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Abstract
The nonlinear propagation of amplitude-modulated electrostatic wavepackets
in an electron–positron–ion (e–p–i) plasma is considered, by employing a two-
fluid plasma model. Considering propagation parallel to the external magnetic
field, two distinct electrostatic modes are obtained, namely a quasi-thermal
acoustic-like lower mode and a Langmuir-like optic-type upper one. These
results equally apply in warm pair ion (e.g. fullerene) plasmas contaminated
by a small fraction of stationary ions (or dust), in agreement with experimental
observations and theoretical predictions in pair plasmas. Considering
small yet weakly nonlinear deviations from equilibrium, and adopting a
multiple-scales perturbation technique, the basic set of model equations is
reduced to a nonlinear Schrödinger (NLS) equation for the slowly varying
electric field perturbation amplitude. The analysis reveals that the lower
(acoustic) mode is mostly stable for large wavelengths, and may propagate in the
form of a dark-type envelope soliton (a void) modulating a carrier wavepacket,
while the upper linear mode is intrinsically unstable, and thus favours the
formation of bright-type envelope soliton (pulse) modulated wavepackets. The
stability (instability) range for the acoustic (Langmuir-like optic) mode shifts
to larger wavenumbers as the positive-to-negative ion temperature (density)
ratio increases. These results may be of relevance in astrophysical contexts,
where e–p–i plasmas are encountered, and may also serve as prediction of the
behaviour of doped (or dust-contaminated) fullerene plasmas, in the laboratory.
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1. Introduction

A great deal of research effort has recently been devoted to pair plasmas, i.e. large ensembles
of charged matter consisting of equal mass and opposite charge sign particles. In contrast to
ordinary (electron–ion, e–i) plasmas, where the large mass difference between particle species
imposes distinct frequency scales, the positively and negatively charged particles in pair
plasmas respond on the same scale. Nevertheless, the characteristics of waves cannot always
be deduced from what is obtained from e–i plasmas by simply letting particle masses to be
equal to one-another. For instance, it is known that parallel propagating linear electromagnetic
waves are not circularly but linearly polarized in pair plasmas, and Faraday rotation is absent
in this case [1]. Furthermore, ion-acoustic waves have no counterpart in electron–positron
(e–p) plasmas, where the electrostatic wave dispersion is of high frequency Langmuir type
[2, 3]. The properties of e–p plasmas have been investigated by several authors [4–7]. Recently,
the production of pair fullerene-ion plasmas in laboratory [8–10] has enabled experimental
studies of pair plasmas rid of intrinsic problems involved in electron–positron plasmas, namely
pair recombination processes and strong Landau damping.

In real, e.g. astrophysical contexts, e–p plasmas are also characterized by the presence of
positive ions, in addition to electrons and positrons. Electron–positron–ion (e–p–i) plasmas
appear in the early universe [11], active galactic nuclei [12] and in pulsar magnetospheres
[13]. Furthermore, e–p–i plasmas can be created in laboratory plasmas [14–17]. The standard
description of e–p–i plasmas adopted here considers fully ionized plasmas which consist of
two populations of different charge signs possessing equal masses and absolute charge values
(m1 = m2 = me, q1 = −q2 = +e), in addition to a population of positively charged ions
(m3 = M , q3 = +Z3e); see for instance [18–22]. On the other hand, one may anticipate the
injection of a small fraction of charged massive particles (an ion species, or dust particulates)
into fullerene pair-ion plasma [8–10] (doping) in order to produce three-component plasmas
which may accommodate new physical phenomena.

As far as electrostatic (ES) plasma modes [23, 24] are concerned, the occurrence
and properties of nonlinear ES waves in e–p–i plasmas have been investigated by several
authors. From a theoretical point of view, e–p–i plasmas are characterized by new,
modified properties and conditions for the existence of arbitrary amplitude localized ES
nonlinear excitations (which are typically modelled via the Sagdeev pseudopotential formalism
[25–28]). Furthermore, small amplitude-modulated wavepackets, generically related to
nonlinear Schrödinger theories [29], may be investigated via a (Krylov–Bogoliubov–
Mitropolsky) reductive perturbation technique [30–32]. The nonlinear modulation of such
ion-acoustic ES wavepackets was indeed studied by Salahuddin et al [33] in e–p–i plasmas,
by considering (low-frequency) ion-acoustic oscillations against a Maxwellian background of
thermalized electrons and positrons. Here, we aim at investigating the opposite edge of the ES
frequency range, namely high-frequency oscillations of (light mass) electrons and positrons
(or pair ions) against a neutralizing background of (heavier) ions which, given the frequency
range of interest, may be considered to be immobile. A similar study with respect to pure
(two-component) pair plasmas was carried out in [34, 35].

The present study is devoted to an investigation of the nonlinear amplitude modulation of
electrostatic modes propagating parallel to the external magnetic field, in e–p–i plasmas. The
model readily applies in pair-ion (e.g. fullerene) plasmas contaminated by a small fraction of
uniform and stationary (heavier) positive ions (or, say, dust particulates). The two electron
and positron (or pair ion) fluids are assumed to be warm and have a similar (yet not necessarily
equal) temperature, while the neutralizing background ions are stationary. Positive background
ions are implicitly considered here, although the formalism may also apply for negative ions
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(e.g. dust particles) as well. Relying on a two-fluid plasma description and adopting a slowly
varying amplitude hypothesis, we shall employ a multiple-scale technique [30–32] in order
to derive a nonlinear Schrödinger-(NLS) type evolution equation [29] for the amplitude of
weakly nonlinear electrostatic perturbations from equilibrium. The amplitude’s (modulational)
stability will then be studied, and the occurrence of modulated envelope excitations will be
discussed. Also, the influence of the value of positron-to-electron (or positive-to-negative
particle) density and temperature ratios on the modulational stability profile of ES waves will
be elucidated.

The layout of this paper is as follows. In section 2, the analytical model is introduced and
then employed, in section 3, as the basis of a perturbative analysis, by introducing appropriate
slow space and time evolution scales. An NLS-type equation is derived, governing the (slow)
amplitude evolution in time and space. The stability analysis and associated expressions
for envelope soliton solutions of the NLSE are outlined in section 4. Section 5 is devoted
to a discussion of the linear stability of ES waves by means of a numerical investigation
of relevant quantities (NLSE coefficients). Finally, our conclusions are summarized in
section 6.

2. The model equations

We shall consider a three-component plasma consisting of two inertial species, say 1 and 2,
which have equal masses and equal absolute charges of the opposite sign, i.e. q1 = −q2 = +Ze,
m1 = m2 = m and a third species, say 3, having a constant density n3, particle mass m3 �= m

and particle charge Z3e �= Ze. In specific, this picture applies to e–p–i plasmas, for Z = 1,
or in pair-ion (e.g. fullerene) [8–10], for Z = 1, ‘doped’ by the injection of a third charged
particle species of higher mass.

The two-fluid plasma-dynamical (moment) equations for our three-component plasma
include the two density (continuity) equations

∂nα

∂t
+ �∇ · (nα

�Uα) = 0, (1)

and the two momentum equations

∂ �Uα

∂t
+ ( �Uα · �∇) �Uα = − qα

mα

�∇φ −
�∇pα

mαnα

, (2)

where the subscript α denotes either species 1 (i.e. the positive ions, or positrons) for α = +,
or species 2 (i.e. the negative ions, or electrons) for α = −. The moment variables nα , �Uα

and pα denote the density, fluid velocity and pressure of species α, respectively. The Lorentz
force term is neglected, since wave propagation parallel to external magnetic field is assumed.
The electric field is provided by the electric potential ϕ, which obeys Poisson’s equation:

∇2ϕ = 4πeZ(n− − n+) − 4πZ3en3. (3)

The background ion density n3 is constant. The right-hand side on equation (3) is assumed to
cancel at equilibrium, due to the quasi-neutrality condition Z(n−,0 − n+,0) − Z3n3 = 0. The
system of equations (1) to (3) is closed by assuming an explicit density dependence of the
pressure in the form pα = Cn

γ
α , where γ is the ratio of specific heats. Combining this

assumption with the equation of state (at equilibrium) pα,0 = nα,0kBTα (where Tα denotes the
temperature of species α; kB is Bolztmann’s constant), the pressure term may be rearranged
as �∇pα/nα = γKBTαn

1−γ

α0 n
γ−2
α

�∇nα .
The model equations may be cast into a reduced (dimensionless) form by scaling the time

and space variables as t ′ ≡ ωp,−t and x ′ ≡ x/λD,−, respectively. We have defined the plasma
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frequency ωp,α = (
4πn0q

2
α

/
m

)1/2
(see that ωp,− = ωp,+ = ωp if n+,0 = n−,0, only) and the

Debye length λD,α = (
KBTα

/
m ω2

p,α

)1/2
(for α = +,−). The density, velocity and electric

potential state variables are scaled as n′
α = nα/n−,0, u′

α = uα/cs and ϕ′ = ϕ/ϕ0, respectively,
where we have defined the characteristic (sound) speed cs = (kBT−/m)1/2 (for negative
ions) and the characteristic potential scale ϕ0 = KBT−/Ze (the primes will be dropped for
simplicity). Combining these definitions and considering a one-dimensional geometry (along
x), the model equations reduce to

∂nα

∂t
+ �∇ · (nα

�Uα) = 0, (4)

∂ �Uα

∂t
+ ( �Uα · �∇) �Uα = −α �∇φ − γ Tα

T−
nγ−2

α
�∇nα, (5)

and

∇2ϕ = (n− − n+) − Z3

Z
n3, (6)

where α = +,− is used as a subscript (denoting species) and as a factor (= ±1), throughout
this text. In equilibrium, the neutrality condition 1 − β − δ(Z3/Z) = 0 holds. Here we have
defined the parameters β = n+0/n−0 and δ = n3/n−0. See that positively charged background
ions will be implicitly considered here (Z3 > 0, i.e. δ > 0), although the formalism readily
applies for negatively charged massive particles (e.g. dust), for Z3 < 0, i.e. δ > 0. We note
that β < 1 for δ �= 0 (in the former case, considered in the following; the opposite holds in
the negative-ion case); the case δ = 0 refers to ‘pure’ pair plasma. The choice γ = 3 is made
in the following, accounting for one-dimensional wave propagation.

