2 2172
w <Ag( A’k k, —h(c +cl)k?)

In the homogeneous limit, the condition for
purely growing instability becomes,

T ) k.

€ Y

(2.16)

The instablility condition is modified mainly due to
plk:-terminh,
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3. Role Of The Collision-Less ion
Stress Tensor

e For ];;tO,

* \We note that (VDOZ--V)V,- — term cancels with
a part of collision-less ion stress tensor.

 Therefore, 1on drift frequency In the linear
dispersion relation does not appear because of

(8, + V-V ) v, — term. In the basic paper on
shear flow instability (D. Angelo mode 1965),
the mathematical treatment does not take Into
account this fact. The reason Is that, this
cancellation (probability) was not known. 9



4. Drift Wave Instabllity

« For 1, << 1',, Eq.(2.13) becomes,
(1+ pfkyz)QfO -w.Q

(4.1)
+ Al.cszkykz - c’k? =0
Q, ==—{fo +[0?-4a (4.2)
Q za e

(Al.cskykz —c’k? )]%>

J
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a = (1+ pfkﬁ). Here QO is Doppler shifted
frequency. Eq. 4.2 gives,
1

®=w, + —{a): + [oc):2
2261 ) 2al (4.3)
—4a(A.c: kykz —c k’)]"°}

Shear flow drift wave (SFDW) instability
condition becomes

a):z < 4a (Al.cszkykz — CSszz) (4.4)
With real frequency
a)e
a)y—(a)02+ > (4.5)

In the homogeneous case the instabilljty
condition for purely growing mode is =< 4,



5. Comparison with Previous Works

For 7' = T, the dispersion relation (2.13)

b c:omes2 , ,

+Al.cszky = (1+ p2k? )2c5kj = 0
where,

Q, =(0-0,,).
The equivalent dispersion relation in Ref. [1] Is
—Z(Knep.)(c.k )Q + (5.2)

24tk k, —2¢2k? =0



. where, () = (60 — UDOiky - a)OZ)'

« The EQ. 48 of Ref. [3], similar to (5.2) Is
O’ — (o] + 0] ) Q+ Actk k,—2c7k? =0 (5.3)

18 "z 7y
2 (Viﬂ"’VeE) 2T _ 2

where =~ . . ¢ has been
used for the iIsothermal case .

Note:

. Both (5.2) & (5.3) are different from (5.1),
and both can not reduce to (2.11) in the limit

v,. =0
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Il. Even in the homogeneous limit (Vnoj = 0);
our result is different from Ref. [1].

The roots of (5.1) are

Q =i{a)*i[a)*2— (5.4)
(43 2p e e y
4p(AiCi2kzky - (1+ pizkﬁ)zcizkzz] 2}

The Instability condition for
Inhomogeneous case IS

w0’ <4p[Ac’k k — 1+ pl.zkyz)Zciszz] (5.5)

i1z Ty

where,
271 2
p — (1+ 2101 ky)'
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This Is basically the drift wave instability due
to shear flow and it was not clear in Ref. [1].
In case of homogeneous plasma, there
exists a purely growing shear flow instabllity
In the limit, I

2(1+ plk )< A, (5.6)
Note that (5.6) is’slightly different from the
original work of Ref. [1]. Now a minor error
IS pointed out. In the derivations after the

set of equations (11) of Ref. [1], the term
d(N,/ny) ! dx=[dN,(x)/ dx]/n, + AN, I n,




has been omitted. Here, N ; is the x-
dependent mode amplitude and

n,(x) = N, exp(—4ix).

In the local approximation, the first term may
ne omitted but the second one should be
Kept as In the other steps in the derivations.
Jsing the notation from Ref. [1], this will give
In the dispersion eguation

¢ —3ABc—2y(y—ap) =0,

26



 which has a factor 3 in the second term
Instead of the factor 2 in Ref. [1], Here

c=(w—kp,, —kuv,. ).

y = k.p,
A=1p;, =K,p,
ﬁ:kypi

« Although the Instability condition is modified
to read

27



A> (k 1k ))1+9k2p2i?1(8k?)]

Instead of

A> (k 1k )A+9k2p2a®1(2k2))

as given in Ref. [1], the correction is not only
the matter of numbers. More importantly,
using the equilibrium conditions the

dispersion equation in Ref. [1], should yield
the real part of the frequency

w, =—kv,,l2+k.v_,

+[3e1(2m.Q )(do, | dx).
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e The first term here, which survives even In
the absence of equilibrium potential @,
Indicates the presence of drift mode, and it
IS missing In Eq. (18) of Ref. [1]. But the
expression given above Is still different
compared to our result, which is due to the
cancellation of the terms, explained In the
previous text. Note that in the later work [3]
w ., and o, appear in dispersion relation
[Eq. (48) of this reference], but this
expression does not reduce to Eqg. (11)

either.
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6. SF Instability in EPI Plasmas

 The lon equations remain the same as in
case of the El Plasma.