3. Methodology—derivation of an amplitude evolution equation

3.1. The perturbative analysis

In order to obtain an explicit evolution equation describing the propagation of modulated
EA envelopes, from the model equations (4)–(6), we shall employ the standard reductive
perturbation (multiple scales) technique [30–32]. The independent variables x and t are
stretched as ξ = ε(x − λt) and τ = ε2t , where ε is a small (real) parameter; here, λ is a free
(real) parameter, which is to be later determined as the wave’s group velocity by compatibility
requirements. The dependent variables are expanded as

n− = 1 +
∞∑

n=1

+∞∑
l=−∞

εnn
(n)
−,l(ξ, τ ) eil(kx−ωt), n+ = β +

∞∑
n=1

∞∑
l=−∞

εnn
(n)
+,l (ξ, τ ) eil(kx−ωt)

U+ =
∞∑

n=1

∞∑
l=−∞

εnU
(n)
+,l (ξ, τ ) eil(kx−ωt), U− =

∞∑
n=1

∞∑
l=−∞

εnU
(n)
−,l (ξ, τ ) eil(kx−ωt) (7)

φ =
∞∑

n=1

∞∑
l=−∞

εnφ
(n)
l (ξ, τ ) eil(kx−ωt)

where ω and k are the real parameters denoting the wave’s frequency and wavenumber; the
reality condition A

(n)
−l = A

(n)∗
l is met by all state variables; the star superscript denotes the

complex conjugate of the (complex) harmonic amplitudes.
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Substituting the expansion ansatz (7) and the stretched variables ξ , τ into equations (4)–
(6), and then isolating distinct orders in ε, we obtain the nth order reduced density equation

−λ
∂n

(n−1)
α,l

∂ξ
+

∂n
(n−2)
α,l

∂τ
− ilωn

(n)
α,l + ilkκαU

(n)
α,l + κα

∂U
(n−1)
α,l

∂ξ

+
∞∑

n′=1

∞∑
l′=−∞

[
ilkn

(n′)
α,l′ U

(n−n′)
α,l−l′ +

∂

∂ξ

(
n

(n′)
αl′ U

(n−n′−1)
α,l−l′

)] = 0, (8)

density equation

∂U
(n−2)
α,l

∂τ
− λ

∂U
(n−1)
α,l

∂ξ
− ilωn

(n)
α,l +

∞∑
n′=1

∞∑
l′=−∞

[
il′kU

(n−n′)
α,l−l′ U

(n)
−,l + U

(n−n′−1)
α,l−l′

∂U
(n′)
α,l′

∂ξ

]

= −α
∂ϕ

(n−1)
l

∂ξ
− ilαkϕ

(n)
l − 3ilkκαn

(n)
α,l − 3κασα

∂n
(n−1)
α,l

∂ξ

− 3
∞∑

n′=1

∞∑
l′=−∞

[
il′n(n−n′)

α,l−l′ kn
(n′)
−,l′ + n

(n−n′−1)
α,l−l′

∂n
(n′)
α,l′

∂ξ

]
, (9)

and Poisson’s equation

∂2ϕ
(n−2)
l

∂ξ 2
− l2k2ϕ

(n)
l + 2ilk

∂ϕ
(n−1)
l

∂ξ
= n

(n)
−,l − n

(n)
+,l (10)

where σα = Tα/T−, i.e. σ− = 1 and σ+ = σ = T+/T−; and κα = 1 for α = − and κα = β for
α = + ; recall that β = n+,0/n−,0.

From the first-order (n = 1) equations, we obtain

−ilωn
(1)
−,l + ilkU

(1)
−,l = 0, −ilωn

(1)
+,l + ilkβU

(1)
+,l = 0

−ilωU
(1)
−,l = ilkϕ

(1)
l − 3ilkn

(1)
−,l , −ilωU

(1)
+,l = −ilkϕ

(1)
1 − 3ilσkβn

(1)
+,1, (11)

−l2k2φ
(1)
l = n

(1)
−,l − n

(1)
+,l ,

from which the following dispersion relation is deduced, for l = 1

β

ω2 − 3σk2β2
+

1

ω2 − 3k2
= 1, (12)

as a compatibility requirement. Two real solutions are thus obtained for the frequency square
ω2, defined by

ω2
1 = 1 + β

2
+

3

2
(1 + σβ2)k2 − 1

2

√
9k4(1 − σβ)2 + 6(β − 1)(σβ2 − 1)k2 + (1 + β)2 (13a)

and

ω2
2 = 1 + β

2
+

3

2
(1 + σβ2)k2 +

1

2

√
9k4(1 − σβ)2 + 6(β − 1)(σβ2 − 1)k2 + (1 + β)2. (13b)

See that, for all values of β and σ , the lower mode satisfies ω1 → 0 as k → 0, while the
upper mode goes to a finite cutoff frequency ω1 → √

1 + β, as observed in the experiment by
Oohara and Hatakeyama [10].

For small k, these branches behave as

ω2
1 ≈ 3β(1 + σβ)k2/(1 + β), (14a)

and

ω2
2 ≈ 1 + β + 3(1 + σβ3)k2/(1 + β), (14b)



13822 A Esfandyari-Kalejahi et al

(a) (b)

ω ω

k k

Figure 1. The two dispersion curves defined by equation (13) are depicted, as a frequency ω/ωp

variation versus the reduced wavenumber kλD .

i.e. recovering dimensions,

ω2
1 ≈ 3β(1 + σβ)csk

2/(1 + β)

and

ω2
2 ≈ (1 + β)ω2

p + 3(1 + σβ3)c2
s k

2
/
(1 + β)

(setting β = σ = 1, one recovers the pure pair plasma limit formulae which is found
in the literature). See that the cutoff frequency ω1 → ωp

√
1 + β is affected by the pair-

species’ densities, but not by their temperatures; cf figures 1(a) and (b). Two characteristic
velocities, c0L = cs

√
3β(1 + σβ)/(1 + β) and c0U = cs

√
3(1 + σβ3)/(1 + β) are thus defined.

Electrostatic modes in e–p–i plasmas therefore include an acoustic dispersion, ω1 ≈ ±coLk,
and a Langmuir-like optical behaviour ω2 ≈ ±

√
(1 + β)ω2

p + c2
0Uk2, for small k. For clarity,

ω1 = ωL and ω2 = ωU will henceforth be referred to as the lower and the upper curve,
respectively. Note, for rigour, that the lower branch has been argued to be subject to strong
damping, in electron–positron plasmas, due to the phase velocity ω1/k being close to the
sound velocity [36]. However, this may not necessarily be true in e–p–i , thanks to the
extra ion component and/or the pair-ion species temperature ratio, which affects the wave
front phase velocity. The dispersion laws presented here are in full agreement with (and, in
fact, generalize) known experimental [8, 9] and theoretical [3] results for pair plasmas. It
may be noted, for the sake of rigor, that the lower dispersion relation cannot exist for an
identical positive and negative ion population plasma preparation to see this, set β = σ = 1 in
equation (12), a fact which seems to point towards an asymmetry of the pair-ion constituents
in the experiment described in [8, 9] (where the acoustic mode was indeed observed).

The two dispersion curves obtained above are depicted in figure 1. We note on the plots
the dependence of the dispersion relation on the parameters involved, namely the positive-
to-negative ion (or positron-to-electron) density and temperature ratios β and σ . The wave
frequency for a fixed wavenumber clearly increases with higher β, i.e. for a lower fixed ion
concentration; in other words, the addition of a stationary positive ion component results in
lower frequency values and lower phase speeds, for small k; the phase velocity (slope) is also
affected—see in figure 1(a). The opposite effect should be expected if the stationary ions
were negatively charged. On the other hand, higher values of the temperature σ (e.g. hotter
positrons, in e–p–i plasma) result in lower frequency values—see in figure 1(b). All of these
effects are more intense in the lower (acoustic) mode, and only slightly observed in the upper
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mode (hence the extreme parameter values considered in figure 1, to depict the change in the
curve).

The first-order first harmonic amplitudes are now determined as

n
(1)
−,1 = k2

−ω2 + 3k2
ϕ

(1)
1 , n

(1)
+,1 = k2β

ω2 − 3σk2β2
ϕ

(1)
1 , kβU

(1)
+,1 = ωn

(1)
+,1,

U
(1)
−,l = kω

−ω2 + 3k2
ϕ

(1)
1 , U

(1)
+,1 = kω

ω2 − 3σk2β2
ϕ

(1)
1 .

(15)

The frequency in these (and all forthcoming) expressions refers to either the lower or the
upper branch. Note that these expressions would be meaningless if σ = 1 and β = 1 were
simultaneously satisfied the denominators would then vanish; cf (13a) and (13b)); this is not
the case here, by assumption.

For the second-order (n = 2) equations with l = 1 (first harmonics), we deduce the
following compatibility condition:

λ = ω

k
− 1

kω
[

1
(ω2−3k2)2 + β

(ω2−3σk2β2)2

] . (16)

It is easy to show that λ = vg(k) = ∂ω/∂k. The real parameter λ therefore denotes the group
velocity.

3.2. The nonlinear Schrödinger equation

Proceeding to n = 2, l = 2 in combination with n = 3, l = 0, 1 in equations (8)–(10), we
obtain a compatibility condition in the form of the nonlinear Schrödinger equation:

i
∂ϕ

∂τ
+ P

∂2ϕ

∂ξ 2
+ Q |ϕ|2 ϕ = 0, (17)

which describes the slow evolution of the first-order amplitude of the plasma potential
perturbation ϕ ≡ ϕ

(1)
1 . The dispersion coefficient P is related to the dispersion curve as

P = ∂2ω/2∂k2. Its exact form reads

P = (ω2 − kλω)2(ω − kω)

2ω2k2

[
ω2 + 3k2

(ω2 − 3k2)3
+

β(ω2 + 3σk2β2)

(ω2 − 3σk2β2)3

]

+
3(ω2 − kλω)2

ω

[
1

(ω2 − 3k2)3
+

σβ3

(ω2 − 3σk2β2)3

]
− ω2 − kλω

2ωk2

− (ω2 − kλω)2λ

k

[
1

(ω2 − 3k2)3
+

β

(ω2 − 3σk2β2)3

]
. (18)

The nonlinearity coefficient Q, which is due to the carrier wave self-interaction, is given
by

Q = −k3(2ω + kλ)(ω2 − kλω)

2λω

[
(ω2 + 3k2)

(ω2 − 3k2)4
+

β(ω2 + 3σk2β2)

(ω2 − 3σk2β2)4

]

− 3k4(ω2 − kλω)

4ω

[
(ω2 + 3k2)(ω2 + k2)

(ω2 − 3k2)5
+

β(ω2 + 3σk2β2)(ω2 + σk2β2)

(ω2 − 3σk2β2)5

]

− 3k4(ω2 − kλω)

4ω

[
(ω2 + k2)[ω2 + k2 + 6k2(ω2 − 3k2)]

(ω2 − 3k2)6

+
β2(ω2 + σk2β2)[ω2 + σk2β2 + 6σk2β(ω2 − 3σk2β2)]

(ω2 − 3σk2β2)6

]
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+
3βk4(ω2 + k2)(ω2 + σk2β2)(ω2 − kλω)

2ω(ω2 − 3k2)3(ω2 − 3σk2β2)3
+

(2kλω + ω2 + 3k2)(ω2 − kλω)

2ω[λ2 − 3σβ2 + (λ2 − 3)β]

×
[
2ωk3(λ2 − 3σβ2 − 3β)− k2βλ(ω2 + 3k2)

λ(ω2 − 3k2)4
− 4ωk3λβ

(ω2 − 3k2)2(ω2 − 3σk2β2)2

− k2β(2ω2 + 3k2 + 3σk2β2)

(ω2 − 3k2)2(ω2 − 3σk2β2)2

+
2ωk3β2(λ2 − 3σβ − 3) − k2βλ(ω2 + 3σk2β2)

λ(ω2 − 3σk2β2)4

]
. (19)

It may be interesting to trace the asymptotic behaviour of these coefficients for small k, i.e. for
a large wavelength, compared to the Debye radius. At first we consider low mode. PL behaves
as PL ≈ −cP,Lk for small k, while QL goes to infinity as QL ≈ cQ,L/k (the expressions for
the quantities cP,L and cQ,L are given in the appendix). The product PQ is therefore negative
(prescribing modulational stability, as we shall see) and independent of k, for small k (i.e. in
the long-wavelength limit), while P/Q ∝ −k2 in the same limit. For the upper mode, PU

goes to a constant as PU ∼ 3(σ 3 + 1)/(1 + β)3/2 > 0, while QU behaves as QU ∼ cQ,Uk2 > 0
(the expression for cQ,U is given in the appendix). The product PQ is therefore positive
(favouring modulational instability, as we will see below) and tends to zero, for small k, while
P/Q ∼ k−2 > 0 in the same limit.

4. Modulational instability and envelope excitations

4.1. Modulational stability analysis

The stability analysis of the NLS equation (17) consists in linearizing around the
monochromatic wave solution ψ = ψ̂ eiQ|ψ̂ |2τ , i.e. by setting ψ̂ = ψ̂0 + εψ̂1, and then taking
the perturbation ψ̂1 to be of the form ψ̂1 = ψ̂1,0 ei(k̂ξ−ω̂τ ) (the perturbation wavenumber k̂

and frequency ω̂ should be distinguished from the carrier wave quantities k and ω). One
thus obtains the dispersion relation ω̂2 = P k̂2(P k̂2 − 2Q|ψ̂0|2). In order for the wave to
be stable, the product PQ must be negative. Otherwise, for positive PQ, instability sets
in for perturbation wavenumber values below a critical value k̂cr = √

2Q/P |ψ̂0|, i.e. for
wavelength values above the threshold λcr = 2π/k̂cr . The maximum instability growth rate
σ = |Im ω̂(k̂)|, i.e. σmax = |Im ω̂|k̂=k̂cr /

√
2 = |Q||ψ̂0|2, is achieved for k̂ = k̂cr/

√
2.

We draw the conclusion that the instability condition depends only on the sign of the
product PQ, which may be studied numerically, relying on the exact expressions derived
above.

4.2. Envelope soliton solutions of the NLSE

The localized solutions of the NLSE (17) describe (arbitrary amplitude) nonlinear excitations,
in the form of bright and dark (black/grey) envelope solitons. Exact expressions for these
envelope structures can be found by substituting with ϕ = √

ρ exp(iθ) into equation (17), and
then separating real and imaginary parts. The final formulae are exposed e.g. in [32, 37], and
will therefore only briefly be summarized in the following.

For PQ > 0 we find the bright envelope soliton:

ρ = ρ0 sech2

(
ξ − uτ

l

)
, θ = 1

2P

[
uξ −

(
� +

1

2
u2

)
τ

]
which represents a localized pulse travelling at a speed u and oscillating at a frequency
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� (at rest). The pulse width l depends on the constant maximum amplitude square ρ0 as
l = √

2P/Qρ0. We note that the maximum amplitude
√

ρ0 is inversely proportional to the
spatial extension l; this is in fact also true in the dark (i.e. black/grey) envelope soliton case
(see below).

For PQ < 0 we have the black envelope soliton

ρ = ρ1

[
1 − sech2

(
ξ − uτ

l′

)]
= ρ1 tanh2

(
ξ − uτ

l′

)
,

θ = 1

2P

[
uξ −

(
1

2
u2 − 2PQρ2

1

)
τ

]
,

representing a localized region of negative wave density travelling speed u. The pulse width
depends on the maximum amplitude square ρ1 via l′ = √|2P/Qρ1|.

Finally, for PQ < 0, one also obtains the grey envelope soliton excitation

ρ = ρ2

[
1 − a2 sech2

(
ξ − uτ

l′′

)]
,

which also represents a localized region of negative wave density, θ10 is a constant phase, s

denotes the product s = sign P × sign(u−V0). In comparison to the black soliton above, note
that apart from the maximum amplitude

√
ρ2, which is now finite everywhere, the pulse width

of this grey-type excitation: l′′ = (1/a)
√

2|P/Qρ2|, now also depends on the dimensionless
parameter a, which is given by a2 = 1+(u−V0)

2/(2PQρ2) � 1 (for PQ < 0), an independent
parameter representing the modulation depth (0 < a � 1). V0 is an independent real constant
which satisfies the condition: V0 −

√
2|PQ|ρ2

2 � u � V0 +
√

2|PQ|ρ22 ; for V0 = u, we have
a = 1 and thus recover the black soliton presented in the previous paragraph.

5. Numerical analysis

Summarizing the previous section, we have seen that the sign of the coefficient product
PQ determines the stability profile of ES waves and the type of envelope excitations
(negative/positive for stability/instability and bright/dark type envelope solitons), while the
ratio P/Q determines the spatial extension of the localized envelope structures for a given
maximum amplitude (and vice versa), in an inverse-proportional manner. We may now
investigate the numerical value of these quantities in terms of the relevant physical parameters,
namely the positron-to-electron (or positive-to-negative ion) density and temperature ratio(s),
β = n+,0/n−,0 and σ+ = σ = T+/T−, respectively.