Electrons and positrons follow Boltzmann

distributions  , ,

€y
nel = neOe & = neO T_l (61)
and ot )
Ty eP
n, =n,e / = =N T—l (6.2)
hennpoisson eq. yields &
==, (6.3)

n ;o
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where @, = 8;01 n=0+0+ 1 k?) Zoe ,
i0

e

o = npOTe }VZ _ 8OTYe
- n,, ' '“Pe 2
e0" p neoe

Then using (6.3) In the 1on continuity
equation (2.8) along with ion parallel eq.
(2.9), we obtain

AQY -0, Q, + Aclk k. (6.4)

—(L+ pk;)(e] +nel)kZ =0
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where ] = (1+ pl.zkyz);y + pszkyz
Note In Eqg. (6.4),

X ', 1 dn,,
Q) =

e

and eB, n., dx

niO — (neO o npO) (65)
For n,, =0,and 4,,,k" << 1,we have ¢ =0
and hence # =1 which is the EI case.
The Instability criteria for homogeneous and

Inhomogeneous plasmas are similar to El-
case

Note: Our Is different from of Ref. [1] as
estimated above In section 5.
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« Wefind 1 X - ,
® =0, + g{a)e tlow,” —44(A4;cik k.

~(+ pfk2)(c? +nct)k21?}. (6.6)

The instqlgility condition In this case reads
0 1.\ k
A > e 4 (1+ p?k>)(A+nLLy== (6.7)

s y'z

For homogeneous plasmas 5L be%omes

A, > (L p7k )AL+ 1 255 = (6.8)

we conclude that the presence of positrons
has a stabilizing effect.

33



/. SF Instability in Dusty Plasmas

e Let us assume now that apart from electrons
and ions, the plasma contains negatively
charged dust grains as the third component,
which take the role of ions from the previous
case. Then the equilibrium demands

Hig = Moo T 24049 (7.1)
where j =e¢,i,d and g, = —ez, . Since
m, << m_, therefore we assume,

_egpl/ o
_ T, _ %1 (7.2)
Ny = Hi€ = Ny

T
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e Electrons also follow Boltzmann density
distribution Iglhen Poisson EqQ. Yields
L= —ud, (7.3)

n,o

where y =1+ 25,,k°, @, =ez, 0, IT,,,

Teff = ZandTiTe /(HOeTi_I_ nOiTe)’
and j‘i)e = gOTeff /(ndoezzj),
The dust continuity equation can be written

asS

N 7 T
do 2 “eff
Q n, +n,,0,0, - Q k

B,Q, ez, * (7.4)

y _
+ Q n, —n,k,v,,,=0




where Q, =w-vy, .k, ,0, =Tk, k, (ez,B,) >0
and «x, , =dn,, [(n,,dx).
The parallel component of the equation of
motion giveST
Q0.+ —= ke, (d0,4,0) @ = (7.5)

edeO

T
1+ pik2)(- Tk @, +Td° k. ”dl)

| - My My "o |
The linear dispersion relation can be written
as

xQ., —0,Q, —cik kA, — L+ pik;) (7.6)
(1+ p ;do ek =0

eff 36



where

T
Y=t pPki(L+ padoy g, = - Va0
T g T Q , dx
c? = U Iy ‘
d m " and P4 T Q
Eq. (7.6) has the roots
1 * *2 2
W=, +Z[wd t{ow,” +4x(cik.k A, (7.7)
T 1
(L4 pIkD) (L 1) elk )Y ]

eff
The instability sets in provided that 4, <0,
and
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T

|4, |> @+ pik?)A+ u -

ek, (7.8)
eff

Thus the dust drift wave can become
unstable If the shear flow gradient Is
negative.

Note that SF instabllity for El , and EPI
plasmas appear in the case of positive
shear flow 0 < 4..
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8. Conclusions [4]

1.The shear flow instabllity has been revisited
taking into account the effects of the
cancellation of the zeroth-order diamagnetic
drift term In the linear polarization drift
against a part of the collision-less stress
tensor. This cancellation perhaps was
unknown at the time when the shear flow
Instability was discussed for the first time In
Ref. [1]. It was a real pioneering work and it
was followed by many authors in subsequent
years.
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2. The dispersion relation Eqg. (18) of Ref. [1]
needs to be corrected to understand the
physical mechanism in detall.

3. It Is_also necessary to note that in the limit

£;#0 the contribution of Eg. (2.10) can not be
neglected even In the /c(ase of homogeneous
plasma. The factor ity appears in the
dispersion relations and in the instabllity
conditions as well.

4. Furthermore, the shear flow case has been
discussed for the electron-positron-ion and
dusty plasmas.
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5. In case of the dust drift wave coupled with
dust acoustic wave the instability can appear
If the shear flow Is negative 1.e. 4, <0.
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