The results of the calculations for fixed values of σ and different values of β for the lower
mode (acoustic branch) are shown in figures 2(a) and (b), for small k (large wavelengths), and
in figures 3(a) and (b) for higher k. We may nevertheless admit, for rigor, that figures 3(a)
and (b) are invalidated by Landau damping, which is expected to be dominant for large k
(where the ES wave phase velocity is comparable to the ion thermal velocity), and are thus
only provided for indicative purposes. We find out that both dark (grey or black, for PQ < 0) and
bright (for PQ > 0) excitations may occur. The former dominate the large wavelength (small
k) region, while the latter exist in a bounded range of values for shorter wavelengths in which
PQ > 0 (namely, from a zero-nonlinearity point k = kZNP > 0, where Q = 0 or P/Q → ±∞,
up to a zero-dispersion point, k = kZDP, say ZDP, where P = 0). Upon careful inspection of
figure 2(a) and figure 3(a), one observes that the range of positive PQ values (hence instability)
increases and shifts to higher values of k as β increases, for a fixed σ . As figure 2(b) shows,
the width of grey and dark excitations increases as k increases until k = kZNP, while that of
bright excitations decreases as k increases from k = kZNP up to k = kZDP. For a fixed value of
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(a) (b)

(c) (d )

Figure 2. The NLSE coefficient product PQ ((a) and (c)) and ratio P/Q ((b) and (d )) corresponding
to the lower dispersion branch ω1 are depicted against the reduced wavenumber kλD (in abscissa
everywhere). Here ((a) and (b)) σ = 1, and different values of β are considered; ((c) and
(d )) β = 0.95, and σ varies.

k, the width of dark (bright) excitations is shown to decrease (increase), for a given maximum
amplitude, as the density ratio increases. Admittedly, as stated above, high values of k are
rather excluded physically, due to Landau damping (which is inevitably omitted in a fluid
plasma description), so we need not pursue this analysis any further. Also, we note that the
NLSE-based analysis breaks down near the ZDP, where higher-order nonlinearity takes over
(this is a well-known phenomenon in nonlinear optics).

Considering a fixed value of β for different values of σ , for the lower mode, we
have obtained figures 2(c) and (d ) and figure 3(c) and (d ). The qualitative aspects of the
above analysis are also valid in this case. Thus, increasing the density of positrons (or positive
ions) with respect to their electron (or negative ion) counterpart results in an increase in the
wavenumber instability threshold, and therefore slightly favours stability. For a fixed value of
k, the width of dark (bright) excitations is shown to decrease (increase), for a given maximum
amplitude, as the temperature ratio increases.

Let us consider the upper mode (optical dispersion branch). The results of the calculation
for a fixed temperature ratio σ and different values of the density ratio β (or, respectively,
fixed β and varying σ ) for this mode are shown in figures 4(a) and (b) (or, respectively,
figures 4(c) and (d )). Both dark (for PQ < 0) and bright (for PQ > 0) excitations can exist
for this mode. Note, however, that the qualitative profile is reversed, with respect to the lower
mode: here, bright excitations and modulational instability occur for small k, in fact from
zero up to a threshold k = kcr (see that Q → ±∞ as k → kcr ), while dark excitations (and
modulational stability of the envelope) occur for larger k, after k = kcr . As the width of bright
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(a) (b)

(c) (d )

Figure 3. The same as in figure 2, for higher wavenumber k values.

excitations becomes narrower as k increases from zero up to k = kcr , where it reaches zero.
Beyond k = kcr , only stable envelopes may propagate, in the form of dark-type envelope
solitons; the corresponding localized envelope width increases up to a maximum value, and
then decreases as k increases (still, these low wavelength results are to be interpreted with
precaution). Upon careful inspection of figures 3(a) and (c), one observes that kcr shifts to
larger values as either σ or β increases.

Summarizing, we conclude that the lower (acoustic) mode is generally stable, for realistic
large wavelength situations (see figures 2(a) and (d )) and may propagate in the form of a dark-
type envelope soliton (i.e. a potential dip, a void). On the other hand, the upper (Langmuir-like)
mode is modulationally unstable (see figures 4(a) and (d )), and may favour the formation of
bright-type envelope soliton (pulse) modulated wavepackets at low wavenumbers. We remark
that, once the potential perturbation is determined by the NLSE (17), the density and velocity
variations are given by expressions (15); it may be checked that the two fluids (negative and
positive ions) are subject to a perturbation of opposite sign to one-another: an increase in the
number density (or the velocity) of one entails a depletion (or a slow-down) in the other, as
may be seen in equation (15). Finally, comparing to the ‘pure’ e–p (or pair–ion) plasma, which
was presented in [34, 35], we note that the qualitative profile depicted above remains similar
(despite an analytical complication discussed in [35]). It should be pointed out, however,
that all relevant wavenumber thresholds are increased in our case here; this implies that the
presence of ions in e–p plasma (respectively: charged defects, say, in pair-ion plasma) results
in a significant increase of the wavenumber range where the lower (acoustic) mode is stable
(favouring dark solitons, i.e. holes/voids) and/or where the upper (Langmuir-like) mode is
unstable (favouring bright solitons, i.e. pulses).
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(a) (b)

(c) (d)

Figure 4. The NLSE coefficient product PQ ((a) and (c)) and the ratio P/Q ((b) and (d ))
corresponding to the lower dispersion branch ω2 are depicted against the reduced wavenumber
kλD (in abscissa everywhere). Here ((a) and (b)) σ = 1, and different values of β are considered;
((c) and (d )) β = 0.95, and σ varies.

6. Conclusions

In this paper, we have investigated the nonlinear propagation of electrostatic wavepackets in
e–p–i plasmas, by employing a two-fluid plasma model. The results equally apply in the case
of a pair-ion plasma, in the presence of a small fraction of uniform and stationary charged
particles (e.g. dust). Electrostatic mode propagation parallel to the external magnetic field
was considered. The temperature ratio between the two species has been left arbitrary in
the analysis, although a natural choice of unity was implicitly focused upon. Two distinct
electrostatic modes were obtained, namely a quasi-thermal lower mode and a Langmuir-
like optic-type upper one which is the case for pure pair plasmas, in agreement with previous
experimental observations confirmed by theoretical studies of equal-temperature pair plasmas.
Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple
scale technique, the basic set of model equations was reduced to a nonlinear Schrödinger
equation for the slowly varying electric field perturbation amplitude.

The analysis revealed that the stability range of lower (acoustic) mode increases as the
positive ion (or positron) to negative ion (or electron) ion density ratio β increases. The
lower mode may propagate in the form of a dark-type envelope soliton (i.e. a potential dip,
or a void) which modulates a carrier wave. On the other hand, the upper mode is mostly
modulationally unstable, and may yet favour the formation of bright-type envelope soliton
(pulse) modulated wavepackets at small wavenumbers. As mentioned above, these results
depend on the temperature ratio, as one may see in figures 2–4. In specific, one may anticipate
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that a local coexistence of positive ions (or positrons) with a colder, say, population of
negative ions (or electrons), namely σ < 1 (σ > 1), may critically affect the stability profile
of electrostatic modes, for instance by stabilizing the lower mode, or by destabilizing the upper
mode.

It should be added, for rigour, that our results on the lower mode are somewhat invalidated
by Landau damping, which will dominate if the pair-ion temperatures are equal. However, we
speculate that allowing for T+ �= T−, and hence modifying the group velocity (see the slope in
figure 1(b)) may decrease Landau damping and allow ES oscillations to survive. Preliminary
theoretical calculations in this direction are currently carried out and should be reported soon.

These results are relevant to recent observations of electrostatic waves in pair-ion
(fullerene) plasmas. In particular, one may anticipate doping fullerene plasmas with charged
massive defects (or dust particles), in order to tune the characteristic features of plasma
modes. This analysis may also be relevant to modulated electron–positron–ion plasma radio
emission in pulsar magnetospheres. Our predictions may be investigated, and will hopefully
be confirmed, by appropriately designed experiments.
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Appendix

cP,L =
9
√

3(σβ2 − 1)2
√

β(1+σβ)

1+β

2[1 + (2 + σ)β + (1 + 2σ)β2 + σβ3]

CQ,L =
(

(9
√

3 σ 2β9 + 18
√

3 σ 2β8 + 24
√

3 β8σ + 54
√

3 β7σ + 26
√

3 σ 2β7 + 16
√

3 β7)

+ 40
√

3 β6 + 84
√

3 β6σ + 32
√

3 σ 2β6 + 65
√

3 β5 + 21
√

3 σ 2β5 + 116
√

3 β5σ

+ 14
√

3 σ 2β4 + 104
√

3 σβ4 + 90
√

3 β4 + 82
√

3 β3 + 8
√

3 σ 2β3 + 78
√

3 σβ3

+ 56
√

3 β2 + 44
√

3 σβ2 + 8
√

3 σβ + 29
√

3 β + 6
√

3)

√
β(1 + σβ)

σ + β

)/

(−1296σ 4β10 + 1944σ 3β8 − 1296σ 2β6 + 324σ 5β12 − 1296σ 3β9

+ 1944σ 2β7 − 1296β5σ + 324σ 4β11 + 324σβ4 − 324β3)

CQ.U = 1

3(1 + β)(29/2)σβ + 3(1 + β)(29/2)

× (2β13 + 26β12 + 156β11 + 572β10 + 1430β9 + 2574β8

+ 3432β7 + 3432β6 + 2574β5 + 1430β4 + 572β3 + 156β2 + 26β + 2).
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The nonlinear amplitude modulation of electromagnetic waves propagating in pair plasmas, e.g.,
electron-positron or fullerene pair-ion plasmas, as well as three-component pair plasmas, e.g.,
electron-positron-ion plasmas or doped �dusty� fullerene pair-ion plasmas, assuming wave
propagation in a direction perpendicular to the ambient magnetic field, obeying the ordinary �O-�
mode dispersion characteristics. Adopting a multiple scales �reductive perturbation� technique, a
nonlinear Schrödinger-type equation is shown to govern the modulated amplitude of the magnetic
field �perturbation�. The conditions for modulation instability are investigated, in terms of relevant
parameters. It is shown that localized envelope modes �envelope solitons� occur, of the bright-
�dark-� type envelope solitons, i.e., envelope pulses �holes, respectively�, for frequencies below
�above� an explicit threshold. Long wavelength waves with frequency near the effective pair plasma
frequency are therefore unstable, and may evolve into bright solitons, while higher frequency
�shorter wavelength� waves are stable, and may propagate as envelope holes. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2446373�

I. INTRODUCTION

Pair-plasmas �p.p.�, i.e., plasmas consisting of negatively
and positively charged particles bearing the same mass and
�absolute� charge, have been gathering increasing interest
among plasma researchers in the last years. Magnetized
electron-positron �e - p� plasmas exist in pulsar
magnetospheres,1–5 in bipolar outflows �jets� in active galac-
tic nuclei,6 at the center of our own galaxy,7 in the early
universe,8 and in inertial confinement fusion schemes using
ultraintense lasers.9 Nonrelativistic pair plasmas have been
created in experiments.10 Recently, Helander and Ward11 dis-
cussed the possibility of pair production in large tokamaks
due to collisions between multi-MeV runaway electrons and
thermal particles. Remarkably, pair plasmas �p.p.�, i.e., plas-
mas composed of �two populations of� fully ionized particles
with same mass and absolute charges of opposite charge po-
larity �+/−�, have recently been created in the laboratory12

by creating a large ensemble of fullerene ions �C60
+ and C60

− ,
in equal numbers�, thus allowing for a study of p.p. proper-
ties with no concern for mutual annihilation �recombination�,
which limits e - p plasma lifetime.

The physics of pair plasmas is substantially different
from that of electron-ion �e - i� plasmas, since the large time
and space scale separation among constituents �due to the
large ion-to-electron mass ratio, in an e - i plasma�13–15 is
simply absent in a pair plasma �where pair ions bear equal
masses�.16,18 In magnetized pair plasma, besides the electro-

static upper-hybrid waves, we have the perpendicularly
propagating ordinary and extraordinary modes as well as
magnetic field-aligned electromagnetic �EM� waves, featur-
ing a linear polarization. Remarkably, no Faraday rotation
exists in p.p. Iwamoto16 has presented an elegant kinetic de-
scription of numerous linear collective modes in a nonrela-
tivistic pair magnetoplasma. Stewart and Laing17 presented a
study of normal p.p. modes via a multifluid description. Zank
and Greaves18 have discussed the linear properties of various
electrostatic �ES� and electromagnetic �EM� modes in un-
magnetized and in magnetized pair plasmas, and also consid-
ered two-stream instability and nonenvelope solitary wave
solutions. Linear p.p. modes and associated instabilities have
been investigated from a kinetic-theoretical point of view in
Refs. 19 and 20.

Nonlinear excitations in pair-plasmas have been studied
quite extensively. Large amplitude structures have been mod-
eled via the pseudopotential �see, e.g., in Refs. 21 and 22,
and references therein� �and associated, e.g., Bernoulli
quasifluid�23 approach�es�, while the Korteweg-deVries
�KdV� picture has also been established in the large wave-
length limit.21,24 Modulated ES modes in p.p. �Ref. 25� have
also been studied, assuming amplitude modulation parallel to
the wave propagation direction. e - p - i plasmas have also
been studied, in this direction, with respect to low
�ion-acoustic�26 and higher frequency27 ES modes; those in-
vestigations were recently extended by including modulation
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obliqueness effects.28 Magnetic field-aligned nonlinear
Alfvén waves in an ultrarelativistic pair plasma have been
investigated by Sakai and Kawata29 and Verheest.30 Zhao et
al.31 have performed three-dimensional electromagnetic par-
ticle simulations of nonlinear Alfvén waves in an electron-
positron magnetoplasma. EM p.p. wave modulation due to
ponderomotive coupling to slow ES plasma perturbations
was considered by Cattaert et al.32

In this article, we aim at investigating the occurrence of
localized EM envelope modes, in relation to pair plasmas. In
particular, we shall consider a plasma consisting of two pair
ion species �e.g., electrons and positrons, or positive and
negative ions in fullerene plasmas�, possibly in the presence
of a third massive �immobile� background species; this latter
particle type may account for ions in e - p - i plasmas or, e.g.,
for charged massive defects �“dust”� in, say, “doped” pair
plasmas. We anticipate the existence of modulated localized
structures in p.p., related to the mechanism of modulation
instability; this term describes the wave amplitude tendency
to localize its energy, due to intrinsic medium nonlinearity,
either until collapse, or potentially forming stable localized
envelope structures, which are distinct from nontopological
solitons, e.g., of the KdV type. Although a direct extrapola-
tion from a general multifluid approach �upon setting m1

=m2 therein� may sometimes be legitimate �cf. Refs. 33 and
34�, no systematic theory has so far been presented for
modulated EM wave packets in pair plasmas. Our purpose is
to partially fill this gap. In this study, we shall focus on the
O-mode, which is an EM mode propagating in a direction
perpendicular to the ambient magnetic field. The dispersion
characteristics of the O-mode do not depend on the magnetic
field, and are not modified in p.p. �as compared to e - i plas-
mas�, which makes them an appropriate candidate for a trac-
table modulated EM wave model.

The layout of this article is the following: The model is
presented in Sec. II. In Sec. III, perturbation theory is em-
ployed and shown to lead to a nonlinear Schrödinger-type
�NLS� equation for the wave amplitude. In Sec. IV, the linear
stability of the wave envelope is discussed, while the occur-
rence of envelope solitons is shown in Sec. V, and numeri-
cally investigated in Sec. VI. Our results are then summa-
rized in Sec. VII.

II. THE MODEL

We consider a multicomponent collisionless plasma em-
bedded in a uniform magnetic field B0. The plasma is com-
posed of positive ions �mass m1, charge q1=s1Z1e; here re-
ferred to as species 1� and negative ions, or electrons �mass
m2=m, charge q2=s2Z2e; aka species 2�. We have defined the
charge state�s� Zj �j=1,2�, the charge sign sj =qj / �qj � = ±1,
and the absolute electron charge e; we shall denote the re-
spective equilibrium number densities by nj,0. The pair-
plasma limit is recovered from this model, upon setting Z1

=Z2=Z and m1=m2=m, at any step. In particular, we aim at
modelling e - p plasmas �yet neglecting annihilation� or pair-
�e.g., fullerene-� ion �viz. 1 �2�=C60

+�−��, for Z=1. The general
notation �i.e., indices j=1,2� may, however, be retained,
where appropriate. A third species is potentially present,

bearing a charge q3=s3Z3e �here s3±1� and a �large� mass
m3�m1/2, so that it may be considered to be immobile, at
the �high� evolution scales of interest. This species models
ions �mi�me� in e - p - i plasmas �neglecting annihilation�,
or, better, charged massive defects �dust� in “doped” p.p.
Naturally, the “pure” p.p. limit is recovered in the algebra, by
setting the third species density n3=n3,0=cst. to zero, at ev-
ery step.

We consider the �two-� fluid plasma density and momen-
tum equations:

�nj

�t
+ � · �nju j� = 0, �1�

�u j

�t
+ u j · �u j =

qj

mj
�E + u j � B� , �2�

where nj and u j denote the density and the mean �fluid� ve-
locity of species j �=1,2�. The �total� electric and magnetic
fields, E and B, respectively, obey Maxwell’s laws:

�B

�t
= − � � E , �3�

1

c2

�E

�t
= � � B − �0�

j

njqju j . �4�

The electric field E obeys Poisson’s equation

�0 � · E = e�Z�n+ − n−� + s3n3Z3� �5�

�setting n1/2=n+/−, for clarity�, while the magnetic field sat-
isfies Gauss’ law

� · B = 0. �6�

The right-hand side �RHS� of Poisson’s Eq. �5� is assumed to
cancel at equilibrium �only�, i.e.,

n+,0 − n−,0 + s3n3Z3/Z = 0. �7�

We underline the fact that no a priori assumption is made on
the �conservation of� charge neutrality �or density balance�
during dynamical evolution in time �off equilibrium�. Notice
that the density of the third species tunes the positive-to-
negative density ratio at equilibrium, say r=n+,0 /n−,0, in fact
towards values higher �lower� than unity for negative �posi-
tive, respectively� third species charge polarity, i.e., if s3

=−1 �+1�, since �7� implies

r =
n+,0

n−,0
= 1 − s3

Z3

Z

n3

n−,0
. �8�

Retain, in the following, that the �square root of the� ratio r
also essentially expresses the ratio among the plasma fre-
quencies �p,j = �nj,0Zj

2e2 /�0mj�1/2 �for j� �1,2�	�+,−�� of
the pair constituents, viz. r=n+,0 /n−,0=�p,+

2 /�p,−
2 , so that the

existence of the third background species will �only� be re-
flected in the algebra to follow, via the disparity among �p,+

and �p,− �the pure p.p. limit is recovered by setting �p,+

=�p,−, at every step�.
The system of Eqs. �1�–�4� form a closed system of sca-

lar evolution equations, for the elements of the state vector
S= �n1 ,u1,x/y/z ;n2 ,u2,x/y/z ;Ex/y/z ;Bx/y/z�. Our aim is to use Eqs.
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�1�–�4� as an analytical basis for a perturbative description of
the evolution of the system’s state; at every stage, Eqs. �5�
and �6� are satisfied, if initially valid.

To simplify the calculation, we shall assume that the
direction of wave propagation defines the axis x, implying a
wave number k=kx̂ for linear waves, and that the external
magnetic field B0 determines the z axis, i.e., B0=B0ẑ �here x̂,
ŷ, ẑ denote the unit vectors along the respective directions�.
All quantities are assumed to vary along the direction of
propagation, i.e., �→� /�x �thus �� · is x̂�� · /�x here�. No-
tice that a static magnetic field component along the direc-
tion of propagation is prescribed by Eqs. �6� and �the x com-
ponent of� �3�, so that Bx=0 is satisfied here, at all times. The
analytical model �and frame� adopted here agrees �for �
=� /2 therein� with the oblique propagation picture described
in Refs. 22 and 24, and also in Ref. 33, for parallel propaga-
tion in multicomponent plasmas �i.e., for �=� /2�.

III. DERIVATION OF AN EVOLUTION EQUATION
FOR THE EM WAVE AMPLITUDE DYNAMICS

A. Perturbative analysis: The analytical framework

We shall adopt a version of the reductive perturbation
technique,35 which was first applied in the study of electron
plasma waves35 and electron-cyclotron waves,36 more than
three decades ago. In order to study the nonlinear �ampli-
tude� modulational stability profile of these electrostatic
waves, we consider small deviations from the equilibrium
state S�0�= �n1,0 ,0 ;n2,0 ,0 ;0 ;B0�T, i.e. S=S�0�+�S�1�+�2S�2�

+¯, where ��1 is a �real� smallness parameter. We assume
that

Sj
�n� = �

l=−�

�

Sj
�n,l��X,T�exp�il�kx − �t�� ,

where the condition Sj
�n,−l�=Sj

�n,l�* holds, for reality. The wave
amplitude is thus allowed to depend on the stretched �slow�
coordinates of space X= ��nx , n=1,2 , . . . �= �X1 ,X2 , . . . � and
time T= ��nt , n=1,2 , . . . �= �T1 ,T2 , . . . � �viz. X1=�x, X2

=�2x, and so forth; same for time�, to be distinguished from
the �fast� carrier variables x �	X0� and t �	T0�. It may be
rigorously shown in the following �cf. compatibility require-
ments at order �2� that this scheme is tantamount to the as-
sumption X=��x−�t� and T=�2t in original works,35 where
the velocity � is interpreted as the group velocity, i.e., �
=vg=���k�. According to the above considerations, we set:

�

�t
	l

�n�eil
 = 
− il�	l
�n� + �

�	l
�n�

�T1
+ �2�	l

�n�

�T2
�eil
 + O��3� ,

�9�

�	l
�n�eil
 = 
+ ilk	l

�n� + �
�	l

�n�

�X1
+ �2�	l

�n�

�X2
�eil
 + O��3� ,

for any lth phase harmonic amplitude 	l
�n� among the com-

ponents of S�n�. We have defined the carrier �basic harmonic�
phase 
	kx−�t.

By inserting the above ansatz into Eqs. �1�–�4�, one ob-
tains a set of �coupled� reduced evolution equations, which
must be solved in each perturbation order ��n for the lth
harmonic amplitudes Sj

�n,l� of the state variables �here,

l=−n ,−n+1, . . . ,n−1,n�. Although particularly lengthy, the
calculation is perfectly straightforward, so unnecessary de-
tails will be omitted in the following.

B. First order dynamics „n=1…: Linear EM waves

The first-order equations describe the dynamics of a lin-
ear solution of the system of Eqs. �1�–�4� which, for n= l
=1, lead to the system of equations

− �nj
�1,1� + nj,0kuj,x

�1,1� = 0, �10�

�u j
�1,1� = i

qj

mj
�E�1,1� + u j

�1,1� � B0� , �11�

�B�1,1� = k � E�1,1�, �12�

−
i�

c2 E�1,1� = ik � B�1,1� − �0�
j

nj,0qju j
�1,1�, �13�

where the index j=1,2 distinguishes the two particle species
�fluids�. Assuming a harmonic solution f �exp�i�kx−�t��, it
is straightforward to derive a dispersion relation �DR� �
=��k�. Without going into details, we note that the DR for
perpendicular EM waves in magnetized plasma includes the
ordinary �O-� mode dispersion relation

�2 = �p,eff
2 + c2k2 �14�

�Refs. 13–15� which can easily be shown to satisfy relations
�10�–�13�; we have defined the effective plasma frequency
�p,eff= ��p,1

2 +�p,2
2 �1/2, where the plasma frequencies �p,j

were defined above. The DR �14� will be assumed to hold
throughout this article. Note, for clarity in notation, that the
effective plasma frequency �p,eff reduces to �p


2 for pure
p.p. �only�, where �p,1=�p,2=�p �since n+,0=n−,0; cf. discus-
sion in the previous section�, in agreement with previous
theoretical results �in fact �p,eff was denoted as �p in some
previous papers; this trivial notation difference should entail
no discrepancy�.

The O-mode is associated with a magnetic field �pertur-
bation� which is perpendicular to both B0 and k, hence
B�1�=By

�1�ŷ, and a parallel electric field, i.e. E�1�=Ez
�1�ẑ; this

result, already known from e - i plasmas, is retained in pair
plasmas. A set of exact expressions for the first harmonic
amplitudes may be obtained in terms of the �reduced� mag-
netic field �perturbation� amplitude By�=By

�11� /B0. One has

u±,z
�11� = � i

�

k
By�, Ez�

�11� = −
�

ck
By�,

and

nj
�11� = uj,x

�11� = uj,y
�11� = Ex

�11� = Ey
�11� = 0 �j = 1,2 	 + ,− � ,

�15�

where we defined the �common, among pair species� cyclo-
tron frequency �=ZeB0 / �mc� �a positive quantity�. The
prime in the field components henceforth denotes scaling by
B0 everywhere, i.e., Ex/y/z� �nl�=Ex/y/z

�nl� /cB0, and Bx/y/z� �nl�

=Bx/y/z
�nl� /B0.
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C. Second order dynamics „n=2…: Harmonic
generation, group velocity

The second-order solution is of the form:

S�2� = S�20� + �S�21� exp i�kx − �t� + c.c.�

+ �S�22� exp 2i�kx − �t� + c.c.� . �16�

The exact forms of all harmonic contributions in this expres-
sion are explicitly provided in the Appendix.

For n=2 and l=1, an explicit compatibility condition is
obtained in the form:

�By�

�T1
+ vg

�By�

�X1
= 0. �17�

This requirement is satisfied for a wave envelope moving at
the group velocity vg=���k�=c2k /�. All harmonic ampli-
tudes Sj

�11� are therefore functions of 
=X1−vgT1

	��x−vgt� �and of �=�2t, and/or higher orders�.

D. Solution up to second order

The solution obtained up to second order in � may be
summarized as

nj = nj,0 + �cj
�11�By�e

i
 + �2�cj
�22�By�

2ei2
 + nj
�20�� ,

uj = 0 + �cj,z
�11�By�e

i
ẑ

+ �2�cj,z
�21��By�

�X1
ei
ẑ + By�

2ei2
�cj,x
�22�x̂ + cj,y

�22�ŷ� + uj
�20�� ,

E = 0 + �cel,z
�11�By�e

i
ẑ

+ �2�cel,z
�21��By�

�X1
ei
ẑ + By�

2ei2
�cel,x
�22�x̂ + cel,y

�22�ŷ� + E�20�� ,

B = B0ẑ + �By�e
i
ŷ

+ �2�cB,y
�21��By�

�X1
ei
ŷ + cB,z

�22�By�
2ei2
ẑ + B�20��

for j=1,2	 + ,−; contributions of order O��3� or higher are
omitted everywhere. The exact forms of all coefficients
cj,x/y/z

�nl� are explicitly provided in the Appendix. Recall that
By�=By

�11� /B0 and 
=kx−�t. Si
�20� are arbitrary state variable

corrections satisfying

u1,x
�20� = − u2,x

�20� = cEy�
�20�, u1,y

�20� = − u2,y
�20� = − cEx�

�20�.

We note the generation of secondary harmonics, which is
the “signature” of the nonlinear modulation mechanism. See
that nonlinearity is essentially generated by the term
uz

�11�By
�11� in the momentum equations, which affects the

�coupled, via gyrating motion� perpendicular �to B0� velocity
components, as well as the electric field components in the
plane � B0, but—contrary to the first harmonics above—
leaves the parallel E and u j components �along B0� intact.
Therefore, the fluid velocities and the electric field possess
no second harmonics in the �z� direction parallel to the mag-
netic field. Quite surprisingly, the component of the electric
field in the direction of propagation �along x̂� vanishes in
pure pair plasmas �cf. expression for Ex

�22� in the Appendix�.

E. Amplitude evolution equation: n=3

Considering the system of equations for n=3 and l=1,
one first needs to ensure that secular terms annihilate, in
order for a long-lived analytical solution to exist. This re-
quirement furnishes a compatibility condition to be imposed
on the first-harmonic amplitudes, which here takes the form
of the nonlinear Schrödinger-type equation �NLSE�:

i
�By�

��
+ P

�2By�

�
2 + Q�By��
2By� = 0. �18�

Recall that the slow time scale is �=�2t and the moving
envelope space coordinate is 
=��x−vgt�, where the group
velocity vg was defined above. The magnetic field variable is
By�=By /B0. The dispersion coefficient

P =
1

2
���k� =

c2�p,eff
2

2�3 �19�

is related to the curvature of the dispersion relation ��k�,
which is positive �for all wave numbers k�. The nonlinearity
coefficient Q is related to intrinsic plasma parameters40 and
to the wave frequency � as

Q = QA/QB, �20�

where

QA = 3�p,eff
2 �2���2 − 4�2��p,eff

2 + 4�p,1
2 �p,2

2 � �21�

and

QB = ��c4�4 + c2�2 + c0� , �22�

with

c4 = 48�p,eff
2 , c2 = − 4�p,eff

2 �3�p,eff
2 + 7�2� ,

�23�
c0 = �2�3��p,1

4 + �p,2
4 � + 10�p,1

2 �p,2
2 + 4�2�p,eff

2 � .

The expressions for pure pair plasmas are readily ob-
tained by setting �p,eff

2 =2�p
2 everywhere. The dispersion co-

efficient in the NLSE �18� then simplifies to P=���k� /2
=c2�p

2 /�3, while the nonlinearity coefficient Q now simply
reads

Q =
3�2�p

2

2���2 − 3�2�
. �24�

Note that the sign of P is always positive. However, the
sign of Q depends on the relative values of the characteristic
frequencies with respect to the EM carrier frequency � �or
wave number k�. For ideal pure plasmas, Q is easily seen to
be positive �negative� for frequency � values below �above�
a threshold � /
3.

IV. MODULATIONAL STABILITY ANALYSIS

The amplitude evolution Eq. �18� is easily seen to sup-
port the plane wave solution �=�0 exp�iQ ��0�2��. The stan-
dard linear analysis, which consists of perturbing the ampli-

tude by setting �̂= �̂0+��̂1,0 cos�k̃
− �̃�� �the perturbation

wave number k̂ and frequency �̂ should be distinguished
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from their carrier wave homolog quantities, denoted by k and
��, leads to the �perturbation� dispersion relation:

�̃2 = Pk̃2�Pk̃2 − 2Q��̂1,0�2� . �25�

Therefore, if PQ�0, the amplitude � will be stable to exter-
nal perturbations. If PQ�0, the amplitude � is unstable for

k̃�
2Q / P � �̂1,0�, i.e., for perturbation wavelengths larger
than a critical value. This modulational instability mecha-
nism is essentially the well-known Benjamin-Feir instability,
in hydrodynamics, also long-known as an energy localization
mechanism in solid state physics and nonlinear optics.37

We conclude that the stability profile simply depends of
the sign of the product PQ, which may be investigated in
terms of the wave number k, in addition to intrinsic plasma
parameters.

V. ENVELOPE EXCITATIONS

Summarizing the above analysis, we have obtained a
modulated wave here representing the magnitude of the mag-
netic field correction B�1�=By

�1�ŷ, which is of the form


1
�1� = ��̂0 cos�k · r − �t + �� + O��2� .

The slowly varying amplitude �0�
 ,�� �Ref. 41� and phase
correction ��
 ,�� �both real functions of �
 ,��; see Ref. 38
for details� are determined by �solving� Eq. �18� for �
=�0 exp�i��. The different types of solution thus obtained
are summarized in the following.

A. Bright-type envelope solitons

We have seen that, for positive PQ, the carrier wave is
modulationally unstable; it may either collapse, due to �ran-
dom� external perturbations, or lead to the formation of
bright-type envelope modulated wave packets, i.e., localized
envelope pulses confining the fast carrier wave; see Fig. 1.
Bright soliton solutions of the NLSE are given by38

�0 = 
 2P

QL2�1/2

sech
 
 − ve�

L
� ,

� =
1

2P
�ve
 + 
� −

ve
2

2
��� ,

where ve is the envelope velocity; L and � represent the
pulse’s spatial width and oscillation frequency �at rest�, re-
spectively. Note that L and �0 satisfy L�0= �2P /Q�1/2

=constant �in contrast to KdV solitons, where L2�0=const.
instead�. Also, the amplitude �0 is independent of the pulse
�envelope� velocity ve here.

B. Dark-type envelope solitons

For PQ�0, the carrier wave is modulationally stable
and may propagate as a dark �black or grey� envelope wave
packet, i.e., a propagating localized hole �a void� amidst a
uniform wave energy region. The exact expression for dark
envelopes reads38

�0 = �0��tanh
 
 − ve�

L�
�� ,

� =
1

2P
�ve
 + 
2PQ�0�

2 −
ve

2

2
���

�see Fig. 2�a��; again, L��0�= �2 � P /Q � �1/2 �=cst. �.
The grey-type envelope �see Fig. 2�b��, also obtained for

PQ�0, is given by38

�0 = �0��1 − d2 sech2
 
 − ve�

L�
��1/2

and

� =
1

2P
�V0
 − 
1

2
V0

2 − 2PQ�0�
2�� + �0�

− S sin−1

d tanh
 
 − ve�

L�
�

�1 − d2 sech2
 
 − ve�

L�
��1/2 . �28�

Here �0 is a constant phase; S denotes the product S
=sign�P��sign�ve−V0�. The pulse width L�

FIG. 1. Bright type modulated wave packets �for PQ�0�, for two different
�arbitrary� sets of parameter values.
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= ��P /Q � �1/2 / �d�0�� now also depends on the real parameter
d, given by

d2 = 1 + �ve − V0�2/�2PQ�0�
2� � 1.

The �real� velocity parameter V0=const. satisfies38

V0 − 
2�PQ��0�
2 � ve � V0 + 
2�PQ��0�

2.

For d=1 �thus V0=ve�, one recovers the dark envelope
soliton.

VI. MODULATIONAL „IN…STABILITY OF EM WAVES:
NUMERICAL ANALYSIS

As was shown above, the �in�stability profile of EM
wave packets and the type of envelope excitations propagat-
ing in the plasma essentially depend on the coefficient prod-
uct PQ which, if positive �negative�, prescribes instability

�stability� and bright �dark, respectively� type envelope soli-
tons. We may now investigate the sign of PQ in various
parameter regions.

Since P turns out to be positive, we shall limit ourselves
to considering the sign of Q. It is obvious from Eqs.
�20�–�23� that the value of Q depends on the plasma frequen-
cies �p,1/2 �i.e., essentially on the densities n1/2�, on the cy-
clotron frequency � and on the EM wave frequency �; recall
that the latter is related to the wave number k via the disper-
sion relation �14�.

A. EM wave stability in pure pair plasmas:
Stability profile

For “pure” pair plasmas �for n3=0�, Eq. �24� suggests
that �p only affects the value of Q, while � determines its
sign: Q�0 �Q�0, respectively� for ��� /
3 ���� /
3�.
As a first result, in view of the detailed analysis to follow,
note that Q is therefore generally negative for cyclotron fre-
quencies � lower than �p


6�2.45�p �since ���p

2

�1.414�p, as prescribed by �14��; for a low-magnetic-field,
therefore, EM waves will always be stable, and will propa-
gate as dark-type envelopes. Note, in passing, that the stabil-
ity result of Ref. 39 is thus recovered, in the unmagnetized
plasma case. For cyclotron frequency values � higher than
�p


6�2.45�p, however, Q changes sign at �=� /
3, as
shown above. This behavior is depicted in Fig. 3, where the
ratio Q / P is plotted against � and � �both scaled by �p�.
Recalling that L��P /Q�1/2�0

−1 determines the width of an
envelope soliton �either bright or dark� for a given value of
the maximum �0

−1, we see that dark excitations will become
narrower �higher Q / P� as � approaches � /
3 from below,
while bright solitons will be narrower �higher Q / P� as �
approaches � /
3 from above.

FIG. 2. Dark-type modulated wave packets �for PQ�0� of the black �left�
and grey �right� kind. See that the amplitude never reaches zero in the latter
case.

FIG. 3. Coefficient ratio Q / P for “pure” pair plasmas: Contour plot of Q / P
values �scaled by �p

2 /c2�, as provided by Eqs. �19� and �24�, vs frequency
� /�p �x axis� and cyclotron frequency � /�p �y axis�. The contour values of
Q / P are �from top to bottom�: 5, 10, 20, 0, −10, −5, −1. The Q=0 contour
corresponds to �=� /
3.
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It may be instructive to investigate the stability profile in
terms of the wave number k. Combining the dispersion rela-
tion �14� with �24�, one finds that the coefficient Q changes
sign at kcr= ��2−6�p

2�1/2 / �c
3�, for ���p

6; specifically,

Q�0 below the threshold kcr �thus prescribing stability and
dark-type envelopes�, while Q�0 for k above kcr �where
unstable wave packets may give rise to bright type enve-
lopes�. It may be stated, for rigor, that the validity of a fluid
model is limited to low wave numbers, say ck /�p�1, i.e.,
for wavelengths ���p /c. For moderately or weakly magne-
tized plasmas, when ���p


6, Q remains negative, and the
wave packets will be stable. This behavior is depicted in Fig.
4, where the ratio Q / P is plotted against wave number k
�scaled by �p /c� and cyclotron frequency � �scaled by �p�.
Again, we see that dark excitations become narrower as k
approaches the threshold kcr �where Q=0� from below, while
bright solitons will be narrower as k approaches kcr from
above.

B. Influence of the third species

The effect of the presence of the third background spe-
cies considered in our model �ions in e - p - i plasmas, “dust”
in contaminated pair plasmas� on the stability profile of the
EM waves can be traced via the convenient parameter r
=n+,0 /n−,0=�p,+

2 /�p,−
2 ; recall that r attains values higher

�lower� than unity for a negatively �positively� charged third
ion species.

We have investigated the dependence of the Q / P ratio
on the density misfit �via the parameter r� numerically. It is
seen that, for weakly to moderately magnetized plasmas, the
ratio Q / P remains negative �for all values of � and r�, sug-
gesting modulational stability and dark-type envelope occur-
rence. For higher magnetic field values, however, a succes-
sion of negative and positive values arises—in the �k ,Q / P�
or �� ,Q / P� plane�s�, say—which is strongly modified by the

values of r. In Fig. 5, we have depicted the ratio Q / P against
the cyclotron-to-plasma frequency ratio � /�p,1, for a fixed
value of the frequency � near the plasma frequency cutoff,
i.e. �=�p,1


2. It is seen that for pure pair plasmas �see Fig.

FIG. 4. Coefficient ratio Q / P for “pure” pair plasmas: Contour plot of Q / P
values �scaled by �p

2 /c2�, as provided by Eqs. �19�, �24�, and �14�, vs wave
number ck /�p �x axis� and cyclotron frequency � /�p �y axis�. The contour
values of Q / P are �from top to bottom�: 5, 10, 0, −10, −1.

FIG. 5. Coefficient ratio Q / P for: �a� “pure” pair plasmas �r=1, i.e., n+,0

=n−,0�; �b� pair plasmas doped with positive background ions �r=0.5, i.e.
n−,0=2n+,0�; �c� pair plasmas doped with negative background ions �r=2,
i.e., n+,0=2n−,0�. Q / P values �scaled by �p

2 /c2�, as provided by Eqs. �19�,
�24�, and �14�, vs cyclotron frequency � /�p. Here we have considered a
carrier frequency near the plasma frequency cutoff, i.e., �=�p,1


2.
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5�a��, a qualitative transition occurs near ��3.455�p,1,
above �below� which value EM waves will be unstable
�stable�, and only bright �dark, respectively� type envelopes
may occur. For pair plasmas “contaminated” with a negative
third ion species �see Fig. 5�b��, though, we witness the ap-
pearance of one more pole �for ��3.7�p,1, say, in Fig.
5�b��, slightly below which one more modulational stability
region occurs. Therefore, the inclusion of an extra third ion
species in p.p. tends to stabilize the wave envelope, for high
magnetic field values, and also affects the characteristics of
envelope structures: width, form, stability. A similar behavior
is observed in Fig. 5�c�, where we have considered a positive
third ion species �e.g., ions, in e - p - i plasma�.

In Fig. 6, we have depicted the ratio Q / P against the
wave number k, for a fixed value of the cyclotron-to-plasma
frequency ratio � /�p,1. The conclusions drawn from these
plots are similar to the above: the addition of an extra third

species seems able to destabilize the wave envelope and/or
modify the localized envelope characteristics.

VII. SUMMARY AND CONCLUSIONS

Summarizing our results, we have considered the propa-
gation of nonlinear amplitude-modulated EM wave packets
in a pair plasma, consisting of two pair ion species �negative-
positive�, possibly in addition to an extra �third� massive ion
species in the background. We have thus aimed at modeling
pair-plasmas �as formed in recent fullerene experiments�, ei-
ther “pure” or contaminated by charged massive defects
�viz., dust�, in addition to electron-positron and electron-
positron-ion plasmas �neglecting annihilation effects�. The
carrier wave was assumed to obey the dispersion character-
istics of the ordinary �O-� mode, propagating in a direction
perpendicular to the ambient magnetic field. By adopting a
reductive-perturbation �multiple scales� technique, we have
shown that the magnetic field perturbation bears the form of
a nonlinearly modulated wave packet, whose envelope is
governed by a nonlinear Schrödinger-type equation. The in-
vestigation of the modulational stability of the envelope
against perturbations has pointed out the existence of a rich
profile, in terms of the interplay between relevant plasma
parameters, e.g., the plasma frequency �-ies� �p,1/2, the cy-
clotron frequency �, and the carrier wave frequency �. In
particular, electromagnetic wave packets were shown to ex-
ist, either in the form of an envelope pulse �bright envelope
soliton�, or a void �dark envelope soliton, a hole�, depending
on the plasma parameters. The presence of the background
ion species was shown to modify the characteristics of these
excitations, and/or affect the stability profile of the modu-
lated wave packets.

These results are in relevance with plasma observations,
in both experimental and astrophysical environments, e.g.,
related to signal detection from pulsars, where e - p plasmas
are believed to exist, or laboratory experiments involving
pair �fullerene� ion creation under controlled conditions. Our
theoretical predictions may be tested, and will hopefully be
confirmed, by appropriate experiments of that kind.
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FIG. 6. Coefficient ratio Q / P �scaled by �p
2 /c2� vs wave number ck /�p, for:

�a� � /�p,1=2.1 and r=1 �pure p.p., straight line� or r=2 �negative third ion
species, dashed curve�; �b� � /�p,1=3.5 and r=1 �pure p.p., straight line� or
r=0.5 �positive third ion species, dashed curve�.
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APPENDIX: SECOND ORDER HARMONIC
AMPLITUDES: n=2, l=0,1,2

The first harmonic amplitudes �n=2, l=1� are given by

uj,z
�21� = �− 1� j c

2�p,eff
2 �

�2k2

�By�

�X1
,

Ez
�21� = i

�

ck2

�By�

�X1
, �A1�

By
�21� = − i

�2 + �p,eff
2

�2k

�By�

�X1
,

while all remaining coordinates vanish, i.e.,

nj
�21� = uj,x/y

�21� = Ex/y
�21� = Bx/z

�21� = 0.

The second harmonic amplitudes �n=2, l=2� are given
by

uj,x
�22� =

�nj
�22�

knj,0
=

Dj,x
�22�

D0
�22�By�

2,

uj,y
�22� =

Dj,y
�22�

D0
�22�By�

2, uj,z
�22� = 0,

�A2�

Ex
�22� =

Del,x
�22�

D0
�22�By�

2,

Ey
�22� =

�

ck
Bz

�22� =
Del,y

�22�

D0
�22�By�

2, Ez
�22� = By

�22� = 0

�for j=1,2� where

D1,x
�22� = 6c2k��2�p,eff

2 �4�2 − �2 − 2�p,2
2 � ,

D2,x
�22� = 6c2k��2�p,eff

2 �4�2 − �2 − 2�p,1
2 � ,

D1,y
�22� = ic2k�3�− 4�p,eff

2 �4�2 − �2�

− 2�p,2
2 �4c2k2 − 4�2 − �p,1

2 � − 2�p,2
4 � ,

D2,y
�22� = − ic2k�3�− 4�p,eff

2 �4�2 − �2�

− 2�p,1
2 �4c2k2 − 4�2 − �p,2

2 � − 2�p,1
4 � ,

Del,x
�22� = − 3ick�p,eff

2 ��4�2 − �2���p,1
2 − �p,2

2 � ,

Del,y
�22� = 2ck��2���2 − 4�2��p,eff

2 + 4�p,1
2 �p,2

2 � ,

and

D0
�22� = c2k2�− 64�6 + 32�2�2 − �p,eff

2 + �2��4

− 4�4c2k2�2�2 + �p,eff
2 � + �4 + �p,eff

4

+ 2�2�p,eff
2 ��2 − ���p,1

2 − �p,2
2 �2

+ 4c2k2�2��p,eff
2 + �2�� . �A3�

A zeroth harmonic �constant, nonoscillating� contribu-
tion �n=2, l=0� is also found to second order. The perpen-
dicular velocity and field amplitudes satisfy

u1,x
�20� = − u2,x

�20� = cEy�
�20�,

�A4�
u1,y

�20� = − u2,y
�20� = − cEx�

�20�,

while all remaining variables are left arbitrary.
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